УДК 665.658.6

КОНВЕРСИЯ СВЕРХТЯЖЕЛОЙ АШАЛЬЧИНСКОЙ НЕФТИ В ГИДРОТЕРМАЛЬНО-КАТАЛИТИЧЕСКОЙ СИСТЕМЕ

© 2015 г. И. М. Абдрафикова^{1,2}, Г. П. Каюкова^{1,2}, С. М. Петров^{2,3}, А. И. Рамазанова³, Р. З. Мусин¹, В. И. Морозов¹

¹Институт органической и физической химии им. А.Е. Арбузова Казанского научного центра РАН, ²Казанский (приволжский) федеральный университет,

³Казанский национальный исследовательский технологический университет

E-mail: kayukova@iopc.ru Поступила в редакцию 25.05.2014 г.

Исследованы продукты гидротермально-каталитической конверсии сверхтяжелой нефти Ашальчинского месторождения, полученные в закрытой системе при температурах: 210° C, 250° C и 300° C с различным содержанием воды в присутствии природного катализатора – оксида железа (гематита). Показано, что процессы деструкции высокомолекулярных компонентов тяжелой нефти: бензольных и спирто-бензольных смол и асфальтенов, приводят к новообразованию светлых фракций, которые в исходной нефти отсутствовали. Показана различная устойчивость компонентов нефти к процессам конверсии. Наиболее существенные изменения наблюдаются в снижении содержания спирто-бензольных смол, сопровождающиеся увеличением степени их ароматичности и окисленности. В асфальтенах возрастает концентрация свободных радикалов (R*) и снижается концентрация четырехвалентного ванадия (V⁴⁺), что сопровождается увеличением степени карбонизации структуры и снижением их молекулярной массы. Показано, что образование кокса идет через стадию образования асфальтенов с последующим переходом части их в класс высокоуглеродистых нерастворимых в толуоле веществ, типа карбенов и карбоидов, выпадающих из дисперсной нефтяной системы при достижении определенной концентрации в осадок вместе с коксом. Выявлены изменения и в структуре гематитового катализатора.

Ключевые слова: сверхтяжелая нефть, термокаталитические превращения, гематит, продукты конверсии, состав, свойства, углеводороды, асфальтены, кокс.

DOI: 10.7868/S0028242115020021

Республика Татарстан занимает одно из ведущих мест в России по запасам тяжелых нефтей и природных битумов [1–3], которые значительно превышают запасы легких и маловязких нефтей. В развитых странах они рассматриваются не столько как резерв добычи нефти, сколько в качестве основной базы ее развития в ближайшие годы. Одной из причин трудности добычи и переработки тяжелого углеводородного сырья является высокое содержание высокомолекулярных соединений – смол и асфальтенов, в составе которых концентрируется большая часть гетероатомов, присутствующих в исходном сырье. По современным представлениям тяжелые нефти и природные битумы представляют собой дисперсные системы, в которых количество смол и асфальтенов определяет их свойства в различных термических и каталитических процессах [4-7]. В настоящее время перспективным направлением является разработка технологий по переводу тяжелых нефтей в маловязкие синтетические нефти [8-10]. Особый интерес представляют процессы переработки нефтяных остатков в легкокипящие углеводороды в среде паров воды в присутствии достаточно доступных железооксидных катализаторов [10–16]. Так, в [12] рассмотрены процессы водного пиролиза высококипящих нефтяных остатков на поверхности природного минерала - гематита, содержащего оксиды железа, с образованием дистиллятных фракций. При взаимодействии с водяным паром оксиды железа восстанавливаются с образованием магнетита и выделением водорода по: $3Fe + 4H_2O = Fe_3O_4 +$ +4H₂, который участвует в реакциях гидрирования и гидрокрекинга. Привлекательность этого метода, по мнению авторов, связана с невысокими требованиями к качеству сырья и возможностью использования недорогого катализатора в процессах конверсии сверхтяжелых нефтей при низких давлениях и в отсутствие водорода. В связи с этим исследования, направленные на глубокое изучение состава и свойств, высокомолекулярных компонентов альтернативных источников углеводородного сырья и выявление закономерностей их преобразования в гидротермально-каталитических системах являются актуальными для разработки научных основ создания эффективных технологий их добычи и переработки.

Цель работы — выявление закономерностей преобразования высокомолекулярных компонентов сверхтяжелой нефти в гидротермальнокаталитической системе с использованием природного катализатора — гематита, содержащего оксид железа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования:

• сверхтяжелая нефть Ашальчинского месторождения из пермских отложений территории Татарстана одного из крупнейших природных резервуаров, приуроченного к западному склону Южного купола Татарского свода;

• гематит — широко распространенный в природе минерал железа Fe₂O₃, нередко образующий большие скопления и рудные залежи, чаще всего встречающийся в гидротермальных жилах вместе с магнетитом;

• продукты гидротермально-каталитической конверсии сверхтяжелой нефти в присутствии оксида железа.

Опыты по гидротермально-каталитической конверсии нефти проведены в реакторе высокого давления при 210, 250 и 300°С при добавлении воды в реакционную систему в количестве 100, 20 и 6% относительно количества нефти, взятой в эксперимент, соответственно, для указанных температур. Использовали гематит, содержащий по данным элементного состава: 41% железа и 58% кремния с примесями некоторых других минералов: алюминия, серы, калия, кальция и меди. Начальное давление воздуха в системе составляло 2 МПа. При указанных температурах давление паровоздушной смеси составляло 180 МПа. Поддержание максимального давления при всех температурах регулировали снижением количества вводимой в систему воды, так как с увеличением температуры наблюдалось резкое повышение давления. Продолжительность эксперимента – 2 ч.

Продукты опытов исследовали с применением комплекса физико-химических методов. Жидкие продукты опытов анализировали методом колоночной жидкостно-адсорбционной хроматографии на силикагеле АСК с выделением углеводородной части и двух групп смол — бензольных и спирто-бензольных. Перед адсорбционным разделением по стандартной методике в 40 кратном количестве петролейного эфира (т. кип. 40–70°С) осаждали асфальтены. Элементный состав асфальтенов определяли методом сожжения на полуавтоматическом С-, Н-, N-анализаторе.

Структурно-групповой состав продуктов опытов определяли методом ИК-Фурье спектроско-

НЕФТЕХИМИЯ том 55 № 2 2015

пии. ИК-спектры снимали на инфракрасном спектрофотометре Vector 22 (Вгикег) в диапазоне 4000–400 см⁻¹ с разрешением 4 см⁻¹ в лаборатории молекулярной спектроскопии ИОФХ им. А.Е. Арбузова КНЦ РАН. Для сравнительных сопоставлений исследованных продуктов использовали спектральные коэффициенты, характеризующие их структурно-групповой состав: $C_1 = D_{1600}/D_{720}$ (ароматичности); $C_2 = D_{1710}/D_{1465}$ (окисленности); $C_3 = D_{1380}/D_{1465}$ (разветвленности); $C_4 = (D_{720} + D_{1380})/D_{1600}$ (парафинистости); $C_5 = D_{1030}/D_{1465}$ (осерненности).

ЭПР-спектры асфальтенов снимали при комнатной температуре на ЭПР-спектрометре SE/X-2544 фирмы "RadioPAN" (Польша) в стеклянных ампулах с навеской асфальтенов в количестве 5-10 мг. Содержание стабильных свободных радикалов (R*) оценивали по амплитуде одиночной линии в центре спектра ЭПР, скорректированной по ширине линии. Содержание ванадильных комплексов V⁴⁺ определяли по амплитуде наиболее интенсивной линии, находящейся рядом с одиночной линией свободного радикала в области более слабого магнитного поля. Полученные значения интенсивностей соответствующих линий в спектрах ЭПР нормировали на массу использованной навески, получая значения содержания R* и V⁴⁺ в относительных единицах.

Для определения молекулярной массы асфальтенов использовали метод матрично-активированной лазерной десорбции/ионизации (МАЛДИ). Исследования проведены на массспектрометре фирмы Bruker серии Ultraflex III TOF/TOF с времяпролетным анализатором, на матрице 2,5-дигидроксибензойной кислоты в лаборатории молекулярной спектроскопии ИОФХ им. А.Е. Арбузова КНЦ РАН.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты проведенных исследований показывают существенное влияние температуры и содержания водной фазы на выход и качество продуктов конверсии тяжелой нефти в гидротермально-каталитических процессах, что находит свое отражение в изменении ее компонентного состава (табл. 1). Во всех опытах нефть подвергается крекингу с увеличением в ее составе доли углеводородов при снижении содержания смол бензольных и спирто-бензольных. При 210°С и при соотношении воды к нефти 1 : 1 почти в три раза снижается содержание бензольных и спирто-бензольных смол. Содержание асфальтенов при данной температуре также снижается.

С увеличением температуры до 250°С и снижением содержания воды в реакционной системе до соотношения 1 : 5 на нефть содержание асфальтенов увеличивается с 5.8 до 7.46%. В их составе при-

№ п/п	Плотность при 20°С, г/см ³	Компонентный состав, мас. %									
		УВ	СБ	ССБ	Σ смол	I	Содержане кокса				
						Фр. А	Фр. Б	Σ асф.	1		
Нефть Ашальчинского месторождения (исходная)											
1	0.9725	57.30	23.60	13.30	36.90	5.80	_	5.80	_		
Продукт опыта 1 ($T = 210^{\circ}C$, $P = 18$ МПа, вода 1 : 1, катализатор 2%)											
2	0.9271	77.14	11.48	6.81	18.28	4.57	—	4.57	-		
Продукт опыта 2 ($T = 250^{\circ}$ C, $P = 18$ МПа, вода 1 : 5, катализатор 2%)											
3	0.9253	78.50	8.23	2.93	11.16	1.13	6.33	7.46	2.88		
Продукт опыта 3 ($T = 300^{\circ}$ C, $P = 18$ МПа, вода 1 : 10, катализатор 2%)											
4	0.8961	59.61	12.00	1.56	13.56	1.92	0.03	1.95	24.88		

Таблица 1. Общая характеристика и компонентный состав ашальчинской нефти и продуктов ее термокаталитических превращений

УВ – углеводороды; СБ – смолы бензольные; ССБ – смолы спирто-бензольные; асф. – асфальтены; Фр. А – фракция растворимых в толуоле асфальтенов; Фр. Б – фракция нерастворимых в толуоле асфальтенов.

сутствует 2 фракции: "обычные", растворимые в ароматических растворителях, асфальтены (фр. А) и нерастворимые асфальтены (фр. Б) типа карбенокарбоидов. В данных условиях начинается образование коксообразных продуктов (2.88%), которые осаждаются из жидкой фазы на стенках реактора.

В условиях опыта с наиболее высокой температурой 300°С происходит интенсивное образование кокса (24.88%) при существенном снижении содержания асфальтенов и спирто-бензольных смол. Уменьшение количества асфальтенов при дальнейшем углублении процесса коксования, по-видимому, связано с тем, что, с одной стороны, асфальтены превращаются в карбены-карбоиды, а с другой — становится меньше продуктов первоначального уплотнения и смол [6].

Известно, что кокс также, как и нефть, является сложной дисперсной системой, в которой дисперсной фазой выступают кристаллические образования разных размеров, а дисперсионной средой - газообразная или жидкая фаза, заполняющая поры, из которых формируются адсорбционно-сольватные слои [17]. В составе жидких продуктов, смытых с кокса из оп. 3 сольвентной экстракцией органическими растворителями, содержатся, как и в продуктах опыта: углеводороды, смолы бензольные, смолы спирто-бензольные и асфальтены, как растворимые, так и не растворимые. Но в отличие от продукта конверсии ашальчинской нефти данного опыта, в них меньше содержание масел (35%), выше содержание смол (33%), особенно, спирто-бензольных. Значительное снижение содержания асфальтенов в продуктах оп. 3, по сравнению с оп. 2, дает основание полагать, что это связано с их частичной адсорбцией и концентрацией в порах кокса, вместе с высокомолекулярными углеводородами и смолами, составляющими его адсорбционносольватные слои.

Морфология поверхности исходного кокса из оп. 3 представлена в виде упорядоченной пористой структуры (рис. 1а) с размером пор порядка 2–5 мкм.

Удаление жидкой фазы приводит к преобразованию его поверхности (рис. 16), которая приобретает вид аморфной структуры, вследствие удаления адсорбционно-сольватных слоев и разрушения его надмолекулярной структуры.

По данным ИК-спектрального анализа в продуктах конверсии ашальчинской нефти (табл. 2) происходит увеличение содержания ароматических структур и снижение содержания парафиновых структур, о чем свидетельствует возрастание значения показателя ароматичности ($C_1 = D_{1600}/D_{720}$) при снижении значения показателя парафинистости $(C_4 = (D_{720} + D_{1380})/D_{1600}$. Наиболее заметные изменения в составе продуктов, полученных при температурах 250 и 300°C, вследствие протекания процессов деструкции алкильных цепей и дегидрирования, приводящих к образованию н-алканов и ароматических структур. При этом рост значений показателей окисленности ($C_2 = D_{1710}/D_{1465}$) и осерненности ($C_5 = D_{1030}/D_{1465}$), подтверждает протекание процессов термоокислительного крекинга.

Анализ ИК-спектров отдельных компонентов (масел, смол бензольных, смол спирто-бензольных, асфальтенов и кокса) исходной нефти и продуктов ее конверсии выявил как общие особенности в их строении, так и отличия (табл. 2).

Масла. Масла из продуктов оп. 1 (температура 210° C) мало отличаются от масел исходной нефти, однако, степень их ароматичности (показатель C_1) несколько снижается при возрастании степени

Рис. 1. Морфология поверхности кокса методом сканирующей электронной микроскопии: (а) исходный кокс; (б) кокс после экстракции органическими растворителями.

алифатичности (показатель C_4). Более существенные изменения в сторону роста ароматичности наблюдаются в маслах из продуктов оп. 2 и 3 (табл. 2). На ИК-спектрах этих масел существенно возрастает интенсивность полосы поглощения при 1600 см⁻¹ (связь C=C в бензольном кольце), которая на спектре масел исходной нефти практически отсутствовала. Появляются полосы поглошения в области 730-900 см⁻¹ с максимумом при 745 см⁻¹, связанные с вибрацией 4 атомов водорода, прилегающих к ароматическому кольцу, а также с максимумами при 785, 812 см⁻¹, которые по данным работ [19-21] соответствуют внеплоскостным деформационным колебаниям связей С-Н конденсированных ароматических колец. Более узкие и интенсивные вышеуказанные полосы поглощения на ИК-спектрах продукта опыта 3 могут свидетельствовать [20] об образовании полиароматических структур. Кроме того, на спектрах масел появляется узкая полоса средней интенсивности при 1509 см⁻¹, указывающая на наличие в их составе азотсодержащих соединений гетероциклического строения [21], являющихся, по-видимому, продуктами деструкции смол и асфальтенов, а также широкая полоса поглощения 1100-1200 см⁻¹ в области колебаний кислородсодержащих эфирных С-О-С-и спиртовых С-ОН-групп.

Смолы бензольные. Изменения в структуре бензольных смол оп. 1 характеризуются, как и для масел, снижением степени их ароматичности при увеличении степени алифатичности, в то время как в смолах бензольных продуктов оп. 2 и 3 наблюдается обратное явление (табл. 2). На спектрах бензольных смол оп. 2 и 3 относительная интенсивность полосы поглощения при 1600 см⁻¹ возрастает при существенном снижении интенсивности полос поглощения алифатических структур при 1377 и 1459 см⁻¹, увеличивается интенсивность ароматического триплета в области 730—900 см⁻¹, что свидетельствует о протекании процессов с образованием конденсированных ароматических структур. Появление на спектрах бензольных смол широкой полосы в области 1100–1200 см⁻¹, как и на спектрах масел, подтверждает протекание окислительных процессов в данных условиях опыта.

Смолы спирто-бензольные. По сравнению с исходной нефтью, в спирто-бензольных смолах продуктов ее конверсии заметно увеличивается степень ароматичности и окисленности, при снижении степени алифатичности (табл. 2). Наиболее существенное возрастание интенсивностей полос поглощения ароматических структур (1600 и 730-900 см⁻¹) и снижение интенсивностей полос поглощения алифатических структур (1377 и 1459 см⁻¹) происходит с увеличением температуры опытов (рис. 2а). На спектрах этих смол существенно возрастает интенсивность полос поглощения кислородсодержащих структур при 1700 см⁻¹ (карбонильных групп), в области 1100-1200 см⁻¹ (спиртов и эфиров), при 1030 см⁻¹ (сульфоксидных групп), также появляется полоса поглощения при 1286 см⁻¹, которая может быть отнесена к валентным колебаниям связей С-О в карбонильных группах [19].

Асфальтены. ИК-спектры асфальтенов исходной нефти и продуктов опытов (фр. А), по сравнению со смолами, характеризуются большими интенсивностями полос поглощения ароматических структур при 1600 см⁻¹ и в области ароматического триплета при 730–900 см⁻¹ (рис. 2б). Рост интенсивности соответствующих полос поглощения находит отражение в увеличении показателя ароматичности асфальтенов (табл. 2).

Существенное увеличение интенсивностей полос поглощения при 1710, 1100–1200, 1030, 400–500 см⁻¹ с повышением температуры опытов свидетельствует о протекании деструктивных окис-

Объект	Оптическая плотность <i>D</i> в максимуме полос поглощения, λ см ⁻¹							Спектральные показатели*				
	1740	1710	1600	1465	1380	1030	720	C_1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅
Нефть Ашальчинского месторождения (исходная)												
Нефть	0	0	0.161	1.950	0.868	0.040	0.179	0.90	0	0.45	6.53	0.02
Масла	0.011	0.037	0.082	1.984	0.982	0.050	0.184	0.44	0.01	0.49	14.29	0.02
СБ	0.047	0.184	0.247	1.971	0.929	0.261	0.168	1.47	0.09	0.47	4.43	0.13
ССБ	0.208	0.518	0.529	1.971	0.971	0.390	0.211	2.51	0.26	0.49	2.23	0.20
Асфальтены	0.005	0.024	0.850	1.982	1.126	0.216	0.250	3.40	0.01	0.57	1.62	0.11
Продукт опыта 1 (Т 210°С, Р 18 МПа, вода 1 : 1, катализатор 2%)												
Продукт	0.016	0.068	0.184	1.961	0.974	0.063	0.176	1.04	0.03	0.50	6.24	0.03
Масла	0.008	0.013	0.068	1.976	0.913	0.047	0.190	0.36	0.01	0.46	16.12	0.02
СБ	0.045	0.121	0.240	1.974	0.947	0.168	0.218	1.10	0.06	0.48	4.87	0.09
ССБ	0.413	0.713	0.532	1.918	0.966	0.371	0.187	2.85	0.37	0.50	2.17	0.19
Асфальтены	0.000	0.063	0.553	1.447	0.774	0.208	0.092	6.00	0.04	0.53	1.57	0.14
Продукт опыта 2 (T 250°C, P 18 МПа, вода 1 : 5, катализатор 2%)												
Продукт	0.032	0.037	0.318	1.974	0.866	0.142	0.255	1.25	0.02	0.44	3.52	0.07
Масла	0.032	0.000	0.329	1.995	0.966	0.153	0.242	1.36	0	0.48	3.67	0.08
СБ	0.055	0.047	0.668	1.953	0.926	0.358	0.337	1.98	0.02	0.47	1.89	0.18
ССБ	0.755	1.695	1.221	1.534	1.211	0.355	0.047	25.76	1.10	0.79	1.03	0.23
Асфальтены:												
фр. А	0.211	1.200	1.850	1.984	1.161	0.474	0.232	7.99	0.60	0.58	0.75	0.24
фр. Б	0.000	0.000	1.971	1.645	1.192	0.408	0.611	3.23	0.00	0.72	0.91	0.25
Кокс	0.021	0.147	1.945	1.890	1.463	0.434	0.621	3.13	0.08	0.77	1.07	0.23
Продукт опыта 3 (Т 300°С, Р 18 МПа, вода 1 : 10, катализатор 2%)												
Продукт	0.045	0.166	0.805	1.921	0.811	0.318	0.305	2.64	0.09	0.42	1.39	0.17
Масла	0.042	0.026	0.724	1.958	0.990	0.287	0.237	3.06	0.01	0.51	1.69	0.15
СБ	0.032	0.008	0.729	1.618	0.671	0.345	0.466	1.56	0.005	0.41	1.56	0.21
ССБ	1.342	1.561	1.203	1.526	0.626	0.397	0.211	5.71	1.02	0.41	0.70	0.26
Асфальтены:												
фр. А	0.229	0.818	1.605	1.474	0.823	0.413	0.513	3.13	0.56	0.56	0.83	0.28
фр. Б	0.116	0.305	1.668	0.811	0.800	0.353	0.221	7.55	0.38	0.99	0.61	0.44
Кокс	0.074	0.116	1.047	0.382	0.524	0.190	1.079	0.97	0.30	1.37	1.53	0.50

Таблица 2. Характеристика продуктов термально-каталитических превращений ашальчинской нефти по данным ИК Фурье-спектроскопии

* $C_1 = D_{1600}/D_{720}$ (ароматичности); $C_2 = D_{1710}/D_{1465}$ (окисленности); $C_3 = D_{1380}/D_{1465}$ (разветвленности); $C_4 = (D_{720} + D_{1380})/D_{1600}$ (парафинистости); $C_5 = D_{1030}/D_{1465}$ (осерненности).

лительных процессов, сопровождающихся конденсацией ароматических колец.

Как было показано выше (табл. 1), асфальтены из продуктов опытов, полученных при 250 и 300°С, состоят из двух фракций: растворимой в толуоле (фр. А) и нерастворимой (фр. Б), включающей сильно карбонизированные структуры типа карбено-карбоидов. Кроме того, образуется кокс. Спектры нерастворимых асфальтенов (фр. Б) (рис. 2в) отличаются от спектров обычных асфальтенов (фр. А) более высокой интенсивностью полос поглощения, характерных для ароматических структур (1600 и 730–900 см⁻¹), а также отсутствием полос поглощения карбонильных групп при 1700 см⁻¹. В них менее интенсивные полосы поглощения сульфоксидных (1030 см⁻¹) и иных кислородсодержащих групп (1100–1200 см⁻¹). Относительно низкая интенсивность в спектрах нерастворимой фракции асфальтенов полос поглощения алифатических структур при 1449, 1376 см⁻¹ свидетельствует о том, что это высоко конденсирован-

Рис. 2. ИК-спектры смолисто-асфальтеновых компонентов исходной нефти и продуктов ее конверсии: (а) спиртобензольные смолы (опыты 1–3); (б) асфальтены фр. А (опыты 1–3); (в) асфальтены фр. А и фр. Б и кокс из продуктов опыта 3.

НЕФТЕХИМИЯ том 55 № 2 2015

ные структуры, характеризующиеся отсутствием алкильных заместителей, вследствие чего они и теряют свою растворимость в толуоле [22].

Кокс. По данным ИК-спектров (рис. 2в) кокс и нерастворимые в толуоле асфальтены фр. Б близки по своей структуре. В ИК-спектрах кокса также отсутствует полоса поглощения карбонильных групп (1700 см⁻¹), в них меньшая интенсивность полос поглощения сульфоксидных (1030 см⁻¹), спиртовых и эфирных групп (1100-1200 см⁻¹). Ароматический триплет в области 730-900 см-1 на спектре кокса из продукта опыта 3 достаточно интенсивен, но с менее выраженными максимумами при 878, 813 и 749 см⁻¹, чем на спектрах обычных и нерастворимых асфальтенов данного опыта. О процессах деалкилирования и дегидрирования, связанных с образованием нерастворимых асфальтенов и кокса свидетельствует низкая интенсивность в их спектрах полос поглощения алифатических структур. Важно отметить, что при температуре 250°С в основном идет образование нерастворимых асфальтенов, а при 300°С образование кокса. При этом в составе асфальтенов заметно снижается содержание фракции Б (табл. 1). Можно полагать, что образование кокса на поверхности катализатора идет через стадию образования высоко карбонизированных веществ типа карбенов и карбоидов, которые при достижении определенной концентрации ассоциатов теряют свою устойчивость в дисперсной нефтяной системе и выпадают из нее в виде коксообразного осадка [6, 17. 18]. Данное наблюдение согласуется с данными работы [16] о формировании некой "мезофазы", через которую идет коксообразование.

Следует отметить, что высокие интенсивоности полос поглощения ароматических структур (1600 и 730-900 см⁻¹) и низкие интенсивности полос поглощения алифатических структур (1377 и 1459 см⁻¹) в ИК спектрах отдельных фракциях асфальтенов и кокса не согласуются со значениями используемых нами спектральных показателей ароматичности ($C_1 = D_{1600}/D_{720}$) и алифатичности ($C_4 = (D_{720} + D_{1380})/D_{1600}$) (табл. 2). Так, несмотря на высокое содержание ароматических структур в нерастворимых асфальтенах и коксе, а также в бензольных и спирто-бензольных смолах оп. 3, значения показателя ароматичности данных компонентов относительно невысокие, чем следовало ожидать. Это может быть вызвано наличием на ИК-спектрах интенсивной широкой полосы поглощения ароматических структур в области 730-900 см⁻¹, что, не учитывается при расчете показателя ароматичности. Кроме того широкая полоса поглощения в вышеуказанной области приводит и к частичному перекрыванию полосы поглощения алифатических цепей при 720 см⁻¹, интенсивность которой используется при вычислении показателя С₄, характеризующего степень парафинистости исследуемых продуктов. Для анализа содержания длинных алкильных цепей по данным работы [21] также может быть использована полоса 685 см⁻¹, ее интенсивность на спектрах данных продуктов опытов весьма незначительна.

Методами ЭПР- и ИК-спектроскопии зарегистрированы превращения и в составе гематитового катализатора. Так, в ЭПР спектре исходного гематита в области от 0 до 500 mT наиболее четко проявляется резонансная полоса, характерная для оксида железа. На спектре катализатора, извлеченного из продукта оп. 1, наблюдается смещение резонансной полосы поглощения в область более высокой напряженности магнитного поля, что свидетельствуют об образовании комплексов железа, таких как магнетит(III)-Fe₃O₄, гидроксид(II)-Fe(OH)₂ или Fe(OH)₃. Оксидам железа, как правило, сопутствуют также гидроксиды железа. Образование магнетита в реакционной системе в результате взаимодействия оксида железа с водяным паром, представляется важным фактором [12], приводящим к выделению свободного водорода, способствующего протеканию процессов гидрирования фрагментных осколочных ионов, возникающих в процессе каталитического крекинга высокомолекулярных компонентов тяжелой нефти.

Присутствие на ИК-спектрах катализатора оп. 2 и 3 широкой интенсивной полосы при 3425 см^{-1} , соответствующей гидроксильным группам, которая отсутствовала на спектре исходного катализатора (рис. 3), также подтверждает образование комплексов железа таких, как магнетит (III)-Fe₃O₄ и гидроксиды железа. Однако при низком содержании водной фазы в реакционной системе оп. 3 процессы окислительно-каталитического крекинга ведут к интенсивному образованию кокса на катализаторе (рис. 3, кривая *3*), тем самым, блокируя его активные центры и снижая его активность, как донора водорода.

В новообразованных асфальтенах с увеличением температуры процесса конверсии тяжелой нефти возрастает концентрация свободных радикалов (R^*) и снижается концентрация четырехвалентного ванадия (V^{4+}), входящего в состав ванадилпорфириновых комплексов. Это находит свое отражение в увеличении значений показателя R^*/V^{4+} [23] в асфальтенах фракции A: от 4.19 до 10.96 (опыт 1), до 117 (опыт 2) и до 231 (оп. 3), указывающих на более карбонизированную их структуру. Аномально высокие значения данного показателя наблюдаются для фракций нерастворимых асфальтенов и кокса, вследствие практически отсутствия в их составе ванадилпорфириновых комплексов.

Структурные изменения в асфальтенах отражаются и в значениях их молекулярных масс, определенных методом МАЛДИ [24]. Молекулярная мас-

Рис. 3. ИК-спектры катализатора-гематита: (1) исходный катализатор; (2) катализатор после опыта 1; (3) катализатор после опыта 3.

са асфальтенов из продуктов конверсии тяжелой нефти (фр. А) снижается: с 1760 до 1720 (опыт 1), до 1200 (оп. 2) и до 950 m/z (оп. 3). Чем выше температура и меньше содержание водной фазы, тем интенсивнее идут процессы карбонизации структуры асфальтенов и образование кокса.

Во многих работах показано, что процессы деструкции асфальтенов в условиях термического воздействия и водного пиролиза [25–28], в условиях гидротермальных превращений [15, 22, 29] сопровождаются отрывом периферийных фрагментов по наименее устойчивым связям с образованием *н*-алканов и полициклических насыщенных и ароматических углеводородов, что приводит к структурированию асфальтенов в направлении их карбонизации.

Таким образом, результаты проведенных исследований показали направленность протекания реакций гидротермально-каталитических превращений высокомолекулярных компонентов сверхтяжелой нефти в присутствии природного оксидного катализатора — гематита и качество получаемых продуктов. Показана также возможность увеличения содержания более легких углеводородов в составе тяжелой нефти и снижения ее плотности, вследствие закономерного снижения содержания смолисто-асфальтеновых компонентов, с применением данного катализатора.

Работа выполнена за счет средств субсидии, выделенной в рамках Государственной поддержки Казанского федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров.

НЕФТЕХИМИЯ том 55 № 2 2015

СПИСОК ЛИТЕРАТУРЫ

- 1. Муслимов Р.Х., Романов Г.В., Каюкова Г.П., Юсупова Т.Н., Искрицкая Н.И., Петров С.М. Стратегия развития нефтебитумного комплекса Татарстана в направлении воспроизводства ресурсной базы углеводородов // Нефть. Газ. Новации. 2012. № 2. С. 21.
- Хисамов Р.С., Гатиятуллин Н.С., Шаргородский И.Е. и др. Геология и освоение залежей природных битумов Республики Татарстан. Казань: Фэн, 2007. 295 с.
- Каюкова Г.П., Романов Г.В., Муслимов З.Х. и др. Химия и геохимия пермских битумов Татарстана. М.: Наука, 1999. 304 с.
- 4. Сюняев З.И., Сафиева Р.З., Сюнява Р.З. Нефтяные дисперсные системы. М.: Химия, 1990. 224 с.
- 5. *Евдокимов И.Н., Елисеев Н.Ю., Уланцев А.Д.* // Наука и технология углеводородов. 2001. № 1. С. 55.
- Туманян Б.П. Научные и прикладные аспекты теории нефтяных дисперсных систем. М.: ООО "Тумагрупп". Изд-во "Техника", 2000. 336 с.
- Mullins O.C., Betancourt S.S., Cribbs M.E., Dubost F.X., Creek J.L., Andrews A.B., Venkataramanan L. // Energy & Fuels. 2007. № 21. P. 2785.
- Курочкин А.К., Топтыгин С.П. // Сфера. Нефтегаз. 2010. № 1. С. 92–96
- 9. *Liu Yongjian, Fan Hongfu* // Energy & Fuels. 2002. № 16. P. 842.
- 10. *Maity S.K., Ancheyta J., Marroquin G.* // Energy Fuels. 2010. № 24. P. 2809.
- Вазиров Р.Р., Ларионов С.П., Обухова С.А. и др. Окислительная каталитическая конверсия тяжелого нефтяного сырья. Уфа: Реактив, 1999. 132 с.
- Шарыпов В.И., Береговцова Н.Г., Барышников С.В. и др. // Химия в интересах устойчивого развития. 1997. № 5. С. 287.
- Nassar N.N., Hassan A., Pereira-Almao P. // Colloids and surfaces A: Physicochemical and Engineering aspects. 2011. № 384. P. 145.

- 14. Randall H., Doepper R., Renken A. // Industry Engineering Chemical Resources. 1997. № 36. P. 2996.
- 15. Zhang C., Lee C.W., Keogh R.A., Demirel B., Davis B.H. // Fuel. 2001. № 80. P. 1131.
- 16. Зайцева О.В., Магомадов Э.Э., Кадиев Х.М., Чернышева Е.А., Капустин В.М., Хаджиев С.Н. // Нефтехимия. 2013. Т. 53. № 5. С. 349. // Petrol. Chemistry. 2013. V. 53. № 5. Р. 309.
- Сюняев З.И. Производство, облагораживание и применение нефтяного кокса. М.: Химия, 1973. 295 с.
- 18. Твердохлебов В.П., Храменко С.А., Бурюкин Ф.А., Павлов И.В., Прошкин С.Е. // Journal of Siberian Federal University. Chemistry. 2010. № 4. С. 369.
- Иванова Л.В., Сафиева Р.З., Кошелев В.Н. // Вестник Башкирского университета. 2008. Т. 13. № 4. С. 869.
- 20. *Ковалева О.В.* // Нефтехимия. 2004. Т. 44. № 6. С. 459. // Petrol. Chemistry. 2004. V. 44. № 6. Р. 21.
- Тарасевич Б.Н. ИК-спектры основных классов органических соединений: справочные материалы. М.: Изд-во МГУ им. Ломоносова, 2012. 55 с.

- 22. Каюкова Г.П., Киямова А.М., Романов Г.В. // Нефтехимия. 2012. Т. 52. № 1. С. 7 // Petrol. Chemistry. 2012. V. 52. № 1. Р. 5.
- 23. Насиров Р.Н. Парамагнетизм нефтей и пород Прикаспия. М.: Недра, 1993. 123 с.
- 24. МАЛДИ спектроскопия сложных соединений: учебно-методическое пособие / Нижегородский гос. ун-т: сост. М.А. Ходорковский. Нижний Новгород, 2010. 20 с.
- 25. Гордадзе Г.Н. Термолиз органического вещества в нефтегазопоисковой геохимии. М.: ИГиРГИ, 2002. 336 с.
- Гордадзе Г.Н., Гируц М.В., Кошелев В.Н. Органическая геохимия углеводородов. М.: РГУ нефти и газа им. И.М. Губкина, 2012. Кн. 1. 392 с.
- Антипенко В.Р. Термические превращения высокосернистого природного асфальтита. Геохимические и технологически аспекты. Новосибирск: Недра, 2013. 184 с.
- Коваленко Е.Ю., Сергун В.П., Мин Р.С., Сагаченко Т.А. // Химия и технология топлив и масел. 2013. № 6. С. 40.
- 29. Любименко В.А., Петрухина Н.Н., Туманян Б.П., Колесников И.М. // XTTM. 2012. № 4. С. 27.