МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, 2012, том 46, № 2, с. 298-307

### МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ

УДК 575.11:595.773.4

## РОЛЬ НУКЛЕОКАПСИДА В МУЛЬТИМЕРИЗАЦИИ СТРУКТУРНОГО БЕЛКА GAG РЕТРОВИРУСА gypsy

# © 2012 г. Б. В. Сёмин<sup>1,2\*</sup>, О. Г. Леонова<sup>2</sup>, Т. А. Тренделева<sup>3</sup>, Р. А. Звягильская<sup>3</sup>, Ю. В. Ильин<sup>2</sup>, В. И. Попенко<sup>2</sup>

<sup>1</sup>Всероссийский научно-исследовательский институт экспериментальной ветеринарии им. Я.Р. Коваленко Российской академии сельскохозяйственных наук, Москва, 109391

<sup>2</sup>Институт молекулярной биологии им. В.А.Энгельгардта Российской академии наук, Москва, 119991

<sup>3</sup>Институт биохимии им. А.Н. Баха Российской академии наук, Москва, 119071

Поступила в редакцию 09.06.2011 г. Принята к печати 08.09.2011 г.

Структурный белок Gag ретровируса дрозофилы *gypsy* состоит из капсидного и нуклеокапсидного доменов. Белок Gag образует вирусоподобные частицы в бактериальной клетке; кроме того, капсидный домен Gag тоже способен мультимеризоваться, причем без участия нуклеокапсида. Однако агрегаты, образуемые капсидом, гетерогенны по размеру и гораздо менее организованы, чем частицы, сформированные полноразмерным Gag *gypsy*. Нуклеокапсид существенно влияет на организацию частиц, и эту функцию определяет последовательность аминокислотных остатков на его N-конце (проксимальная часть нуклеокапсида). Формирование частиц эффективно происходит в присутствии PHK или однонитевых олигонуклеотидов произвольной последовательности.

*Ключевые слова: gypsy*, ретровирус, ретротранспозон, вирусоподобная частица, структурный белок, Gag, бактериальная система экспрессии.

EFFECT OF NUCLEOCAPSID ON MULTIMERIZATION OF gypsy STRUCTURAL PROTEIN GAG, by *B. V. Syomin<sup>1, 2\*</sup>, O. G. Leonova<sup>2</sup>, T. A. Trendeleva<sup>3</sup>, R. A. Zvyagilskaya<sup>3</sup>, Yu. V. Ilyin<sup>2</sup>, V. I. Popenko<sup>2</sup> (<sup>1</sup>Kovalenko All-Russian Institute of Experimental Veterinary Medicine, Moscow, 109391 Russia, \*e-mail: bsyomin@yandex.ru; <sup>2</sup>Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia; <sup>3</sup>Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia). The structural protein (Gag) of the <i>gypsy Drosophila* retrovirus lacks matrix, but contains capsid and nucleocapsid domains. The Gag forms virus-like particles in a bacterial cell; besides, its capsid alone is able to form aggregates. However, aggregates assembled from the capsid were variable in size and displayed much less organization than particles formed by the whole Gag. The nucleocapsid exerts influence on the organization and structure of particles, and this function is directed by sequence of amino acid residues at its N-terminus (a nucleocapsid proximal part). The particle assembling occurs in the presence of any RNAs or single stranded DNA oligonucleotides.

*Keywords: gypsy*, retrovirus, retrotransposon, virus-like particle, structural protein, Gag, bacterial system of expression.

Эндогенные ретровирусы и ретротранспозоны, будучи интегральной частью эукариотического генома, как правило, занимают около 10%, а в некоторых случаях до 50% генома [1]. Их способность к транспозициям и горизонтальному переносу [2–4] представляет один из основных факторов генетической нестабильности и пластичности генома, что в рамках отдельного организма может привести к развитию ряда заболеваний, в том числе и у человека [5].

Ретровирус дрозофилы *gypsy* — удобная модель для изучения биологии одной из групп эндоген-

ных ретровирусов – Metaviridae, или Ty3/gypsy группы, сейчас называемой также эрантирвирусами [6, 7]. Интерес к изучению gypsy обусловлен его довольно высокой частотой транспозиций, амплифицированностью в геноме и способностью к межвидовому переносу [3]. Природу gypsy можно рассматривать двояко. С одной стороны, это ретротранспозон, активно экспрессирующийся в геноме ряда видов плодовой мушки [6, 8], и в этой связи представляет собой один из факторов, обеспечивающих вариабельность генома за счет своих транспозиций. С другой стороны, это инфекционный ретровирус, о чем свидетельствует его

<sup>\*</sup>Эл. почта: bsyomin@yandex.ru

структурная организация: *gypsy* содержит между длинными концевыми повторами гены *gag, pol* и *env*, свойственные ретровирусам, и, главное, частицы, образуемые этим элементом, обеспечивают его горизонтальный транспорт [3, 9, 10].

Как и все ретровирусы и ретротранспозоны, gypsy кодирует структурный белок Gag. Особенность Gag gypsy заключается в том, что его аминокислотная последовательность не содержит известных канонических мотивов, характерных для Gag всех подсемейств ретровирусов: лентивирусов, онковирусов и спумавирусов [6, 11]. Более того, нет свидетельств, позволяющих предполагать, что Gag gypsy процессируется на матриксный, капсидный и нуклеокапсидный пептиды [11, 12], как это присуще структурным белкам большинства ретровирусов позвоночных [13]. Выделить в Gag gypsy соответствующие домены возможно лишь виртуально. Дополняет картину то, что в нуклеокапсидной части этого белка отпоследовательности сутствуют классические "цинковые пальцы" (или так называемые ССНСмотивы), обычно обеспечивающие связывание структурного белка с РНК ретровируса [14, 15]. Вместе с тем, такая организация Gag не ограничивается исключительно ретровирусом gypsy, a характерна для ряда ретротранспозонов дрозофилы и дрожжей [6]. Кроме того, структурные белки спумавирусов млекопитающих [16] и ряда эндогенных ретровирусов, обнаруженных также и у человека (например, HERVL [1]), лишены ССНС-мотивов подобно Gag gypsy.

Несмотря на необычную организцию, Gag gypsy, как и все Gag, отвечает за образование вирусной частицы. Более того, он самодостаточен для мультимеризации в глобулярные частицы без участия каких-либо факторов эукариотической клетки, поскольку, экспрессированный в бактериях, способен образовывать частицы [11]. Вместе с тем, практически ничего не известно о том, какие домены аминокислотной последовательности ответственны за способность этого типа Gag мультимеризоваться в вирусоподобную частицу. Прояснить этот вопрос важно не только с точки зрения понимания механизма функционирования отдельно взятого белка, но и того, каким образом несхожие по аминокислотной последовательности белки могут выполнять тождественные функции.

Традиционный подход, используемый для выявления роли отдельных участков структурного белка ретровируса в формировании вирусоподобной частицы, — экспрессия делеционных мутантов Gag в бактериальной системе [17–19]. Gag *gypsy* состоит только из двух доменов: капсида и нуклеокапсида [11]; причем нуклеокапсидный домен был определен по его классическому свойству — отжигать тРНК к вирусной РНК [20]. Вместе с тем, из концепции, согласно которой мультимеризация Gag начинается со взаимодействия нуклеокапсида с PHK, следует, что нуклеокапсид играет ключевую роль в формировании частицы ретровируса [14, 15, 21, 22]. В этой работе мы экспериментально оценили вклад нуклеокапсида в формирование частицы gypsy. Для этого сравнили способность к мультимеризации полноразмерной формы белка с двумя его мутантными формами: в одном случае из белка Gag нуклеокапсид удалили полностью, а в другом — только С-концевую часть нуклеокапсида, содержащую мотив, определяющий большой положительный заряд белка и распространенный в белках, связывающихся с PHK.

Нами показано, что для эффективной мультимеризации белка необходима нуклеиновая кислота. Однако нуклеокапсид нельзя считать единственным необходимым фактором мультимеризации Gag gypsy. Капсидная часть белка также способна мультимеризоваться в присутствии нуклеиновой кислоты. Нуклеокапсид существенно влияет на организацию и структуру частиц, и эту функцию определяет N-концевая часть нуклеокапсида gypsy. Мультимеризация всех рассмотренных в работе белков (полноразмерный Gag, капсид Gag, нуклеокапсид Gag) эффективно происходит в присутствии РНК или однонитевых олигонуклеотидов, при этом для образования частиц не требуется никакой специфичной последовательности нуклеиновых кислот.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Бактериальные линии. Линия клеток *Escherichia coli* XI-Blue ("Stratogene", Великобритания) использована для клонирования, а линия *E. coli* BL21 (DE3) ("Novagen", США) – для экспрессии белка.

Создание конструкций. Молекулярное клонирование выполнено по стандартным методикам [23]. Плазмиды, предназначенные для экспрессии в бактериях белка Gag gypsy и его делеционных мутантов, получены на основе плазмиды BG1, состоящей из вектора pBlueBac4.5/V5-His ТОРО с клонированным ДНК-фрагментом геномной копии Gag gypsy, синтезированной полимеразой PfuI [24]. При получении конструкции "1" для экспрессии в бактериях полноразмерной формы Gag NcoI-HindIII фрагмент плазмиды BG1 клонировали в сайты NcoI-HindIII вектора рЕТ23d(+). Конструкцию "1ΔNC" получили в результате клонирования фрагмента ДНК HindII-NcoI из конструкции BGI в вектор pET23d(+) по сайтам MluI (3'-конец затуплен фрагментом Кленова) и NcoI.

Конструкцию "**1ΔRRM**" получили в результате клонирования в вектор pET23d(+) по сайтам



Рис. 1. Схематичное изображение использованных в работе белков, экспрессированных в бактериях. Сверху вниз изображены "1", "1∆RRM", "1∆NC" и "NC" соответственно. Последовательность аминокислотных остатков нуклеокапсида приведена на схеме. Положительно заряженная последовательность, содержащая парные остатки аргинина и серина, подчеркнута и названа SR-мотив, на схемах белков она представлена темным прямоугольником.

DraII (затуплен фрагментом Кленова) и NcoI фрагмента ДНК HindII-NcoI из конструкции BGI. Плазмиду, позволяющую экспрессировать нуклеокапсид Gag gypsy ("NC"), получили, выделив StyI-HindIII З'-концевой фрагмент Gag из плазмиды BG1 и достроив концы фрагмента до тупых фрагментом Кленова. Полученный фрагмент лигировали в сайт NheI плазмиды pET23d(+), достроенный до тупого. Созданные конструкции были способны экспрессировать в бактериальной клетке мутантные (делетированные) формы Gag gypsy, схематичное изображение которых представлено на рис. 1.

Экспрессия белка. Каждую из полученных конструкций трансформировали в клетки E. coli линии BL21(DE3). 5 мл ночной культуры трансформированных клеток разбавляли (1:100) свежей культуральной средой (LB/amp) и инкубировали при 37°С до достижения оптической плотности 0.8 (при длине волны 600 нм). Ген Т7 РНКполимеразы под контролем lac-промотора постоянно слабо экспрессируется даже в отсутствии индуктора ("Novagen"). Чтобы увеличить выход водорастворимой порции Gag (см. ниже) клетки с трансформирофанными в них плазмидами инкубировали при 4°С в течение 72 ч без изопропилтиогалактозида (ИПТГ) в присутствии ампицилина (50 мкг/мл). Электорофорез белков проводили по методике Лемли [23].

Выделение вирусоподобных частиц из бактериальных клеток. Клетки осаждали центрифугированием (12000  $\times$  g), промывали фосфатно-солевым буфером и ресуспендировали в буфере А (20 мМ Трис-HCl, pH 7.8, 20 мМ NaCl, 2 мМ PMSF, 0.25% Triton X-100), гомогенизировали в гомогенизаторе Даунса и разрушали ультразвуком при помощи дезинтегратора "Bandtlin sonopuls" (Германия). Полученный лизат осветляли центрифугированием при 36000 × g в течение 15 мин при 4°С, супернатант наслаивали на 3 мл 30%-ного раствора сахарозы в буфере А и центрифугировали 2 ч при 180000 × g в роторе SW41 на центрифуге Optima TL-100 ("Beckman-Coulter", США). Осадок ресуспендировали в 500 мкл буфера А, гомогенизировали в гомогенизаторе Даунса и вновь фракционировали, используя метод ультрацентрифугирования в ступенчатом градиенте 20/30/70%-ных концентраций сахарозы, взятых в соотношении 500 : 250 : 190 мкл (ротор TLS55, 81000 × g, 68 мин, 4°С). Из пробирки последовательно отбирали 196 мкл аликвоты и, таким образом, получали 8 фракций, которые затем анализировали методом электрофореза в ПААГ [23].

Очистка мономеров белка. Лизаты бактериальных клеток, после экспрессии полноразмерного Gag или его делетированных форм, центрифугировали при 12000 × g в течение 15 мин. Образовавшийся осадок трижды промывали раствором 0.5%-ного Triton X-100 с 10 мМ ЭДТА и оставляли на 1 ч при комнатной температуре в 8 М мочевине, содержащей 0.2 М NaCl, 0.1 М Трис-HCl, рН 6.8. Получившийся раствор центрифугировали при 280000 × g в течение 20 мин. Осадок после центрифугирования не содержал Gag, т.е. агрегаты изучаемых белков полностью растворялись в присутствии 8 М мочевины. Поскольку клонирование выполнено так, что к С-концу всех экспрессируемых белков подшита последовательность из 6 остатков гистидина (полигистидиновый тракт), полноразмерную форму Gag или его делетированные формы выделяли из супернатанта методом аффинной хроматографии на Ni-NTA-агарозе по методике производителя ("Pharmacia"). Полученный таким образом препарат затем дополнительно очищали гель-фильтрацией на колонке Superose 12 ("Pharmacia") в системе FPLC.

Связывание меченой ДНК с белками, иммобилизованными на фильтре, проводили в буфере следующего состава: 20 мМ Трис-HCl, pH 7.5, 50 мМ NaCl и 5%-ного обезжиренного молока – по методике, описанной нами ранее [25]. ДНК метили P<sup>32</sup> при помощи "рассеянной затравки" ("Amersham") по методике производителя. Для получения меченной РНК *in vitro* плазмиду pGEMgyp [26] линеаризовали рестриктазой BamHI и проводили реакцию синтеза РНК SP6 полимеразой ("Amersham") по методике производителя. В качестве предшественника использовали [Р<sup>32</sup>]-меченый АТР в количестве 100 мкКи на одну реакцию синтеза.

Получение частиц *in vitro*. Концентрацию мочевины в растворах очищенного белка постепенно снижали (от 6 до 0.25 М) при диализе в буфере следующего состава: 50 мМ Трис-HCl, pH 6.8; 150 мМ NaCl, 5 мМ MgCl<sub>2</sub>, 5%-ный глицерин.

Электронная микроскопия. Образцы (5 мкл) наносили на свежеионизированные коллодиевоугольные пленки-подложки, окрашивали 2%ным уранилацетатом и анализировали на электронном микроскопе JEM-100CX (80 кВ; "JEOL", Япония).

#### РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

На первом этапе работы исследована способность белка Gag gypsy образовывать вирусоподобные частицы без участия нуклеокапсида. Такой подход основан на представлении, что образование вирусоподобной частицы инициируется при взаимодействии нуклеокапсида с РНК [14, 15, 21, 22]. Не так давно на С-конце Gag gypsy выявили нуклеокапсид [20]. Нуклеотидная последовательность, кодирующая нуклеокапсидный домен, делетирована в созданной нами конструкции "1ΔNC". Сравнив экспрессию целевых продуктов, синтезируемых конструкциями "1ΔNC" (без нуклеокапсида) и "1" (полноразмерный Gag), оценили способность этих белков формировать частицы, используя для этого тест, примененный нами ранее [11]. Клетки с экспрессированными белками разрушали ультразвуком, отбирали осветленный лизат и ультрацентрифугировали, как принято при очистке вируса. Образовавшийся осадок растворяли и наслаивали на трехступенчатый градиент увеличивающихся концентраций сахарозы 20/30/70%. Как показано ранее для белка конструкции "1" [11], в условиях уль-трацентрифугирования (180000 × g, 40 мин) частицы проходят через 20- и 30%-ную сахарозу и задерживаются на границе между 30- и 70%-ной сахарозой. Вместе с тем, белок без нуклеокапсида - конструкция "1ΔNC" - также аккумулировался на 30-70%-ной интерфазе, и этот результат стал отправной точкой для дальнейшей работы.

Электронно-микроскопическое исследование препаратов интерфазы 30- и 70%-ной сахарозы выявило существенное различие между структурами, образуемыми белками "1" и "1 $\Delta$ NC" (рис. 2*a*,*б*). Если Gag gypsy (продукт конструкции "1") формирует достаточно однородные глобулярные частицы со средним размером 27 нм (рис. 2*a*), то его делеционный мутант, с удаленным нуклеокапсидом, образует глобулярные агрегаты, размеры которых варьируют от 3 до 50 нм (рис. 2*б*). Несмотря на то, что "1 $\Delta$ NC" формирует неоднородные агрегаты,

Рис. 2. Электронная микроскопия частиц, очищенных из бактериальных клеток, после экспрессии в них белка "1" (*a*), "1 $\Delta$ NC" (*б*), "1 $\Delta$ RRM" (*в*). Стрелками отмечены примеры наиболее характерных для каждого препарата частиц. Масштабный отрезок составляет 50 нм.

полученный результат свидетельствует о способности Gag мультимеризоваться без участия нуклеокапсида.

Ранее нами показано, что структурный белок Gag gypsy имеет высокое сродство к нуклеиновым кислотам. Константа связывания белка равна  $4 \times 10^8 \text{ M}^{-1}$  [25]. Это значение хорошо коррелирует с константами связывания классически организованных Gag. Поскольку пока нет альтернативного объяснения механизма инициации мультимеризации Gag, кроме как через взаимодействие с нуклеиновой кислотой [14, 15, 21, 22], нами экспериментально проверено, только ли нуклеокапсид

СЁМИН и др.



**Рис. 3.** Тест на связывание с нуклеиновыми кислотами белков "1", "1 $\Delta$ RRM", "1 $\Delta$ NC" и "NC". *a* – Электрофоретический анализ лизатов клеток в 12.5%-ном ПААГ. Гель окрашен коллоидным кумасси G-250. *1, 2, 4, 5* – Бактериальные лизаты после экспрессии белков "1", "1 $\Delta$ RRM", "1 $\Delta$ NC" и "NC" соответственно; *3* – контроль. *б* – Препарат, аналогичный изображенному на рисунке *a*, после переноса на фильтр и связывания с ДНК, меченной [P<sup>32</sup>] методом "рассеянной затравки". *в* – Связывание пептидов бактериальных лизатов после экспрессии белков "1", "1 $\Delta$ RRM", "1 $\Delta$ NC" и "NC" (*1*–4 соответственно) и фракционирования в 12.5%-ном ПААГ с [P<sup>32</sup>]-меченой (+)-цепью PHK *gypsy*, синтезируемой *in vitro* при помощи SP6 PHK-полимеразы с плазмиды PGEMgyp.

определяет сродство Gag к нуклеиновым кислотам. Для этого применен метод лиганд-блотинга [25]. Метод основан на связывании иммобилизованных на мембране белков с мечеными нуклеиновыми кислотами. Этот метод был успешно опробован при идентификации структурных белков Ту1 в лизатах клеток *Saccharomyces cerevisiae* [27] и ранее использован нами для детекции Gag *gypsy* [25].

Конструкции, кодирующие Gag gypsy ("1"), мутантную форму Gag без нуклеокапсида (" $1\Delta NC$ ") и нуклеокапсид ("NC"), экспрессировали в клетках E. coli BL21(DE3). После экспрессии клетки лизировали и подбирали объемы аликвот из лизатов таким образом, чтобы в них были одинаковые массы экспрессированных белков. Затем компоненты лизатов фракционировали с помощью электрофореза в 10%-ном SDS-ПААГ (рис. 3а) и переносили на нитроцеллюлозную мембрану электроблотингом и связывали с денатурированной лидерной последовательностью ДНК gypsy, меченной Р<sup>32</sup> с помощью метода рассеянной затравки. Результат представлен на рис. Зб. Полноразмерная форма белка "1" и нуклеокапсид "NC" эффективно связываются с нуклеиновой кислотой. Разница в эффективности связывания между "1" и "NC" усилена тем, что при равенстве условий иммобилизации (по массе белка) количество нуклеокапсида на фильтре в 2.4 раза больше (соответственно больше центров связывания), чем полноразмерной формы Gag. Кроме того, нельзя исключить возможность более эффективного переноса на мембрану низкомолекулярных полипептидов по сравнению с высокомолекулярными. Обращает на себя внимание тот факт, что делетированные формы Gag, прежде всего "1ΔNC", также проявляют слабое сродство к нуклеиновым кислотам (рис. 3в). И это, скорее всего, не артефакт, связанный с большим количеством "1ΔNC" на мембране, поскольку фракционированные белки бактериального лизата, взятые в сравнимых количествах (см. рис. 3a) и иммобилизованные таким же образом, не проявляли никакого сродства к нуклеиновым кислотам. По-видимому, как и в случае нуклеокапсида, связывание делетированного по нему полипептида с нуклеиновыми кислотами обусловлено положительно заряженными участками с большим содержанием остатков лизина (их осталось 15) и аргинина (16), причем оставшаяся, капсидная, часть Gag образует глобулярные агрегаты (рис. 26). Таким образом, нуклеокапсид не есть исключительная область белка, обеспечивающая связывание с нуклеиновой кислотой, но его присутствие необходимо для образования однородных глобулярных частиц (рис. 2). Из этого можно предположить, что нуклеокапсид обеспечивает специфичность взаимодействия мономеров при сборке частицы.

Нуклеокапсид любого из известных Gag находится на N-конце белка и представлен областью «низкой сложности», которую достаточно просто определить, используя, например, возможности сервера DisProt VL3-H predictor [http://www.ist. temple.edu/disprot/]. Именно по этим элементарным признакам идентифицирован нуклеокапсид Gag gypsy [20]. Анализируя эту область, мы обратили внимание на участок, расположенный между 333 и 348 аминокислотными остатками белка

302

(рис. 1), который, наряду со значительным положительным зарядом, содержит последовательность, похожую на SR-мотив [28], определяемую наличием пары остатков Arg и Ser. Этот мотив характерен для белков, специфически связывающихся с нуклеиновыми кислотами. Поскольку последовательность, определяющая РНК-распознающий мотив (RRM) нуклеокапсида Gag gypsy, не известна, мы экспериментально оценили вклад вышеуказанного участка в мультимеризацию Gag. Для этого создали делеционный мутант Gag gypsy "1∆RRM" и проанализировали структуры, которые он образует в бактериальной клетке. Использовали описанный выше тест: из водорастворимой части лизата ультрацентрифугированием выделяли фракцию частиц, которую затем также ультрацентрифугированием анализировали с помощью ступенчатого градиента сахарозы. В результате показано, что Gag gypsy, у которого удалено больше половины нуклеокапсида на С-конце (белок "1 $\Delta$ RRM"), способен не менее эффективно, чем полноразмерная форма Gag формировать частицы в бактериальной клетке. Частицы, образуемые "1ΔRRM", морфологически мало отличались от таковых для полноразмерного белка (рис. 2в). Таким образом, результаты сравнения мультимерных структур, образуемых Gag и двумя его делеционными мутантами, свидетельствуют о том, что нуклеокапсид необходим для построения глобулярных частиц, и эта функция может быть обеспечена его N-концевым (проксимальным) участком.

Ранее нами показано, что основная масса экспрессируемого в бактериях Gag gypsy образует макромолекулярные агрегаты - тельца включения — внутри бактериальной клетки [11]. Сходным образом ведут себя и мутанты Gag: "1ΔNC" и "1ΔRRM". Такое поведение белков довольно типично при сверхэкспрессии в бактериальной клетке [29]. Белки, собранные в тельца включения, аккумулируются в осадке при центрифугировании бактериального лизата, т.е. в водонерастворимой форме [11, 29]. Этот материал и взят нами для моделирования in vitro вирусоподобных частиц gypsy, т.е. мы рассмотрели, способны ли делеционные мутанты Gag, образующие макромолекулярные агрегаты, формировать частицы in vitro.

Стратегию дальнейших экспериментов вырабатывали на основании следующих результатов, полученных для классически организованных Gag: во-первых, для мультимеризации структурного белка необходимы нуклеиновые кислоты и, во-вторых, последовательности, которая лучше других стимулирует этот процесс, не выявлено. Так, добавление любой гетерологичной РНК к чистым препаратам экспрессированных бактериально структурных белков HIV, M-PMV и RSV приводит к их быстрой мультимеризации и образованию частиц *in vitro* [13, 30, 31]. Водонерастворимую фракцию, полученную в виде осадков в результате центрифугирования (при  $12000 \times g$ ) лизатов бактериальных клеток после экспрессии в них белков, растворяли в 8 М мочевине и очищали с помощью аффинной хроматографии на никель-агарозе. Затем для полного удаления из препарата нуклеиновых кислот проводили гель-фильтрацию в системе FPLC. Таким образом, получили чистые бактериально экспрессированные денатурированные мономеры Gag ("1") и два его делеционных мутанта ("1 $\Delta$ RRM" и "1 $\Delta$ NC").

Далее искали ответ на следующие вопросы: 1) возможен ли рефолдинг белков, 2) способны ли ренатурированные белки образовывать вирусоподобные частицы и 3) необходима ли для образования частиц нуклеиновая кислота? В описываемом ниже тесте использовали два типа нуклеиновых кислот: раствор полиаденилированной РНК из клеток D. melanogaster (линия 67j25D, клетки этой линии использовали ранее в работах [3] и [26]), который получали по приведенной нами ранее методике [3], и 22-членный олигонуклеотид, состоящий из повторяющейся пары GT. Нуклеотидный состав (GT)<sub>22</sub> выбран на том основании, что именно такой олигонуклеотид использовали при тестировании in vitro мультимеризации Gag, имеющих ССНС-мотив, и размер нуклеотидной затравки в 22 нуклеотида обеспечивал эффективную мультимеризацию мономеров [18, 22, 32].

Отобрав по три аликвоты из каждого очищенного белкового препарата (концентрация белка 0.3 мг/мл), добавляли к одной из них раствор полиаденилированной РНК, к другой - олигонуклеотид, а третью использовали как контроль. Масса добавленных нуклеиновых кислот составляла примерно 6% от массы белка, поскольку, по литературным данным, на примере структурных белков HIV [33] и RSV [13, 32], такое соотношение было найдено наиболее эффективным. С помощью диализа в препаратах снижали концентрацию мочевины от 8 до 0.25 M, наслаивали на ступенчатый градиент 20/30/70%-ной сахарозы и центрифугировали при 180000 × g в течение 45 мин – как и в предыдущих экспериментах по выделению вирусоподобных частиц. Затем для каждого образца анализировали фракцию, соответствующую интерфазе 30- и 70%-ной сахарозы (рис. 4). Если нуклеиновую кислоту в образец не добавляли, то белка в рассматриваемой зоне практически не было, т.е. макромолекулярные структуры не образовывались. Вместе с тем, основная масса белка во всех препаратах, куда была добавлена РНК, находилась на границе 30- и 70%-ой сахарозы. При добавлении олигонуклеотида полноразмерная форма белка, также как и в присутствии РНК, эффективно аккумулировалась в "зоне частиц" градиента. Обращает на себя



**Рис. 4.** Анализ мультимеризации белков в присутствии нуклеиновой кислоты. Электрофорез в 12.5%-ном SDS-ПААГ фракций интерфазы 30/70%-ной сахарозы: 1-3-"1", 4-6-"1 $\Delta$ RRM", 7-9-"1 $\Delta$ NC". В образцы 1, 4, 7 препаратов очищенного белка добавляли PHK; в образцы 2, 5, 8-22-членный дезоксирибонуклеотид; образцы 3, 6, 9 не содержали нуклеиновой кислоты.



**Рис. 5.** Электронная микрофотография препаратов частиц, образованных *in vitro* из изначально денатурированного белка в присутствии РНК. На микрофотографиях представлен материал интерфазы 30/70%-ной сахарозы, полученный в результате ультрацентрифугирования препаратов, содержащих белки конструкций "1" (*a*), "1 $\Delta$ RRM" (*б*) или "1 $\Delta$ NC" (*в*). Стрелками отмечены примеры наиболее характерных для препарата частиц. Масштабный отрезок составляет 50 нм.

внимание тот факт, что белок с делетированным нуклеокапсидом ("1 $\Delta$ NC") также проявлял способность эффективно мультимеризоваться в присутствии нуклеиновых кислот.

Электронно-микроскопическое исследование образцов, полученных из препаратов интерфазной фракции, показало, что все рассматриваемые белки способны эффективно мультимеризоваться при добавлении нуклеиновой кислоты. Для каждого белка частицы, образуемые при добавлении РНК, схожи с частицами, образуемыми при добавлении олигодезоксирибонуклеотида, и подобны тем, которые выделены из бактериальных клеток (рис. 5). Средний диаметр частиц в образцах белков конструкций "1" и "1ΔRRM" составлял 27 нм. Кроме того, в тех образцах белка "1", где добавлена РНК, иногда встречались тубулярные (цилиндрические) структуры (рис. 5а); их образование может быть обусловлено "наматыванием" Gag на длинные молекулы РНК, во всяком случае, такой механизм обсуждался ранее [18]. В

образцах "1 $\Delta$ RRM" и "1 $\Delta$ NC" таких структур не зарегистрировано. Отметим, что, несмотря на эффективную мультимеризацию в присутствии нуклеиновой кислоты, белок без нуклеокапсида ("1 $\Delta$ NC") образовывал глобулы, размер которых варьировал в широких пределах (диаметр от 5 до 20 нм), и которые проявляли склонность к образованию агрегатов (рис. 5*в*).

#### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На основании результатов, полученных как при изучении экспрессии Gag *gypsy*, так и структурных белков других ретровирусов [13, 30, 31, 34], можно предположить, что независимо от аминокислотной последовательности структурного белка его экспрессия в гетерологичной системе приводит к образованию вирусоподобных частиц.

К настоящему времени структура Gag gypsy детально не изучена, но сравнительный биоинформатический анализ белка позволяет считать, что в нем отсутствует домен, соответствующий матриксу, и, таким образом, он состоит только из капсида и нуклеокапсида [11], и в этом отношении Gag gypsy больше напоминаает не Gag ретровирусов позвоночных, а структурные белки ретротранспозонов дрожжей Ту1 и Ту3 [34].

В этой работе показано, что мультимеризация капсида может происходить без участия нуклеокапсида; и этот факт согласуется с результатами авторов, которые изучали способность делеционных мутантов структурных белков других ретровирусов и ретротранспозонов формировать частицы *in vitro* [34–37]. Кроме того, полученные нами результаты хорошо согласуются с наблюдением, что добавление нуклеиновой кислоты значительно ускоряет мультимеризацию белка с мотивом "цинковые пальцы" [14, 22].

Экспрессия капсидной части структурного белка ("1ΔNC") в бактериях, как и моделирование самосборки такого полипептида in vitro, приводит к образованию неоднородных глобулярных агрегатов. Из этого можно предположить, что нуклеокапсид Gag gypsy не есть необходимое условие для мультимеризации белка. Однако несомненна его роль в организации и симметрии частиц, которые образуются через взаимодействие белка с нуклеиновой кислотой. Нами показано, что мультимеризация мономеров белков происходит как при добавлении РНК, так и ДНК. Причем нуклеотидный состав добавляемых нуклеиновых кислот не важен - такой вывод сделан нами на основании результатов, приведенных в предыдущем разделе и полученных в дополнительных экспериментах, где к препаратам белка добавляли различные нуклеиновые кислоты. Например, экстракт РНК из бактериальных клеток также вызывал эффективную мультимеризацию белков. Эти результаты хорошо согласуются с данными, полученными на структурных белках, имеющих "цинковые пальцы": Gag RSV [13, 22] и Gag Ty3 [34].

Нуклеокапсид любого из известных Gag находится на N-конце белка и представлен областью "низкой сложности" [38]. Именно по этим простейшим признакам ранее был определен нуклеокапсид Gag gypsy, а затем экспериментально доказана одна из его функций – способность отжигать тРНК к РНК gypsy [20]. Для обеспечения связывания с РНК нуклеокапсид должен содержать последовательность или последовательности, распознающие РНК – "РНК-распознающий мотив" (RRM). Хорошо известно, что центр RRM в классически организованных структурных белках ретровирусов представлен одним или двумя мотивами, образованными из остатков цистеина и ги- $(CX_2CX_4HX_4C),$ стидина так называемыми ССНС-мотивами "цинковые пальцы" [39]. В Gag *дуруу* такой мотив отсутствует. Более того, сравнение аминокислотной последовательности нуклеокапсида gypsy с последовательностями известных нуклеокапсидов, представленных в базах данных [http://blast.ncbi.nlm.nih.gov/], не выявило никакого значимого сходства. В первичной структуре нуклеокапсида Gag gypsy не найдено и других канонических RRM: ни [RK]-G-[FY]-[GA]-[FY]-[ILV]-Х-[FY] или [ILV]-[FY]-[ILV]-XN-L [40], ни последовательностей, обогащенных пролином, которые также могут определять связывание с РНК [41]. Вместе с тем, в первичной структуре нуклеокапсида gypsy мы выделяем область, которую можно связать с серин-аргининовым RRM (SR-RRM) [28, 42, 43], - с 333-го по 348-й аминокислотный остатки (рис. 1). Хотя белки, имеющие SR-RRM, изучают уже более 20 лет, не установлен общий аминокислотный консенсус этого РНК-распознающего мотива. Замечено, что в SR-мотивах часто присутствуют остатки серина и аргинина, расположенные парами [28, 44], что характерно и для рассматриваемой области нуклеокапсида (рис. 1). Кроме того, в этой же области нуклеокапсида находится большое количество положительно заряженных аминокислотных остатков, которые и определяют высокий положительный заряд белка. Обычно SR-RRM находится рядом с другими, вышеупомянутыми, типами RRM [28, 43-45], но это не относится к нуклеокапсиду Gag gypsy. Таким образом, даже с точки зрения функционирования SR-RRM Gag *gypsy* организован нестандартно. Вместе с тем, область 333-348 аминокислотной последовательности Gag имеет сходство с участками ряда белков, специфически связывающихся с нуклеиновыми кислотами (таблица). Такой результат наводит на мысль, что указанная область нуклеокапсида может быть основным, если не единственным, участком специфического связывания Gag с PHK gypsy, что в эукариотической клетке дрозофилы инициирует образование частиц ретротровируса.

Чтобы оценить, насколько важна область с 333 по 348 аминокислотные остатки нуклеокапсида Gag при экспрессии белка в бактериях, мы удалили указанную область вместе с С-концом нуклеокапсида (белок "1ΔRRM"). Показано, что делетированный белок эффективно образует глобулярные частицы того же размера, что и полноразмерная форма. Значит, проксимальной части нуклеокапсида достаточно для того, чтобы обеспечить построение однородных глобулярных частиц в бактериях и in vitro. Вместе с тем, несмотря на то, что частицы, образуемые в гетерологичной бактериальной системе, напоминают частицы, образуемые в клетках дрозофилы [11], отсутствие какой либо определенности в последовательности нуклеиновых кислот при сборке бактериально полученных белков в частицу, указывает на ограниченный характер действия нуклеокапсида в этом случае. То есть за рамками модельных экспериментов, представленных в работе, остались механизмы специфиче-

#### 306

#### СЁМИН и др.

| №  | Идентичность/сходство, % |      | Последовательность |      | Ссылка                  |
|----|--------------------------|------|--------------------|------|-------------------------|
| 1  | 100.0/100.0              | 333  | KRRNSSERSTGPRRQR   | 348  | Gag gypsy               |
| 2  | 64.7/76.5                | 39   | KRRSGSERGSTVTRRER  | 55   | ref XP_003263241.1      |
| 3  | 58.8/70.6                | 131  | KRTSSSERVSPGGRRE   | 146  | sp O00423.3 EMAL1_HUMAN |
| 4  | 62.5/68.8                | 457  | DRRNDRERS-PRRER    | 470  | ref ZP_03841440.1       |
| 5  | 62.5/68.8                | 462  | DRRNDRERS-PRRER    | 475  | ref YP_002153108.1      |
| 6  | 56.2/68.8                | 5    | GRRNNRRRN-GPRRAR   | 19   | sp P17966.1 CAPSD_BYDVM |
| 7  | 56.2/68.8                | 904  | VVRNSSERSLGPFNKQ   | 919  | gb EFW96029.1           |
| 8  | 50.0/68.8                | 1044 | RDRSGSSQSTSRRRQR   | 1759 | sp Q8BTI8.3 SRRM2_MOUSE |
| 9  | 43.8/68.8                | 1051 | SRRSSSDRSSSRERAK   | 1066 | sp Q9P1Y6.3 PHRF1_HUMAN |
| 10 | 52.6/68.4                | 138  | AKMDSSQPERSSRRPR   | 156  | sp Q9H160.2 ING2_HUMAN  |
| 11 | 50.0/62.5                | 78   | RRRKSSERKVGHRQTY   | 93   | sp Q0SM76.1 RL21_BORAP  |
| 12 | 43.8/62.5                | 241  | RSRSPKRRSPSPRRER   | 257  | sp Q8NAV1.1 PR38A_HUMAN |
| 13 | 56.2/56.2                | 260  | VRRRSRSRSPGRRRHR   | 274  | sp Q6PG31.1 RNPS1_DANRE |
| 14 | 56.2/56.2                | 439  | SGGRGTNPRRQ        | 451  | ref NP_738196.1         |
| 15 | 56.2/56.2                | 1013 | PRR——ERDDGPRRDR    | 1025 | sp B3P211.1 EIF3A_DROER |
| 16 | 50.0/56.2                | 590  | ARRNSSERTLSPGLPS   | 605  | sp P57058.1 HUNK_HUMAN  |
| 17 | 37.5/56.2                | 204  | VEEGYLERTTGPRLRQ   | 219  | pdb 3H38 A              |
| 18 | 55.0/55.0                | 203  | RRGSSPPPWERSTQPRR  | 219  | ref ZP_07299269.1       |
| 19 | 50.0/50.0                | 1000 | SHGRSRERSTSARRSR   | 1015 | sp Q8TFG6.1 PPK18_SCHPO |

Сравнение участка аминокислотной последовательности Gag *gypsy* (остатки 333–348) со специфическими последовательностями белков, связывающих нуклеиновые кислоты

ского белок-нуклеинового узнавания, которые имеют место при репликации вируса в хозяйских клетках.

Подводя итог, отметим, что в результате проделанной работы показано, что мультимеризация капсидной части белка Gag gypsy может происходить без участия нуклеокапсида, хотя последний существенно влияет на структуру образуемых частиц. Показано, что для формирования белком Gag gypsy однородных глобулярных частиц в гетерологичной системе важна только N-концевая часть нуклеокапсида. Добавление нуклеиновых кислот, как РНК, так и ДНК, инициирует образование частиц мономерами Gag и его делеционными мутантами, рассмотренными в работе. Не выявлено ни какой-либо определенной нуклеотидной последовательности, ни оптимального размера нуклеиновой кислоты, запускающей мультимеризацию бактериально экспрессированных белков.

Авторы благодарят Т. Русанову и М. Привалову за помощь при манипуляциях с бактериями, очистке белков и нуклеиновых кислот.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований: проекты 08-04-00227-а и 09-04-01731-а.

#### СПИСОК ЛИТЕРАТУРЫ

1. Jern P., Sperber G.O., Blomberg J. 2005. Use of Endogenous Retroviral Sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. *Retrovirol.* **2**, doi:10.1186/1742-4690-2-50.

- 2. Gao F., Bailes E., Robertson D.L., Chen Y., Rodenburg C.M., Michael S.F., Cummins L.B., Arthur L.O., Peeters M., Shaw G.M., Sharp P.M., Hahn B.H. 1999. Origin of HIV-1 in the chimpanzee *Pan troglodytes* troglodytes. *Nature*. **397**, 436–441.
- 3. Syomin B.V., Fedorova L.I., Surkov S.A., Ilyin Y.V. 2001. The endogenous *Drosophila melanogaster* retrovirus gypsy can propagate in *Drosophila hydei* cells. *Mol. Gen. Genet.* **264**, 588–594.
- 4. Yohn C.T., Jiang Z., McGrath S.D., Hayden K.E., Khaitovich P., Johnson M.E., Eichler M.Y., McPherson J.D., Zhao S., Paabo S., Eichler E.E. 2005. Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans. *PLoS Biol.* **3**, 1–11.
- International human genome sequencing consortium. 2001. Initial sequencing and analysis of the human genome. *Nature*. 409, 860–921.
- 6. Сёмин Б.В., Ильин Ю.В. 2003. Эрантивирусы Drosophila. *Генетика*. **39**, 657–663.
- Boeke J.D., Eickbush T.H., Sandmeyer S.B., Voytas D.F. 2000. Metaviridae. In: *Virus Taxonomy: ICTV VII'th Report*. Ed. Murphy F.A. N.Y.: Springer-Verlag, pp.123–135.
- Ludwig A., Valente V.L., Loreto E.L. 2008. Multiple invasions of Errantivirus in the genus *Drosophila*. *Insect. Mol. Biol.* 17, 113–124.
- Song S.U., Gerasimova T., Kurkulos M., Boeke J.D., Corces V.G. 1994. An Env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. *Gen. Dev.* 8, 2046–2057.
- 10. Pelisson A., Mejlumian L., Robert V., Terzian C. Bucheton A. 2002. *Drosophila* germline invasion by the endogenous retrovirus gypsy: involvement of the viral *env* gene. *Insect. Biochem. Mol. Biol.* **160**, 201–209.

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ том 46 № 2 2012

- Сёмин Б.В., Иванова Л.А., Попенко В.И., Ильин Ю.В. 2011. Структурный белок GAG ретровируса *D. melanogaster gypsy* формирует вирусоподобные частицы в бактериальной клетке. *Молекуляр. биология.* 45, 517–523.
- Сёмин Б.В., Ильин Ю.В. 2006. Детекция структурного белка (Gag) эндогенного ретровируса МДГ4 (gypsy) в культивируемых клетках. Докл. Акад. Наук. 408, 1–3.
- Campbell S., Vogt V.M. 1995. Self-assembly *in vitro* of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. *J. Virol.* 69, 6487–6497.
- Adamson C.S., Jones I.M. 2004. The molecular basis of HIV capsid assembly five years of progress. *Rev. Med. Virol.* 14, 107–121.
- 15. Scarlata S., Carter C. 2003. Role of HIV-1 Gag domains in viral assembly. *Biochim. Biophys. Acta Biomembr.* 1614, 62–72.
- 16. Linial M.L. 1999. Foamy viruses are unconventional retroviruses. J. Virol. 73, 1747–1755.
- Rumlova-Klikova M., Hunter E., Nermut M.V., Pichova I., Ruml T. 2000. Analysis of Mason"Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J. Virol. 74, 8452–8459.
- Yu F, Joshi S.M., Ma Y.M., Kingston R.L., Simon M.N., Vogt V.M. 2001. Characterization of Rous sarcoma virus Gag particles assembled *in vitro*. J. Virol. 75, 2753–2764.
- 19. Morikawa Y., Goto T., Momose F. 2004. Human immunodeficiency virus type 1 Gag assembly through assembly intermediates. *J. Biol. Chem.* **279**, 31964–31972.
- Gabus C., Ivanyi-Nagy R., Depollier J., Bucheton A., Pelisson A., Darlix J.-L. 2006. Characterization of a nucleocapsid-like region and of two distinct primer tRNA<sup>Lys,2</sup> binding sites in the endogenous retrovirus Gypsy. *Nucl. Acids Res.* 34, 5764–5777.
- Taylor G.M., Ma L., Vogt V.M., Post C.B. 2010. NMR relaxation studies of an RNA-binding segment of the rous sarcoma virus gag polyprotein in free and bound states: a model for autoinhibition of assembly. *Biochemistry*. 49, 4006–4017.
- Johnson M.C., Scobie H.M., Ma Y.M., Vogt V.M. 2002. Nucleic acid-independent retrovirus assembly can be driven by dimerization. *J. Virol.* 76, 11177–11185.
- Маниатис Т., Фрич Э., Сэмбрук Дж. 1984. Молекулярное клонирование. М.: Мир.
- 24. Сёмин Б.В., Pelisson А., Ильин Ю.В., Bucheton А. 2004. Экспрессия структурного белка Gag ретровируса gypsy рекомбинантным бакуловирусом в культуре клеток *Spodoptera frugiperda*. Докл. Акад. *Наук*. **398**, 702–704.
- 25. Сёмин Б.В., Турапов О.А., Степанов А.С., Ильин Ю.В. 1999. Связывание с нуклеиновыми кислотами белка, кодируемого первой открытой рамкой считывания ретротранспозона gypsy (МДГ4). Молекуляр. биология. 33, 423–427.
- Syomin B.V., Kandror K.V., Semakin A.B., Tsuprun V.L., Stepanov A.S.1993. Presence of the gypsy (MDG4) retrotransposon in extracellular virus-like particles. *FEBS Lett.* 323, 285–288.
- Mellor J., Fulton A.M., Dobson M.J., Roberts N.A., Wilson W., Kingsman A.J., Kingsman S.M. 1985. The Ty transposon of Saccharomyces cerevisiae determines

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ том 46 № 2 2012

the synthesis of at least three proteins. *Nucl. Acids Res.* **13**, 6249–6262.

- 28. Shepard P., Hertel K.J. 2009. SR protein family. *Genome Biol.* 10, 242.
- 29. Burgess R.R. 2009. Refolding solubilized inclusion body proteins. *Methods Enzymol.* **463**, 259–282.
- Strambio-De-Castillia C., Hunter E. 1992. Mutational analysis of the major homology region of Mason-Pfizer monkey virus by use of saturation mutagenesis. *J. Virol.* 66, 7021–7032.
- Morikawa Y., Goto T., Sano K. 1999. *In vitro* assembly of human immunodeficiency virus type 1 Gag protein. *J. Biol. Chem.* 274, 27997–28002.
- Ma Y.M., Vogt V.M. 2002. Rous sarcoma virus Gag protein-oligonucleotide interaction suggests a critical role for protein dimer formation in assembly. *J. Virol.* 76, 5452–5462.
- Parker S.D., Wall J.S., Hunter E. 2001. Analysis of Mason-Pfizer monkey virus Gag particles by scanning transmission electron microscopy. J. Virol. 75, 9543–9548.
- Larsen L.S., Kuznetsov Y., McPherson A., Hatfield G.W., Sandmeyer S. 2008. TY3 GAG3 protein forms ordered particles in *Escherichia coli*. *Virology*. 370, 223–227.
- 35. Muriaux D., Mirro J., Harvin D., Rein A. 2001. RNA is a structural element in retrovirus particles. *Proc. Natl. Acad. Sci. USA.* **98**, 5246–5251.
- Sandmeyer S.B., Clemens K.A. 2010. Function of a retrotransposon nucleocapsid protein. *RNA Biol.* 7, 642–654.
- 37. Rumlova-Klikova M., Hunter E., Nermut M.V., Pichova I., Ruml T. 2000. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J. Virol. 74, 8452–8459.
- Obradovic Z., Peng K., Vucetic S., Radivojac P., Brown C.J., Dunker A.K. 2003. Predicting intrinsic disorder from amino acid sequence. *Proteins*. 53, 566–572.
- 39. Mely Y., Piemont E., Sorinas-Jimeno M., de Rocquigny H., Jullian N., Morellet N., Roques, B.P., Gerard D. 1993. Structural and dynamic characterization of the aromatic amino acids of the human immunodeficiency virus type I nucleocapsid protein zinc fingers and their involvement in heterologous tRNA(Phe) binding: a steady-state and time-resolved fluorescence study. *Biophys. J.* 65, 1513–1522.
- Kielkopf C.L., Lücke S., Green M.R. 2004. U2AF homology motifs: protein recognition in the RRM world. *Genes Dev.* 18, 1513–1526.
- 41. Grainger R.J., Beggs J.D. 2005. Prp8 protein: At the heart of the spliceosome. *RNA*. **11**, 533–557.
- 42. Chou T.B., Zachar Z., Bingham P.M. 1987. Developmental expression of a regulatory gene is programmed at the level of splicing. *EMBO J.* **6**, 4095–4104.
- 43. Amrein H., Gorman M., Nothiger R. 1988. The sexdetermining gene tra-2 of Drosophila encodes a putative RNA binding protein. *Cell*. 55, 1025–1035.
- 44. Hargous Y., Hautbergue G.M., Tintaru A.M., Skrisovska L., Golovanov A.P., Stevenin J., Lian L.Y., Wilson S.A., Allain F.H. 2006. Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. *EMBO J.* 25, 5126–5137.
- 45. Zahler A.M., Lane W.S., Stolk J.A., Roth M.B. 1992. SR proteins: a conserved family of pre-mRNA splicing factors. *Genes Dev.* **6**, 837–847.