ОРИГИНАЛЬНЫЕ СТАТЬИ

УДК 630*2:630*182.47/48:630*43

ТРАНСФОРМАЦИЯ СЕРОГУМУСОВЫХ ПОЧВ СОСНОВЫХ ЛЕСОВ ПОД ВЛИЯНИЕМ ПОЖАРОВ В ЮГО-ЗАПАДНОМ ПРИБАЙКАЛЬЕ*

© 2011 г. Ю. Н. Краснощеков

Институт леса им. В.Н. Сукачева СО РАН 660036, Красноярск, Академгородок E-mail: kyn47@mail.ru
Поступила в редакцию 28.07.2009 г.

Анализируются данные экспериментальных исследований по постпирогенной динамике почв сосновых лесов юго-западного Прибайкалья. Низовые пожары подстилочно-гумусового вида трансформируют типодиагностические поверхностные органогенные горизонты почв, приводят к формированию новых органогенных пирогенных горизонтов (O_{pir}). Показано негативное воздействие низовых пожаров разной интенсивности на качественный фракционный состав органогенных горизонтов почв и их химические свойства.

Юго-западное Прибайкалье, подтаежные и таежные сосновые леса, низовые пожары, морфология почв, запас и фракционный состав подстилки, органогенные пирогенные горизонты почв, зольные элементы, физико-химические свойства почв.

Лесные почвы юго-западного Прибайкалья формируются под регулярным воздействием пирогенного фактора. По тяжести и масштабности воздействия на почвы из всех антропогенных факторов лесные пожары резко выделяются. По данным Агентства лесного хозяйства Иркутской обл. (на 1 января 2004 г.), наиболее тяжкие последствия пожаров, прошедших в 2003 г. в юго-западном Прибайкалье, зарегистрированы в буферной зоне Прибайкальского национального парка, в Ольхонском и Голоустненском лесничествах. Последнее потеряло около 20% лесов.

Низовые пожары подстилочно-гумусового вида, преобладающие в данном регионе, в зависимости от интенсивности огня по-разному трансформируют основные компоненты лесной экосистемы — почву, живой напочвенный растительный покров, формируют сукцессионные стадии их восстановления, влияют на послепожарное формирование насаждений и динамику прироста древостоев. При любом пожаре в сферу горения попадает напочвенный растительный покров, органогенные горизонты почв. При сильном

воздействии огня на почву и малой мощности органогенного горизонта происходит прокаливание верхнего органо-минерального либо минерального горизонта почв. Изменение свойств почв после пожаров обусловлено действием высоких температур и одновременным поступлением на поверхность почвы золы от сгорания подстилки и других горючих материалов.

В литературе неоднократно отмечается, что пожары и вообще огонь следует включить в число важных факторов, влияющих на развитие и функционирование лесных экосистем [8, 12, 15 и др.]. В бассейне оз. Байкал, куда относится и наш район исследований, наиболее полно изучено влияние пожаров на формирование древостоев [3, 4 и др.], слабо изученным остается влияние огня на почву [6, 13].

Данные исследования послепожарного функционирования лесных почв, сформированных в относительно однородных климатических и геолого-геоморфологических условиях, имеют большое значение для объективной экологической оценки современного состояния лесных экосистем, понимания путей восстановительной динамики компонентов лесных экосистем и прогноза их состояния при разном воздействии пирогенного фактора.

^{*} Работа выполнена при финансовой поддержке РФФИ (08-04-00027).

ОБЪЕКТЫ И МЕТОДИКА

Объекты для изучения последствий воздействия низовых пожаров подстилочно-гумусового вида на почвы подобраны в сосновых насаждениях Кочергатской дачи Голоустненского лесничества Иркутской обл. (Восточный макросклон Приморского хребта). Выбранные лесные участки репрезентативны в отношении основного деструктивного фактора антропогенной дигрессии (пожаров), поскольку данные лесные массивы наиболее пострадали от пирогенной аномалии 2003 г.

Первая серия пробных площадей (пр. пл. 1, 2) заложена в высотно-поясном комплексе подтаежно-лесостепных сосновых лесов, в сосняке осочково-остепненно-разнотравном. Таксационная характеристика древостоев приведена в табл. 1. Пробные площади расположены на шлейфе в нижней части юго-западного склона крутизной не более 5°, на высоте 555 м над ур. моря, где в июле 2003 г. произошел крупный пожар, повредивший около 800 га лесных насаждений.

Вторая серия пробных площадей (пр. пл. 3, 4, 5) заложена в высотно-поясном комплексе таежных сосновых лесов, в сосняке рододендроново-бруснично-разнотравном (табл. 1). Пробные площади расположены в средней части восточно-северо-восточного склона крутизной 15°, на высоте 730 м над ур. моря. Общая площадь пожара 2003 г. 20 га, на пробных площадях степень интенсивности пожара была разная. Наличие минерализованной полосы отделяет горевший древостой от незатронутого пожаром.

Закладку пробных площадей, а также их лесоводственно-геоботаническое описание выполняли согласно методическим указаниям [10]. На пробных площадях устанавливалась давность

и интенсивность пожара, определяемая по высоте нагара (обугливания) на стволах деревьев, степени повреждения крон, полноте сгорания горючих материалов и др. [4, 8]. Учет мощности, запаса, фракционного состава подстилки, определение ее зольного химического состава по Л.Е. Родину с соавт. [11]. Подвижные формы определены атомно-абсорбционным методом. Гранулометрический и микроагрегатный состав, физико-химические и химические свойства почв выполнены общепринятыми методами [1, 2]. Названия почв и индексация почвенных горизонтов даны по "Классификации и диагностике почв России" [5].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В Юго-Западном Прибайкалье в почвенном покрове подтаежно-лесостепных сосновых лесов широко распространены серогумусовые типичные темнопрофильные почвы. В пределах региона эти почвы формируются на элювиальных, элювиально-делювиальных и делювиальных продуктах выветривания углистых или филлитовидных сланцев суглинистого и глинистого гранулометрического состава. Занимают они дренированные местообитания, для которых характерно достаточное количество тепла.

Морфологический профиль почв состоит из лесной подстилки (1–2 см), гумусово-аккумулятивного горизонта АУ темно-бурого или темно-серого цвета, мощностью до 20 см. Он имеет хорошо выраженную мелкокомковатую либо ореховато-комковатую структуру. В нижней части профиля почв очень много включений щебня и обломков сланцев. Профиль почв типа: O-AY-AYCu-Cu.

TT - 1	. TT				مد -
Таблина І	Песоволственн	о-таксанионная х	апактепистика	превостоев на п	робных площадях*
т иолищи т	• лесоводствени	o luncuquomina A	tupun i opno i ninu	дровостось на н	рооных илощадих

Пр. пл.	Интенсивность пожара	Состав на- саждения	Возраст, лет	Класс бонитета	Средняя высота, м	Средний диаметр, см	Полнота	Запас древесины, м ³ га ⁻¹			
Опытный участок № 1											
1	Контроль	4С6ЛедБ	65	II 20.1		22.4	0.70	289			
2	Средняя	5С5Л	65	II	20.5 23.3		0.68	277			
Опытный участок № 2											
3	Контроль	8С2Л+Б	95	III	23.1	25.4	0.88	345			
4	Средняя	8С2ЛедБ	95	III	22.2	24.7	0.82	323			
5	Высокая	9С1Л	95	III	21.6	23.8	0.73	284			

^{*} По данным М.Д. Евдокименко.

Послепожарное формирование почв непосредственно связано с пирогенной трансформацией органогенных горизонтов, поэтому их изменение служит индикатором воздействия пожара на почву. В результате изменяется характер типодиагностических поверхностных горизонтов почв. Формируется новый маломощный, не более 1 см, органогенный пирогенный горизонт (O_{pir}) , который по химическим, физико-химическим свойствам и биологическому круговороту элементов очень сильно отличается от природных неизмененных аналогов.

Пожар средней интенсивности не повлиял в значительной мере на морфологическое строение почвы (пр. пл. 2). Через 5 лет следы воздействия пожара отмечены лишь в поверхностном смешанном органогенном горизонте OL/O_{ріг}, где наряду со свежим опадом хвои, мелких сучьев и травы присутствуют и древесные угли. Морфологический профиль почвы на лесном участке, подвергшемся влиянию пожара средней интенсивности, имеет вид: OL/O_{ріг}-AY-AYCu-Cu.

Изменение морфологического облика почв под воздействием огня очень сильно выражено в почвах таежных сосновых лесов опытного участка № 2, где в почвенном покрове развиты серогумусовые глинисто-иллювиированные хрящеватоглинистые почвы.

На контрольном участке (пр. пл. 3) почва характеризуется наличием маломощной лесной подстилки (2 см), состоящей из растительного опада, серогумусового горизонта АУ темно-бурого цвета, зернисто-комковатой структуры мощностью 12–15 см; далее следует маломощный (2–4 см) элювиированный горизонт AYel серовато-бурого с седоватостью цвета, при подсыхании становящийся светлее. Глинисто-иллювиированный горизонт Сt буро-коричневого цвета, обычно уплотнен, постепенно переходит в материнскую породу. Морфологический профиль почвы имеет следующий вид: О-АY-AYel-Ct-CtC-C.

Морфологический профиль почвы на лесном участке, подвергшемся влиянию пожара средней интенсивности, имеет следы нарушения только в органогенном горизонте, в гумусово-аккумулятивном — остатки древесных углей: OL/O_{pir}-AY-AYel-Ct-CtC-C.

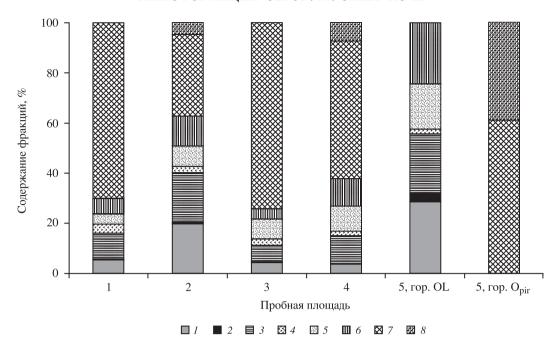
Пожар высокой интенсивности привел к полному уничтожению живого напочвенного покрова и выгоранию поверхностных органогенных типодиагностических горизонтов почв.

Нарушение почвозащитного растительного и органогенного слоя почв на горных крутых

склонах способствует интенсивному развитию плоскостного смыва мелкозема и формированию здесь маломощных сильнощебнистых элювиально-делювиальных и делювиальных остаточных кор выветривания коренных пород. Это приводит к изменению направления и темпов почвообразования в иных условиях развития геохимических и биогеохимических процессов, приводящих к формированию литоземов.

Смытый почвенный мелкозем с поверхности водоразделов и верхних частей склонов образует новый чехол делювиальных наносов на средних и нижних выположенных участках склонов. В результате этих процессов часто наблюдается погребение органогенных пирогенных и поверхностных гумусовых горизонтов, образование почв со сложным полициклическим профилем.

После пожара 2003 г. на поверхности сформировалась подстилка OL, состоящая из свежего опада хвои, мелких сучьев, листьев и сухой травы, мощностью 1 см. За ней следует органогенный пирогенный горизонт Опіг, основная масса которого состоит из древесных углей, фрагментов обугленной хвои и мелких сучьев. Далее следует маломощный горизонт АУ (5-7 см) темно-бурого цвета, непрочно комковатой структуры, густо пронизанный корнями. Пирогенно-измененный профиль почвы на участке леса, подвергшемся высокой интенсивности пожара, имеет вид: OL-О_{ріг}-АҮ-С-[О_{ріг}]-С. В данном почвенном профиле основная масса горизонта [Оріг], мощностью 2 см состоит из древесных углей, перемешанных с мелкоземом. Этот горизонт является следствием пожара высокой интенсивности, прошедшего в 1989 г., и сохранился в результате погребения его под наносом мелкозема, смытого с верхней части склона.


По гранулометрическому составу серогумусовые типичные темнопрофильные почвы опытного участка № 1 тяжелосуглинистые, а серогумусовые глинисто-иллювиированные почвы опытного участка № 2 глинистые (табл. 2). Во всех изученных почвах присутствует скелетная фракция, содержание которой в нижних горизонтах достигает 70–80%. Увеличение каменистости в нижней части профилей вызвано поступлением обломков с делювиальными потоками с верхних частей склона.

В составе мелкозема серогумусовых типичных почв преобладает в основном крупнопылеватая фракция. В физической глине более половины составляют илистые частицы. В целом, для профилей характерно утяжеление гранулометрического

Таблица 2. Гранулометрический и микроагрегатный состав почв, %

_	Глубина, Фракция, мм											
Горизонт	СМ	1-0.25	0.25-0.05	0.05-0.01	0.01-0.005	0.005-0.001	< 0.001	< 0.01	Кс	Ка		
) 	namar No 1		l		l			
Pasne	Опытный участок № 1 Разрез 14-02 (контроль). Серогумусовая типичная темнопрофильная хрящевато-тяжелосуглинистая											
AY	1–17	9.9	рогумусовал <u>14.5</u>	27.5	емпопрофи <u>8.9</u>	18.2	21.0	48.1	94	63		
AI	1-17	50.8	15.8	$\frac{27.5}{19.9}$	6.3	$\frac{16.2}{6.0}$	$\frac{21.0}{1.2}$	70.1	24	03		
AYCu	17–25	<u>0.3</u>	9.8	33.5	10.1	18.1	28.2	56.4	90	80		
		$\frac{-3.7}{28.7}$	$\frac{24.3}{24.3}$	28.1	6.8	9.3	2.8		-			
Cu	25–35	0.2	8.5	36.1	10.6	16.2	28.4	55.2	90	82		
		24.5	25.3	33.2	6.0	8.3	2.7					
Разрез 14-01 (гарь 2003 г. средней интенсивности)												
AY	1–15	3.6	<u>17.5</u>	32.9	8.9	<u>16.1</u>	21.0	46.0	89	55		
		21.4	25.7	31.1	9.4	10.2	2.2					
AYCu	15–22	0.6	<u>18.6</u>	<u>31.4</u>	9.4	<u>14.6</u>	<u>25.4</u>	49.4	87	56		
		15.3	28.6	31.7	10.1	11.1	3.2					
Cu	22–33	2.7	<u>11.8</u>	<u>29.8</u>	<u>11.0</u>	<u>11.4</u>	<u>33.3</u>	55.7	87	64		
		14.8	25.3	32.4	9.8	13.4	4.3					
			C	Эпытный уч	асток № 2							
]	Разрез 14-03	3 (контроль). Серогуму	совая глини	сто-иллюви	ированная хр	ящевато-	глинистая	I			
AY	2–15	_5.7	13.9	<u>27.5</u>	9.9	<u>17.8</u>	25.2	52.9	95	67		
		42.5	17.2	${28.2}$	5.7	5.3	1.1					
AYel	15–19	<u>1.5</u>	<u>11.2</u>	<u>34.3</u>	<u>9.5</u>	<u>18.8</u>	<u>24.7</u>	53.0	92	73		
		29.8	16.9	33.2	8.9	9.3	1.9					
Ct	19–26	_0.2	<u>6.9</u>	<u>37.3</u>	<u>13.8</u>	<u>18.8</u>	<u>23.0</u>	55.6	90	82		
		22.5	17.4	33.4	12.1	12.3	2.3					
CtC	27–37	_0.3	<u>14.5</u>	<u>38.5</u>	<u>12.2</u>	<u>17.4</u>	<u>17.1</u>	46.7	89	72		
	40.50	31.3	22.5	25.4	8.8	10.2	1.8	2==	0.5	. .		
С	40–50	<u>0.1</u>	24.3	<u>37.9</u>	7.1	14.3	<u>16.3</u>	37.7	85	65		
42.9 26.7 16.5 5.0 6.5 2.4												
	1	ı	î `		ı	i ´	ı	ı	ı	ı		
AY	2–10	<u>2.6</u>	<u>17.8</u>	<u>26.5</u>	8.8	<u>15.7</u>	<u>28.7</u>	53.2	91	66		
		36.2	23.4	23.6	6.7	7.6	2.5					
AYel	10–13	2.0	<u>16.9</u>	<u>27.3</u>	10.4	<u>19.1</u>	24.3	53.8	90	66		
C4	12 20	32.8	22.5	24.6	9.5	8.3	2.3	55.0	07	79		
Ct	13–20	$\frac{0.2}{24.2}$	10.6	33.2	14.0	<u>22,6</u>	<u>19.3</u>	55.9	87	/9		
CtC	30–40	34.2 <u>0.2</u>	16.9 <u>10.6</u>	25.2 <u>38.1</u>	10.1 <u>13.9</u>	11.2 21.0	2.4 16.3	51.2	85	79		
CiC	30 40	$\frac{0.2}{36.7}$	16.0	24.1	8.6	12.2	2.4	31.2		10		
C	40–50	0.1	26.6	34.7	8.4	15.0 15.0	15.2	38.6	82	61		
C		39.9	$\frac{27.9}{27.9}$	17.5	5.2	6.8	2.7	2010	0_	0.1		
						енсивности)						
AY	3–10	2.6	12.1	23.6	12.9	22.0	26.8	61.7	70	61		
AI	3-10			$\frac{23.0}{27.0}$				01.7	/0	01		
С	10–27	24.6 _3.2	13.7 15.2	27.0 26.1	17.7 12.7	9.1 <u>22.6</u>	7.9 20.2	55.5	78	67		
\sim	10 27	$\frac{3.2}{42.5}$	$\frac{13.2}{14.0}$	$\frac{20.1}{20.0}$	8.7	$\frac{22.0}{10.3}$	4.5		, 0	07		
[Opir]	27–29	<u>1.8</u>	16.9	23.2	13.1	21.4	23.6	58.1	74	61		
F - L 1		31.1	17.2	24.8	9.9	10.8	6.2					
C	30–40	3.2	<u>25.4</u>	28.5	10.1	<u>17.6</u>	<u>15.2</u>	42.9	85	62		
		62.7	14.4	8.9	4.6	7.2	2.2					
Примечание В числителе – гранулометрический в знаменателе – микроагрегатный состав почв. Кс – фактор структурности												

Примечание. В числителе – гранулометрический, в знаменателе – микроагрегатный состав почв; Кс – фактор структурности по Фагелеру; Ка – степень агрегатности по Бейверу-Роадосу.

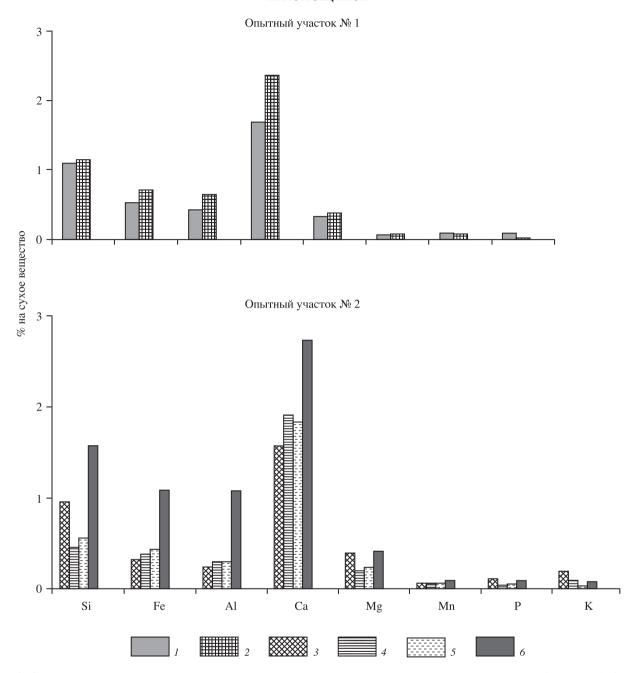
Рис. 1. Фракционный состав подстилок: I – хвоя, 2 – листья, 3 – сучья, 4 – трава, 5 – шишки, 6 – кора, 7 – труха, 8 – уголь.

состава с глубиной, высокое содержание ила и физической глины в нижних горизонтах.

Характерной особенностью серогумусовых глинисто-иллювиированных почв является слабая дифференциация профиля по распределению физической глины, накопление ее в средней части профиля. В то же время распределение илистой фракции по профилю носит аккумулятивный характер, с максимумом в гумусово-аккумулятивном горизонте. Обращает внимание малое содержание по всему профилю изученных почв песчаной фракции.

В отличие от слабоизмененных почв, на участке пожарища высокой интенсивности почвенный профиль не дифференцирован по гранулометрическому составу. Современный почвообразовательный процесс протекает на глинистом наносе, обогащенном илом и тонкопылеватыми фракциями.

В микроагрегатном составе серогумусовых типичных и глинисто-иллювиированных почв преобладают фракции среднего и мелкого песка и крупной пыли (табл. 2).


Под влиянием высоких температур ухудшается микроагрегированность почв. Так, если под пологом леса серогумусовая типичная почва имеет показатель степени агрегатности в верхнем гумусовом горизонте 63%, то на гари, на участке, который подвергся воздействию огня средней интенсивности, он уменьшается до 55%. Наблюдается также и снижение фактора структурности по Фагелеру. В серогумусовых глинисто-иллювиированных

почвах, в зависимости от интенсивности пожара, в горизонте АУ фактор структурности снижается от 95% на контроле до 70% на участке с сильным воздействием пожара. Относительное ухудшение микроагрегированности здесь связано, по-видимому, со слабой коагуляцией органических веществ, способных образовывать микроагрегаты.

Под влиянием лесных пожаров, особенно низовых, происходит частичное или полное сгорание подстилки и напочвенного покрова. Пирогенная трансформация подстилок сопровождается уменьшением их мощности, запасов, существенно изменяется фракционный состав. Различия в условиях формирования подстилок в пирогеннопреобразованных лесных экосистемах значительно отражается на их зольности, содержании химических элементов и физико-химических свойствах.

Как показали исследования, под пологом осочково-остепненно-разнотравного сосняка (пр. пл. 1) средняя мощность подстилки 1 см, запас — 11.5 т га⁻¹ (абс. сухой вес). Определение фракционного состава показало, что более половины веса подстилки приходится на разложившиеся растительные остатки — 69%. Фракции хвои, листьев и травы соответственно составляют 5.4, 0.3 и 3.6%, на грубые фракции (сучья, кора, шишки) приходится 20.5% (рис. 1).

На гари (пр. пл. 2) мощность подстилки не более 1 см, запас 10.4 т ra^{-1} . По сравнению с контролем подстилки на гаревом участке имеют иное

Рис. 2. Содержание зольных элементов в органогенных и органогенных пирогенных горизонтах почв: I –пр. пл. 1; 2 – пр. пл. 2; 3 – пр. пл. 3; 4 – пр. пл. 4; 5 – пр. пл. 5, гор. OL; 6 – пр. пл. 5, гор. O_{pir}

соотношение фракций: абсолютное господство принадлежит фракции хвои -20% и грубой фракции -40%. Фракция листьев и травы составляет соответственно 0.4 и 2.5%. На долю фракции древесных углей приходится 4.5%, трухи -32.6%.

В сосняке рододендроново-бруснично-разнотравном (пр. пл. 3) мощность подстилки составляет 2 см, запас — 20.4 т га $^{-1}$. На гари средней интенсивности мощность поверхностного органогенного пирогенного горизонта (OL/O $_{pir}$) также составляет 2 см, а его запас 15.6 т га $^{-1}$.

По сравнению с лесом на гари во фракционном составе наблюдается относительное уменьшение фракции хвои (4.5% в лесу, 3.7% на гари), травы (2.2% в лесу, 1.2% на гари) и трухи (74.3% в лесу, 54.8% на гари), но в тоже время увеличение грубой фракции (19% в лесу, 33% на гари). Фракция древесных углей составляет 7.3%.

Пятилетний период, прошедший после пожара высокой интенсивности, значительно изменил состав и структуру поверхностных органогенных и органогенных пирогенных горизонтов. За этот

период на поверхности сформировался горизонт OL, мощностью 1 см с запасом 3.3 т га $^{-1}$. Во фракционном составе абсолютное господство принадлежит грубой фракции (сучья, кора, шишки) -69.6%. На долю хвои и травы приходится соответственно 28.6 и 1.8%.

Органогенный пирогенный горизонт O_{pir} имеет мощность 2 см, запас 11.2 т га⁻¹. Во фракционном составе этого горизонта на долю древесного угля приходится 38.8%. Остальная часть (61.2%) принадлежит фракции трухи, представляющей собой смесь тонкодисперсных древесных углей, перемешанных с мелкоземом.

Как показали исследования, подстилки на контрольных участках в подтаежно-лесостепном сосновом лесу характеризуются более высокой зольностью — 13.64%, чем подстилки в таежном сосновом лесу — 9.34%. На гарях средней интенсивности зольность подстилок составляет соответственно 24.86 и 27.18%. В рододендроново-бруснично-разнотравном сосняке на участке леса, пройденном пожаром высокой интенсивности, зольность вновь сформированного горизонта ОL равна 9.52%, а сохранившегося поверхностного органогенного пирогенного горизонта Оріг — 34.38%.

В целом, подстилки в исследуемых сосновых насаждениях и на гарях отличаются низким содержанием зольных элементов. Однако наблюдаются различия в содержании элементов в зависимости от интенсивности пожаров и постпирогенной направленности сукцессионных процессов живого напочвенного покрова.

Пожар средней интенсивности в подтаежнолесостепном сосняке привел к заметному возрастанию концентрации химических элементов в горизонте O/O_{pir}. По сравнению с контролем концентрация Si увеличилась в 1.1 раза, Fe в 1.3, Al в 1.5, Ca в 1.4, Mg в 1.2 и Mn в 1.2 раза. В то же время концентрация K и P снизилась (рис. 2).

Несколько другая закономерность в аккумуляции химических элементов отмечена в органогенном пирогенном горизонте (O/O_{pir}) таежного соснового леса, пройденного пожаром средней интенсивности. По сравнению с контролем здесь происходит накопление Fe, Al и Ca, а концентрация Si, Mg, K и P заметно понизилась.

В поверхностном органогенном пирогенном горизонте (O_{pir}) , образовавшемся после воздействия огня высокой интенсивности (пр. пл. 5), наблюдается более высокая концентрация химических элементов по сравнению с контролем: Si в

Таблица 3. Содержание микроэлементов в органогенных, органогенных пирогенных горизонтах почв и почвообразующих породах и коэффициенты биологического поглощения

Пр. пл.	Горизонт	Zn	Cu	Cd	Pb	Ni	Co
1	О	6.46 43.06	0.36 0.97	<u>0.08</u> 4.00	1.69 0.99	0.23 0.24	0.02 0.50
	Почвообра-	0.15	0.37	0.02	1.70	0.95	0.04
	зующая						
2	порода OL/O _{pir}	3.13	0.16	0.07	<u>1.72</u>	0.36	0.16
2	OL/O _{pir}	11.18	$\frac{0.10}{0.32}$	$\frac{0.07}{3.50}$	$\frac{1.72}{1.13}$	$\frac{0.30}{0.30}$	5.33
	Почвообра-	0.28	0.50	0.02	1.52	1.17	0.03
	зующая						
	порода						
3	О	5.37	0.22	0.07	0.53	0.34	0.13
		22.37	1.05	7.00	0.79	0.41	3.25
	Почвообра-	0.24	0.21	0.01	0.67	0.83	0.04
	зующая						
	порода	200					
4	OL/O _{pir}	3.06	0.79	$\frac{0.07}{2.50}$	1.56	0.21	0.25
	П	6.00	4.93	3.50	7.80	0.52	5.00
	Почвообра- зующая	0.51	0.16	0.02	0.20	0.40	0.05
	порода						
5	ОL	4.84	0.22	0.10	0.32	0.21	0.07
J		$\frac{18.61}{18.61}$	1.10	1.66	$\frac{0.32}{0.46}$	$\frac{0.21}{0.50}$	$\frac{3.37}{1.40}$
	O_{pir}	6.30	0.11	0.12	2.92	0.45	0.10
	Ьп	24.23	0.55	2.00	4.17	1.07	2.00
	Почвообра-	0.26	0.20	0.06	0.70	0.42	0.05
	зующая						
	порода						

Примечание. В числителе и почвообразующих породах, мг кг $^{-1}$, знаменателе – коэффициенты биологического поглощения.

1.6 раза, Fe в 3.4, Al в 4.4, Ca в 1.7, Mg в 1.1, Mn в 1.6 раз.

Вновь сформированный поверхностный органогенный горизонт OL по концентрации зольных химических элементов мало отличается от контрольного участка.

Содержание микроэлементов в подстилках изученных сосновых насаждений и на пожарищах приведено в табл. 3.

Обогащение подстилок целым рядом элементов находится в соответствии с коэффициентами биологического поглощения, т.е. отношениями содержания элемента в подстилке к его содержанию в почвообразующей породе. Коэффициенты биологического поглощения свидетельствуют о первостепенной роли растительности в обогаще-

нии органогенного горизонта микроэлементами, участвующими в малом биологическом круговороте.

Следует отметить, что подстилки, формирующиеся в сосновых лесах юго-западного Прибайкалья, в общем характеризуются повышенным содержанием микроэлементов и слабым их выносом [7].

На общем фоне наблюдается некоторое увеличение концентрации тех или иных элементов в подстилках в рассматриваемых типах леса. Ряд накопления элементов в подстилке подтаежно-лесостепного сосняка следующий: Zn > Cd > Pb > Cu > Co > Ni. Наиболее интенсивно в подстилке аккумулируются цинк и кадмий, а содержание Со и Ni значительно ниже, чем в почвообразующей породе. В подстилке таежного сосняка по интенсивности накопления микроэлементы расположены в следующий ряд: Zn > Cd > Co > Cu > Pb > Ni. Усиление аккумуляции некоторых элементов в исследуемых сосняках может быть связано с дополнительным их поступлением в подстилку за счет минеральных примесей, в результате деятельности почвенной фауны.

По сравнению с контролем, органогенные пирогенные горизонты почв сосновых насаждений, пройденные пожаром средней интенсивности, имеют следующие ряды накопления микроэлементов: в подтаежно-лесостепном Zn > Co > Cd > Pb > Cu > Ni, в таежном Pb > Zn > Co > Cu > Cd > Ni.

На участке гари высокой интенсивности спустя 5 лет после пожара вновь сформированный поверхностный органогенный горизонт ОL по концентрации микроэлементов мало отличается от контрольного участка. Здесь также отмечается накопление Zn, Cd и Co. Концентрация остальных элементов приближается или значительно ниже их содержания, чем в подстилке контрольной пробной площади (пр. пл. 3). В поверхностном органогенном пирогенном горизонте (O_{pir}) наблюдается более высокая концентрация микроэлементов (за исключением меди) по сравнению с горизонтом OL.

Анализируя изменение кислотности почв под влиянием пожара, следует отметить следующее. Пиролиз органики сопровождается сдвигом кислотности в сторону нейтрализации кислых растворов. В нашем случае, если под пологом сосновых насаждений в подстилках реакция среды кислая (р $H_{\rm вод}$ = 5.4–5.3), то на пожарищах поверхностные горизонты O/O $_{\rm pir}$ даже спустя 5 лет после пожара слабокислые (р $H_{\rm вод}$ = 6.0–5.8). Разница в

кислотности отмечается только в органогенном слое, нижние горизонты имеют реакцию, близкую соответствующим горизонтам лесной почвы (табл. 4). Подобная закономерность отмечена и другими исследователями [9, 14].

Слабокислая реакция среды сохранилась и в горизонте O_{pir} на участке соснового леса, подвергшегося пожару высокой интенсивности, несмотря на то что за это время сформировался поверхностный органогенный горизонт OL с более низкими показателями кислотности.

Наблюдается изменение в соотношении обменных катионов в почвенном поглощающем комплексе. До пожара обменный кальций в лесной подстилке составлял 39–44%, водород 15–43%, после пожара средней интенсивности, спустя 5 лет, в поверхностных горизонтах O/O_{pir} они соответственно равны 50 и 13–28%. На пожарище высокой интенсивности в органогенном пирогенном горизонте O_{pir} в составе обменных катионов доля кальция 71%, а водорода 3%. В то же время, во вновь образованном на поверхности горизонте OL в составе обменных катионов доля кальция равна 41%, водорода 35%.

Почвы характеризуются высоким содержанием гумуса в аккумулятивном горизонте. С глубиной содержание его резко снижается, составляя в горизонте С 0.3-2.3%. Количество общего азота меняется в соответствии с изменением в профиле почв органического вещества. Наибольшее его количество характерно для органогенных горизонтов. Среди подвижных форм азота как в органогенных, так и минеральных горизонтах исследуемых почв преобладает аммонийный азот над нитратным. Нитраты, находясь в почвенном растворе, отличаются наибольшей подвижностью и способны мигрировать по почвенному профилю. Значительная доля аммонийного азота адсорбируется почвенными коллоидами, он меньше вымывается фильтрующими осадками и в меньшей степени теряется из почвы.

Термическое воздействие на органогенные горизонты почвы приводит к изменениям в содержании аммонийного и нитратного азота в них. Однако через 5 лет после пожара трудно ответить однозначно, увеличивается или уменьшается их содержание в почве сразу после прохождения огня. Появление в больших количествах в напочвенном растительном покрове такого азотофила, как кипрей свидетельствует об удовлетворительной обеспеченности почв гарей азотом в данный период.

Заключение. Низовые пожары подстилочногумусового вида в юго-западном Прибайкалье в

Таблица 4. Физико-химические и химические свойства почв

Toph of the Girlan of G			рН _{вод.}	рН _{сол.}	т Ооменные катионы т		Гидроли- тическая	Сте-	Валовые, %			Подвижные, мг кг $^{-1}$		
MIT-9KB. Ha 100 r 1004Bb No. 1004Bb No.	-				Ca ²⁺	Mg ²⁺	$\mathrm{H}^{\scriptscriptstyle +}$	кислот- ность	щен-			C/N	NI NIII	N NO
O 0-1 5.4 4.6 9.1 8.4 3.2 33.5 34.3 88.9* 1.02 He omp. 31.1 14.8 AY 1-17 6.2 4.8 8.7 2.5 0.6 6.1 64.7 5.1 0.17 14.8 13.5 4.6 AYCu 17-25 6.5 4.8 8.1 4.0 0.3 4.2 74.2 2.0 0.05 19.7 7.4 3.6 Cu 25-35 6.3 4.6 7.6 4.7 0.2 3.4 78.3 0.8 0.02 19.7 0.4 0.01 Cu 25-35 6.3 4.6 7.6 4.7 0.2 3.4 78.3 0.8 0.02 19.7 0.4 0.01 Cu 20-1 6.1 4.9 11.0 5.0 0.9 8.7 64.8 6.8 0.31 10.8 18.4 5.8 AY 15-15 6.1					М	мг-экв. на 100 г почвы				Тумус	a301		1N-1NII ₄	N-NO ₃
AY 1-17 6.2 4.8 8.7 2.5 0.6 6.1 64.7 5.1 0.17 14.8 13.5 4.6 AYCu 17-25 6.5 4.8 8.1 4.0 0.3 4.2 74.2 2.0 0.05 19.7 7.4 3.6 Cu 25-35 6.3 4.6 7.6 4.7 0.2 3.4 78.3 0.8 0.02 19.7 7.4 3.6 Cu Pages 14-01 OL/Opir 0-1 6.0 5.4 8.4 6.4 2.3 20.8 41.6 77.0* 0.77 He onp. 43.1 19.2 AY 1-15 6.1 4.9 11.0 5.0 0.9 8.7 64.8 6.8 0.31 10.8 18.4 5.8 AYCu 15-22 6.5 5.2 8.6 2.9 0.2 3.3 77.7 2.4 0.06 19.7 6.8 2.0 Cu	Paspes 14-02													
AY 1-17 6.2 4.8 8.7 2.5 0.6 6.1 64.7 5.1 0.17 14.8 13.5 4.6 AYCu 17-25 6.5 4.8 8.1 4.0 0.3 4.2 74.2 2.0 0.05 19.7 7.4 3.6 Cu 25-35 6.3 4.6 7.6 4.7 0.2 3.4 78.3 0.8 0.02 19.7 7.4 3.6 Cu 25-35 6.3 4.6 7.6 4.7 0.2 3.4 78.3 0.8 0.02 19.7 0.4 0.01 Cu 25-35 6.1 4.9 11.0 5.0 0.9 8.7 64.8 6.8 0.31 10.8 18.4 5.8 AY 15-22 6.5 5.2 8.6 2.9 0.2 3.3 7.7 2.4 0.06 19.7 6.8 2.0 Cu 22-33 6.	O	0-1	5.4	4.6	9.1	8.4	3.2	33.5	34.3	88.9*	1.02	Не опр.	31.1	14.8
Cu 25-35 6.3 4.6 7.6 4.7 0.2 3.4 78.3 0.8 0.02 19.7 0.4 0.01 Pagpes 14-01 OL/Opir 0-1 6.0 5.4 8.4 6.4 2.3 20.8 41.6 77.0* 0.77 He orp. 43.1 19.2 AY 1-15 6.1 4.9 11.0 5.0 0.9 8.7 64.8 6.8 6.8 0.31 10.8 18.4 5.8 AYCu 15-22 6.5 5.2 8.6 2.9 0.2 3.3 77.7 2.4 0.06 19.7 6.8 2.0 Cu 22-33 6.5 4.8 7.5 3.7 0.2 2.7 80.5 1.1 0.02 27.1 1.4 0.06 Pagpes 14-03 O 0-2 5.3 4.5 6.2 2.9 6.7 35.9 20.2 90.6* 0.90 He orp. 30.9 3.8 AY 2-15 6.0 4.8 14.6 4.1 2.3 14.5 56.3 8.2 0.47 8.6 15.6 2.4 AYel 15-19 5.9 4.7 7.6 2.9 0.7 7.4 58.7 5.0 0.15 16.4 8.3 2.6 Ct 19-26 5.9 4.3 5.9 1.6 0.7 6.0 55.5 2.6 0.08 16.0 4.7 2.3 CtC 27-37 5.8 4.2 3.9 1.6 0.4 4.1 60.4 1.2 0.02 29.6 4.6 1.8 C 40-50 5.3 4.6 3.6 2.1 0.3 3.3 63.3 0.4 0.01 19.7 1.7 0.02 Pagpes 14-05 OL/Opir 0-2 5.8 4.9 7.9 3.5 4.5 5.5 5.8 41.9 72.2* 0.86 He orp. 31.2 2.6 AY 2-10 6.5 5.6 8.9 4.4 0.4 9.4 58.6 6.4 0.41 7.7 21.9 3.0 AYel 10-13 6.2 5.1 6.4 3.6 0.4 8.8 53.2 3.2 0.13 12.1 6.8 3.0 Ct 13-20 6.2 4.6 4.4 2.4 0.8 5.3 56.2 2.9 0.12 11.9 4.9 2.8 CtC 30-40 5.9 4.7 3.0 2.0 0.6 3.4 59.5 0.8 0.02 19.7 3.3 1.8 C 40-50 5.9 4.6 3.0 1.3 0.3 2.4 6.2 0.3 0.01 14.8 0.6 0.02 Pagpes 14-04 OL 0-1 5.6 4.8 6.5 3.9 5.7 30.1 25.7 90.7* 0.84 He orp. 27.4 3.4 Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 » 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8	AY	1-17	6.2	4.8	8.7	2.5	0.6	6.1	64.7	5.1	0.17	14.8	13.5	4.6
Paspes 14-01	AYCu	17–25	6.5	4.8	8.1	4.0	0.3	4.2	74.2	2.0	0.05	19.7	7.4	3.6
OL/Opir 0-1 6.0 5.4 8.4 6.4 2.3 20.8 41.6 77.0* 0.77 He onp. 43.1 19.2 AY 1-15 6.1 4.9 11.0 5.0 0.9 8.7 64.8 6.8 0.31 10.8 18.4 5.8 AYCu 15-22 6.5 5.2 8.6 2.9 0.2 3.3 77.7 2.4 0.06 19.7 6.8 2.0 Cu 22-33 6.5 4.8 7.5 3.7 0.2 2.7 80.5 1.1 0.02 27.1 1.4 0.06 Paspes 14-03 O 0-2 5.3 4.5 6.2 2.9 6.7 35.9 20.2 90.6* 0.90 He onp. 30.9 3.8 AY 2-15 6.0 4.8 14.6 4.1 2.3 14.5 56.3 8.2 0.47 8.6 15.6 2.4 Ayel 15-19	Cu	25–35	6.3	4.6	7.6	4.7	0.2	3.4	78.3	0.8	0.02	19.7	0.4	0.01
AY							Разр	ез 14-01						
AYCu 15-22 6.5 5.2 8.6 2.9 0.2 3.3 77.7 2.4 0.06 19.7 6.8 2.0 Cu 22-33 6.5 4.8 7.5 3.7 0.2 2.7 80.5 1.1 0.02 27.1 1.4 0.06	OL/Opir	0-1	6.0	5.4	8.4	6.4	2.3	20.8	41.6	77.0*	0.77	Не опр.	43.1	19.2
Cu 22–33 6.5 4.8 7.5 3.7 0.2 2.7 80.5 1.1 0.02 27.1 1.4 0.06 Paspes 14-03 O 0-2 5.3 4.5 6.2 2.9 6.7 35.9 20.2 90.6* 0.90 He omp. 30.9 3.8 AY 2-15 6.0 4.8 14.6 4.1 2.3 14.5 56.3 8.2 0.47 8.6 15.6 2.4 AYel 15-19 5.9 4.7 7.6 2.9 0.7 7.4 58.7 5.0 0.15 16.4 8.3 2.6 Ct 19-26 5.9 4.3 5.9 1.6 0.7 6.0 55.5 2.6 0.08 16.0 4.7 2.3 Ct 27-37 5.8 4.2 3.9 1.6 0.4 4.1 60.4 1.2 0.02 29.6 4.6 1.8 C 40-50 5.8	AY	1–15	6.1	4.9	11.0	5.0	0.9	8.7	64.8	6.8	0.31	10.8	18.4	5.8
Paspes 14-03 Paspes 14-04 Paspes 14-03 Paspes 14-04 Paspes 14-04 Paspes 14-05 Pasp	AYCu	15–22	6.5	5.2	8.6	2.9	0.2	3.3	77.7	2.4	0.06	19.7	6.8	2.0
O 0-2 5.3 4.5 6.2 2.9 6.7 35.9 20.2 90.6* 0.90 He onp. 30.9 3.8 AY 2-15 6.0 4.8 14.6 4.1 2.3 14.5 56.3 8.2 0.47 8.6 15.6 2.4 AYel 15-19 5.9 4.7 7.6 2.9 0.7 7.4 58.7 5.0 0.15 16.4 8.3 2.6 Ct 19-26 5.9 4.3 5.9 1.6 0.7 6.0 55.5 2.6 0.08 16.0 4.7 2.3 CtC 27-37 5.8 4.2 3.9 1.6 0.4 4.1 60.4 1.2 0.02 29.6 4.6 1.8 C 40-50 5.3 4.6 3.6 2.1 0.3 3.3 63.3 0.4 0.01 19.7 1.7 0.02 Paspes 14-05 OL/Opir 0-2 5.8 <	Cu	22–33	6.5	4.8	7.5	3.7	0.2	2.7	80.5	1.1	0.02	27.1	1.4	0.06
AY	Разрез 14-03													
AYel 15-19 5.9 4.7 7.6 2.9 0.7 7.4 58.7 5.0 0.15 16.4 8.3 2.6 Ct 19-26 5.9 4.3 5.9 1.6 0.7 6.0 55.5 2.6 0.08 16.0 4.7 2.3 CtC 27-37 5.8 4.2 3.9 1.6 0.4 4.1 60.4 1.2 0.02 29.6 4.6 1.8 C 40-50 5.3 4.6 3.6 2.1 0.3 3.3 63.3 0.4 0.01 19.7 1.7 0.02 Paspes 14-05 OL/Opir 0-2 5.8 4.9 7.9 3.5 4.5 15.8 41.9 72.2* 0.86 He omp. 31.2 2.6 AY 2-10 6.5 5.6 8.9 4.4 0.4 9.4 58.6 6.4 0.41 7.7 21.9 3.0 AYel 10-13 6.2 5.1 6.4 3.6 0.4 8.8 53.2 3.2 0.13 12.1 6.8 3.0 Ct 13-20 6.2 4.6 4.4 2.4 0.8 5.3 56.2 2.9 0.12 11.9 4.9 2.8 CtC 30-40 5.9 4.7 3.0 2.0 0.6 3.4 59.5 0.8 0.02 19.7 3.3 1.8 C 40-50 5.9 4.6 3.0 1.3 0.3 2.4 64.2 0.3 0.01 14.8 0.6 0.02 Paspes 14-04 OL 0-1 5.6 4.8 6.5 3.9 5.7 30.1 25.7 90.7* 0.84 He omp. 27.4 3.4 Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 % 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8	O	0–2	5.3	4.5	6.2	2.9	6.7	35.9	20.2	90.6*	0.90	Не опр.	30.9	3.8
Ct 19-26 5.9 4.3 5.9 1.6 0.7 6.0 55.5 2.6 0.08 16.0 4.7 2.3 CtC 27-37 5.8 4.2 3.9 1.6 0.4 4.1 60.4 1.2 0.02 29.6 4.6 1.8 C 40-50 5.3 4.6 3.6 2.1 0.3 3.3 63.3 0.4 0.01 19.7 1.7 0.02 Paspes 14-05 OL/Opir 0-2 5.8 4.9 7.9 3.5 4.5 15.8 41.9 72.2* 0.86 He onp. 31.2 2.6 AY 2-10 6.5 5.6 8.9 4.4 0.4 9.4 58.6 6.4 0.41 7.7 21.9 3.0 AYel 10-13 6.2 5.1 6.4 3.6 0.4 8.8 53.2 3.2 0.13 12.1 6.8 3.0 Ct 13-20 6.2 </td <td>AY</td> <td>2-15</td> <td>6.0</td> <td>4.8</td> <td>14.6</td> <td>4.1</td> <td>2.3</td> <td>14.5</td> <td>56.3</td> <td>8.2</td> <td>0.47</td> <td>8.6</td> <td>15.6</td> <td>2.4</td>	AY	2-15	6.0	4.8	14.6	4.1	2.3	14.5	56.3	8.2	0.47	8.6	15.6	2.4
CtC 27-37 5.8 4.2 3.9 1.6 0.4 4.1 60.4 1.2 0.02 29.6 4.6 1.8 C 40-50 5.3 4.6 3.6 2.1 0.3 3.3 63.3 0.4 0.01 19.7 1.7 0.02 Paspes 14-05 OL/Opir 0-2 5.8 4.9 7.9 3.5 4.5 15.8 41.9 72.2* 0.86 He onp. 31.2 2.6 AY 2-10 6.5 5.6 8.9 4.4 0.4 9.4 58.6 6.4 0.41 7.7 21.9 3.0 AYel 10-13 6.2 5.1 6.4 3.6 0.4 8.8 53.2 3.2 0.13 12.1 6.8 3.0 Ct 13-20 6.2 4.6 4.4 2.4 0.8 5.3 56.2 2.9 0.12 11.9 4.9 2.8 Ct 30-40 5.9 </td <td>AYel</td> <td>15-19</td> <td>5.9</td> <td>4.7</td> <td>7.6</td> <td>2.9</td> <td>0.7</td> <td>7.4</td> <td>58.7</td> <td>5.0</td> <td>0.15</td> <td>16.4</td> <td>8.3</td> <td>2.6</td>	AYel	15-19	5.9	4.7	7.6	2.9	0.7	7.4	58.7	5.0	0.15	16.4	8.3	2.6
C 40-50 5.3 4.6 3.6 2.1 0.3 3.3 63.3 0.4 0.01 19.7 1.7 0.02 Paspes 14-05 OL/Opir 0-2 5.8 4.9 7.9 3.5 4.5 15.8 41.9 72.2* 0.86 He onp. 31.2 2.6 AY 2-10 6.5 5.6 8.9 4.4 0.4 9.4 58.6 6.4 0.41 7.7 21.9 3.0 AYel 10-13 6.2 5.1 6.4 3.6 0.4 8.8 53.2 3.2 0.13 12.1 6.8 3.0 Ct 13-20 6.2 4.6 4.4 2.4 0.8 5.3 56.2 2.9 0.12 11.9 4.9 2.8 CtC 30-40 5.9 4.7 3.0 2.0 0.6 3.4 59.5 0.8 0.02 19.7 3.3 1.8 C 40-50 5.9 4.6 3.0 1.3 0.3 2.4 64.2 0.3 0.01 14.8 0.6 0.02 Paspes 14-04 OL 0-1 5.6 4.8 6.5 3.9 5.7 30.1 25.7 90.7* 0.84 He onp. 27.4 3.4 Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 w 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8	Ct	19–26	5.9	4.3	5.9	1.6	0.7	6.0	55.5	2.6	0.08	16.0	4.7	2.3
Paspes 14-05 OL/Opir O-2 5.8 4.9 7.9 3.5 4.5 15.8 41.9 72.2* 0.86 He omp. 31.2 2.6 AY 2-10 6.5 5.6 8.9 4.4 0.4 9.4 58.6 6.4 0.41 7.7 21.9 3.0 AYel 10-13 6.2 5.1 6.4 3.6 0.4 8.8 53.2 3.2 0.13 12.1 6.8 3.0 Ct 13-20 6.2 4.6 4.4 2.4 0.8 5.3 56.2 2.9 0.12 11.9 4.9 2.8 CtC 30-40 5.9 4.7 3.0 2.0 0.6 3.4 59.5 0.8 0.02 19.7 3.3 1.8 C 40-50 5.9 4.6 3.0 1.3 0.3 2.4 64.2 0.3 0.01 14.8 0.6 0.02 Paspes 14-04 OL Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 % 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8	CtC	27–37	5.8	4.2	3.9	1.6	0.4	4.1	60.4	1.2	0.02	29.6	4.6	1.8
OL/Opir 0-2 5.8 4.9 7.9 3.5 4.5 15.8 41.9 72.2* 0.86 He omp. 31.2 2.6 AY 2-10 6.5 5.6 8.9 4.4 0.4 9.4 58.6 6.4 0.41 7.7 21.9 3.0 AYel 10-13 6.2 5.1 6.4 3.6 0.4 8.8 53.2 3.2 0.13 12.1 6.8 3.0 Ct 13-20 6.2 4.6 4.4 2.4 0.8 5.3 56.2 2.9 0.12 11.9 4.9 2.8 CtC 30-40 5.9 4.7 3.0 2.0 0.6 3.4 59.5 0.8 0.02 19.7 3.3 1.8 C 40-50 5.9 4.6 3.0 1.3 0.3 2.4 64.2 0.3 0.01 14.8 0.6 0.02 Paspes 14-04 OL 0-1 5.6 <td>C</td> <td>40–50</td> <td>5.3</td> <td>4.6</td> <td>3.6</td> <td>2.1</td> <td>0.3</td> <td>3.3</td> <td>63.3</td> <td>0.4</td> <td>0.01</td> <td>19.7</td> <td>1.7</td> <td>0.02</td>	C	40–50	5.3	4.6	3.6	2.1	0.3	3.3	63.3	0.4	0.01	19.7	1.7	0.02
AY							Разр	ез 14-05						
AYel 10-13 6.2 5.1 6.4 3.6 0.4 8.8 53.2 3.2 0.13 12.1 6.8 3.0 Ct 13-20 6.2 4.6 4.4 2.4 0.8 5.3 56.2 2.9 0.12 11.9 4.9 2.8 CtC 30-40 5.9 4.7 3.0 2.0 0.6 3.4 59.5 0.8 0.02 19.7 3.3 1.8 C 40-50 5.9 4.6 3.0 1.3 0.3 2.4 64.2 0.3 0.01 14.8 0.6 0.02 Paspes 14-04 OL 0-1 5.6 4.8 6.5 3.9 5.7 30.1 25.7 90.7* 0.84 He onp. 27.4 3.4 Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 » 17.1 3.2 AY 3-10 6.2			1	1			4.5				0.86	Не опр.		
Ct 13-20 6.2 4.6 4.4 2.4 0.8 5.3 56.2 2.9 0.12 11.9 4.9 2.8 CtC 30-40 5.9 4.7 3.0 2.0 0.6 3.4 59.5 0.8 0.02 19.7 3.3 1.8 C 40-50 5.9 4.6 3.0 1.3 0.3 2.4 64.2 0.3 0.01 14.8 0.6 0.02 Paspes 14-04 OL 0-1 5.6 4.8 6.5 3.9 5.7 30.1 25.7 90.7* 0.84 He omp. 27.4 3.4 Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 » 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3		1	1	5.6	8.9			9.4			ı			
CtC 30-40 5.9 4.7 3.0 2.0 0.6 3.4 59.5 0.8 0.02 19.7 3.3 1.8 C 40-50 5.9 4.6 3.0 1.3 0.3 2.4 64.2 0.3 0.01 14.8 0.6 0.02 Paspes 14-04 OL 0-1 5.6 4.8 6.5 3.9 5.7 30.1 25.7 90.7* 0.84 He onp. 27.4 3.4 Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 » 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0		10–13	6.2	5.1	6.4	3.6	0.4	8.8	53.2	3.2	0.13	12.1	6.8	3.0
C 40–50 5.9 4.6 3.0 1.3 0.3 2.4 64.2 0.3 0.01 14.8 0.6 0.02 Разрез 14-04 OL 0-1 5.6 4.8 6.5 3.9 5.7 30.1 25.7 90.7* 0.84 He onp. 27.4 3.4 Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 » 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8		13-20		4.6		2.4	0.8	5.3	56.2	2.9	0.12	11.9	4.9	
Paspes 14-04 OL 0-1 5.6 4.8 6.5 3.9 5.7 30.1 25.7 90.7* 0.84 He опр. 27.4 3.4 Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 » 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8	CtC	30–40	5.9	4.7	3.0	2.0	0.6			0.8	0.02	19.7	3.3	1.8
OL	C	40–50	5.9	4.6	3.0	1.3	0.3	2.4	64.2	0.3	0.01	14.8	0.6	0.02
Opir 1-3 6.4 5.5 8.5 3.2 0.4 6.8 63.2 67.2* 1.07 » 17.1 3.2 AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8							Разр	ез 14-04						
AY 3-10 6.2 5.0 7.7 2.7 1.0 8.4 55.3 5.0 0.38 6.5 11.0 6.8 C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0 [Opir] 27-29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8	OL	0–1	1				5.7					Не опр.		
C 10-27 6.3 4.7 6.6 4.9 1.2 8.1 58.7 4.8 0.17 13.9 4.4 6.0	Opir	1–3	6.4	1	8.5	3.2	0.4	6.8	63.2	67.2*	1.07	»	17.1	3.2
[Opir] 27–29 6.0 4.9 9.2 4.5 0.6 4.0 77.4 5.1 0.23 10.9 9.0 3.8			1											
			6.3	1									4.4	
C 30-40 5.3 4.8 4.5 2.7 1.7 4.7 60.5 2.3 0.06 18.9 5.8 1.4			1	1										
	C	30–40	5.3	4.8	4.5	2.7	1.7	4.7	60.5	2.3	0.06	18.9	5.8	1.4

^{*} Потеря при прокаливании.

зависимости от интенсивности огня по-разному трансформируют почвенный покров. В горных условиях при пожарах высокой интенсивности на склонах наблюдаются процессы денудации (сноса и переотложения мелкозема), приводящие к формированию либо простых примитивных профилей с маломощными горизонтами (образование литоземов), либо сложных полициклических профилей, часто с погребенными (реликтовыми) горизонтами. В отличие от слабоизмененных почв, на участках гари высокой интенсивности пожара

почвенный профиль не дифференцирован по гранулометрическому составу. Современный почвообразовательный процесс протекает на глинистом или суглинистом наносе, обогащенном илом и тонкопылеватыми фракциями. Низовые пожары подстилочно-гумусового вида трансформируют типодиагностические поверхностные органогенные горизонты почв, приводят к формированию новых органогенных пирогенных горизонтов, которые по составу, зольности и содержанию химических элементов значительно отличаются от

природных аналогов. Установлено, что наибольшее накопление зольных элементов наблюдается в органогенных пирогенных горизонтах, трансформированных пожарами высокой интенсивности. Поведение и содержание химических элементов в лесных подстилках помимо воздействия пожара и послепожарных сукцессий растительности обусловлено также геохимической обстановкой региона — скоростью водной миграции и биологического поглошения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Аринушкина Е.В.* Руководство по химическому анализу почв. М.: Изд-во МГУ, 1970. 486 с.
- 2. *Вадюнина А.Ф., Корчагина З.А.* Методы исследований физических свойств почв и грунтов. М.: Высш. шк., 1973. 399 с.
- 3. Доржсурэн Ч., Краснощеков Ю.Н. Послепожарные сукцессии в псевдотаежных лиственничных лесах Центрального Хангая в Монголии // Хвойные бореальной зоны. Красноярск, 2007. Т. XXIV. № 4–5. С. 391–397.
- Евдокименко М.Д. Реакция сосны на огневые воздействия в условиях Забайкалья // Лесоведение. 1986. № 6. С. 46–53.
- 5. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.

- Краснощеков Ю.Н. Влияние пожаров на свойства горных дерново-таежных почв лиственничников Монголии // Почвовеление. 1994. № 9. С. 102–109.
- 7. *Кузьмин В.А.* Почвы центральной зоны Байкальской природной территории. Иркутск: Изд-во ИГ СО РАН, 2002. 166 с.
- 8. *Мелехов И.С.* Влияние пожаров на лес. М.; Л.: Гос. лесотехническое изд-во, 1948. 126 с.
- 9. Попова Э.П. Особенности почвообразования в лесных биогеоценозах Приангарья в зависимости от давности пожаров // Генезис и география лесных почв. М.: Наука, 1980. С. 40–52.
- 10. Программа и методика биогеоценологических исследований. М.: Наука, 1974. 403 с.
- 11. Родин Л.Е., Ремезов Н.П., Базилевич Н.И. Методические указания к изучению динамики и биологического круговорота в фитоценозах. Л.: Наука, 1968. 143 с.
- 12. Сапожников А.П. Роль огня в формировании лесных почв // Экология. 1976. № 1. С. 43–46.
- 13. Стефин В.В. Антропогенные воздействия на горнолесные почвы. Новосибирск: Наука, 1981. 169 с.
- 14. *Фирсова В.П.* Об изменении физико-химических свойств некоторых почв Урала под влиянием лесных пожаров // Лесной журн. Изв. вузов. 1960. № 1. С. 13–20.
- 15. Фуряев В.В. Роль пожаров в процессе лесообразования. Новосибирск: Наука, 1996. 253 с.

Transformation of Gray-Humus Soils of Pine Forests under the Influence of Fires in Southwestern Lake Baikal Basin

Yu. N. Krasnoshchekov

The experimental data on the postpyrogenic dynamics of the soils under pine forests of southwestern Lake Baikal basin are analyzed. Surface fires of the litter-humus kind transform type-diagnostic surface organic horizons and lead to the formation of new pyrogenic organic horizons (O_{pyr}). An adverse effect of surface fires of different intensity on changes in the carbon reserves, qualitative and fractional composition of soil organic horizons and their chemical composition are shown.