УДК 548.0:535.37:548.736

Посвящается памяти Н.В. Белова

ОПТИЧЕСКАЯ АКТИВНОСТЬ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КРИСТАЛЛОВ СЕМЕЙСТВА ЛАНГАСИТА

© 2011 г. Т. Ф. Веремейчик

Институт кристаллографии РАН, Москва E-mail: vtam@ns.crys.ras.ru Поступила в редакцию 11.07.2011 г.

Рассмотрены зависимости между величиной рефракции и структурными параметрами в кристаллах семейства лангасита La₃Ga_{5.5}Nb_{0.5}O₁₄, La₃Ga_{5.5}Ta_{0.5}O₁₄, La₃Ga₅SiO₁₄, Ca₃Ga₂Ge₄O₁₄, Sr₃Ga₂Ge₄O₁₄. Показано, что угол отклонения от 60° граней октаэдра 1a, перпендикулярных оптической оси, является одной из главных причин оптической активности этих кристаллов. К основным взаимодействиям, влияющим на величину угла, отнесены взаимодействие катионов додекаэдра 3e и октаэдра 1a, додекаэдра 3e и тетраэдра 2d, а также отталкивание ионов O^{2-} . Выполнен анализ зависимостей величины угла от кристаллохимических характеристик рассмотренных кристаллов. Показана роль относительных размеров полиэдров структуры.

ВВЕДЕНИЕ

Рефракция связана с оптической активностью зависимостью от некоторых одинаковых характеристик вещества, в том числе показателя преломления и поляризуемости ионов. Как рефракция, так и оптическая активность высокочувствительны к структуре среды [1–3]. С другой стороны, с углом ϕ , характеризующим отклонение от 60° поворота перпендикулярных оптической оси с противоположных граней октаэдра 1а, связывается оптическая активность в кристаллах семейства лангасита (структура Са-галлогерманата, пр. гр. РЗ21) [4], не обладающих винтовой осью.

В [4] показана корреляция угла ф с величинами удельного вращения плоскости поляризации и знака вращения для кристаллов Sr₃Ga₂Ge₄O₁₄ и La₃Ga₅₅Ta₀₅O₁₄. Корреляция знака вращения с конфигурацией осей структуры и соотношением ионов в смешанных позициях кристаллов обнаружена в [5–7]. Корреляция величин рефракции и угла ф продемонстрирована в [8] для кристаллов $La_{3}Ga_{5.5}Ta_{0.5}O_{14}$, $La_{3}Ga_{5.5}Nb_{0.5}O_{14}$, $La_{3}Ga_{5}GeO_{14}$, $La_3Ga_5SiO_{14}$, $Sr_3Ga_2Ge_4O_{14}$, $Ca_3Ga_2Ge_4O_{14}$.

Отметим, что в других структурах, например, в ряде оптически активных молекулярных кристаллов со структурой пр. гр. Р321 основным элементом структуры является октаэдрически координированный комплекс. При этом октаэдр имеет аналогичные октаэдру в структуре кристаллов семейства лангасита искажения — локальная симметрия позиции катиона D₃ [9]. Кристаллы солей $R_2S_2O_6$ и MS_2O_6 4 H_2O , где R - K, Rb, a M - Sr, Ca, Рь со структурой пр. гр. РЗ21 тоже обладают оптической активностью из-за образования сильно деформированной псевдотригональной оси 3₁, создающей винтовую структуру. При этом ионы К, Rb центрируют искаженные октаэдры из ионов О²⁻, но в винтовой структуре не участвуют.

Эту структуру образует группировка $S_2O_6^{2-}[9]$.

В пр. гр. Р321 возможны разные механизмы возникновения оптической активности за счет небольших изменений структуры. При этом структура пространственной подгруппы приближается к более симметричной структуре надгруппы. Ближайшие надгруппы пр. гр. РЗ21 – РЗ₁21 и РЗ₂21, обладающие винтовыми осями. Метод поиска винтовой оси в структурах развит в [10].

В структуре кристаллов семейства лангасита угол ф особенно увеличивает неинверсионные (нечетные) составляющие потенциала в октаэдре, которые могут привести к винтовой оси. Нарушение в поглощающей среде инвариантности потенциала относительно инверсии и приводит к разности поглощения право- и левополяризованных фотонов. Влияние угла ф наглядно проявляется, например в спектральных и лазерных свойства активированных кристаллов SGG, CGG [11]. Угол ф приводит к возрастанию сил осцилляторов переходов между рабочими уровнями иона активатора переходного элемента в октаздре 1а. Отметим, что смещения ионов и их электронных оболочек, которым пропорциональна величина рефракции, играют базовую роль в пьезо-, нелинейном оптическом и других эффектах в кристаллах структурного типа лангасита.

В работе рассматриваются зависимости величин рефракции и угла ф для кристаллов $La_{3}Ga_{5.5}Ta_{0.5}O_{14}$ (LGT), $La_{3}Ga_{5.5}Nb_{0.5}O_{14}$ (LGN),

ВЕРЕМЕЙЧИК

Рис. 1. Фрагмент структуры кристалла La₃Nb_{0.5}Ga_{5.5}O₁₄: вдоль оси ячейки *a* слева направо расположены [Nb,Ga]-октаэдр, La-полиэдр и трансляционно идентичный [Nb,Ga]-октаэдр. Сверху и снизу к La-полиэдру примыкают тетраэдры Ga(2*d*) и Ga(3*f*).

La₃Ga₅SiO₁₄ (LGS), Sr₃Ga₂Ge₄O₁₄ (SGG), Ca₃Ga₂Ge₄O₁₄ (CGG) семейства лангасита от их структурных характеристик и химического состава. В настоящей работе использованы структурные данные [12-14].

КРИСТАЛЛОХИМИЧЕСКИЕ ОСОБЕННОСТИ КРИСТАЛЛОВ

Свободные ионы La³⁺, Sr²⁺, Ca²⁺, Ga³⁺, Ta⁵⁺, Nb5+, Ge4+, Si4+ имеют электронные оболочки *ns²np*⁶ типа оболочек инертных газов со сферически симметричным распределением электронной плотности в основном состоянии ${}^{1}S$. В кристалле такие оболочки сферически симметричны, по крайней мере, в околоядерной области, протяженность которой зависит от величины и симметрии потенциала кристаллического поля. Ионы с термом ¹ S основного состояния вообще формируют в кристалле в сравнении с ионами других типов электронных оболочек (при равных кристаллохимических условиях) менее локализованные химические связи, способствующие их подвижности по осям симметрии [15]. Ионы с заполненными оболочками типа инертных газов должны быть особенно высокоподвижны.

Величина смещения заряда $P = \alpha_0 E$, где P – поляризация, смещение заряда; E – напряженность потенциала кристалла на ионе; α_0 – общая поляризуемость, соответствующая смещению иона и электронной плотности на химической связи. Для ионов с электронной оболочкой типа инертных газов в электронной поляризуемости α :

$$\alpha = 1/3(\alpha_{\parallel} + 2\alpha_{\perp}), \qquad (1)$$

относительная величина α_{\perp} превышает значения для ионов с другими типами оболочек [2, 3]. Здесь α_{\parallel} и α_{\perp} — поляризуемости параллельно и перпендикулярно химической связи соответственно.

Структура типа Са-галлогерманата (рис. 1) формируется вокруг оси C_2 по кратчайшему расстоянию между крупными катионами в додекаэдре 3e и октаэдре 1a и оси C_3 октаэдра 1a, совпадающей с оптической осью. Ионы О2, О3 занимают общие позиции. Катионы в додекаэдре Зе и тетраэдре 3*f* имеют позиции локальной симметрии C_2 , а в тетраэдре $2d - C_3$. Локальная симметрия позиции катиона в октаэдре 1*a* – *D*₃. Додекаэдр 3*e* и октаэдр 1а имеют общее ребро ОЗ-ОЗ. Между слоями октаэдров и додекаэдров, расположенных вокруг октаэдров по закону тройной оси, расположены тетраэдры 3f, имеющие с октаэдрами общие вершины (ионы O3), и 2d, имеющие общее ребро (О2-О2) с додекаэдром Зе. Таким образом, позиции катионов обладают только осями симметрии. Соотношения катионов в смешанных позициях структуры приведены в табл. 1.

Особенности электронных оболочек всех катионов и уникальное соответствие оболочек симметрии позиций могут привести к гладким зависимостям величин рефракции и угла ф от кристаллохимических характеристик кристаллов.

КРИСТАЛЛОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ВЕЛИЧИНЫ РЕФРАКЦИИ

Экспериментальные и вычисленные величины рефракции и угла ф коррелируют (кроме кристалла CGG) (табл. 2). Отметим, что метод вычисления рефракции основан на правиле аддитивности рефракций формульных единиц соединения и не учитывает структурный параметр низкосимметричного искажения, каким является угол ф.

Величина молекулярной рефракции *R*_м диэлектрика:

$$R_{\rm M} = V(\varepsilon - 1)(\varepsilon + 2) = 4\pi N\alpha/3, \qquad (2)$$

V- мольный объем, $\varepsilon -$ диэлектрическая проницаемость, N- число Авогадро.

Экспериментальные значения $R_{_{эксп}}$ для исследованных кристаллов получены в [1]. В настоящей работе выполнены расчеты кристаллической ионной рефракции R_{μ} с учетом реальных соотношений содержания катионов в смешанных позициях кристаллов SGG, CGG (табл. 1). Эти результаты и полученные в [1] показали несущественные отличия. Отклонения значений R_{μ} от $R_{эксп}$ составили 5–10%, что в среднем меньше среднестатистической ошибки (~9%) для неорганических кристаллов [2, 3]. Вычисленные вклады R(3e), R(1a), R(3f), R(2d) от полиэдров структуры в суммарную величину R_{μ} приведены (в %) в табл. 2. Если рассмотреть вклад ионов по отдельности, то в величинах R_{μ} преобладает вклад ионов O^{2–}.

Максимальные величины R_{μ} соответствуют крупным и высокозарядным ионам [2, 3] и большому числу ионов O^{2-} , сопоставляемым им в структурном фрагменте (табл. 2). Для ионов La³⁺, Sr²⁺, Ca²⁺ величины R_{μ} равны 5.4, 3.8, 2.3 соответственно и сопоставляется 3/2, 1, 1 иона O^{2-} . Ионам Ta⁵⁺, Nb⁵⁺ ($R_{\mu} - 2.7$) сопоставляется 5/2 ионов O^{2-} . Для ионов малых ионных радиусов Ga³⁺, Ge⁴⁺, Si⁴⁺ величины R_{μ} невысоки – 1.6, 1.5, 0.3 соответственно.

Для ионов в соединениях поляризуемость $\alpha \sim kr_{\mu}^{n}$, где r_{μ} – ионный радиус, а параметры k и n зависят от соединения (для свободных ионов $\alpha \sim r_{\mu}^{3}$). Зависимостью α и r_{μ} объясняется пропорциональность величин $R_{3\kappa cn}$, R_{μ} и наименьшему параметру элементарной ячейки c, параметру, который, в свою очередь, зависит от суммы радиусов ионов (рис. 2). Аналогичная зависимость, но от параметра ячейки a ранее была обнаружена для величины пьезомодуля кристаллов семейства лангасита [16]. Эта зависимость является главной тенденцией, которая может нарушаться влиянием тетраэдров 3f и 2d.

Сравним величины R и отношения средних радиусов полиэдров – $\beta_1 = r_{cp}(3e)/r_{cp}(1a)$, $\beta_2 = r_{cp}(3e)/r_{cp}(3f)$, $\beta_3 = r_{cp}(3e)/r_{cp}(2d)$ (табл. 3, 4). Для

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

Таблица 1. Соотношение катионов в смешанных позициях кристаллов LGT, LGN, LGS, SGG, CGG

Кристалл, позиция	Соотношение катионов
LGN, 1 <i>a</i>	$0.50 \mathrm{Ga^{3+}} + 0.50 \mathrm{Nb^{5+}}$
LGT, 1 <i>a</i>	$0.50 \mathrm{Ga^{3+}} + 0.50 \mathrm{Ta^{5+}}$
CGG, 1 <i>a</i>	$0.74 { m Ga^{3+}} + 0.26 { m Ge^{4+}}$
CGG, 3 <i>f</i>	$0.58 \mathrm{Ga^{3+}} + 0.42 \mathrm{Ge^4}$
LGS, 2 <i>d</i>	$0.50 { m Ga^{3+}} + 0.50 { m Si^{4+}}$
SGG, 1a	$0.14 \mathrm{Ga^{3+}} + 0.86 \mathrm{Ge^{4+}}$
SGG, 3 <i>f</i>	$0.62 \mathrm{Ga^{3+}} + 0.38 \mathrm{Ge^{4+}}$

Таблица 2. Экспериментальные величины рефракции $R_{_{3 \text{ксп}}}$, вычисленные рефракции R_u [1], угол φ и вычисленные вклады R в величины R_u от полиэдров структуры и от общего количества ионов O^{2–} для кристаллов LGT, LGN, LGS, SGG, CGG*

Рефракция,	Кристалл						
угол ф	LGN	LGT	LGS	SGG	CGG		
R _{эксп}	88.4	88.4	82.8	77.5	72.9		
R _и	79.6	79.6	77.7	73.9	69.3		
ф, град	19.7	19.5	17.7	12.3	18.6		
<i>R</i> (3 <i>e</i>), %	41.9	41.9	42.9	30.9	26.4		
<i>R</i> (1 <i>a</i>) %	12.2	12.2	9.4	8.4	8.9		
<i>R</i> (3 <i>f</i>), %	27.6	27.6	28.2	32.5	35.2		
<i>R</i> (2 <i>d</i>), %	18.4	18.4	19.6	24.6	26.3		
$R(O^{2-}), \%$	66.9	66.9	67.4	68.5	76.8		

* Последовательность кристаллов соответствует уменьшению величин $R_{3\text{ксп}}$, R_{μ} , угол φ равен разности угла разворота граней правильного октаэдра (60°) и удвоенного угла наклона ребра ОЗ–ОЗ относительно высоты *h* октаэдра.

La-кристаллов LGT, LGN, LGS величины β_i равны 1.3, 1.4, 1.4; 1.3, 1.4, 1.4; 1.3, 1.4, 1.5 (табл. 4), а величины R(3e)/R(1a), R(3e)/R(3f), R(3e)/R(2d) -1.5, 2.6, 3.4; 1.5, 2.6, 3.4; 1.5, 2.2, 4.5 соответственно (табл. 2). Увеличение коэффициентов пропорциональности в соотношении для R соответствует степенной зависимости α от r_{μ} , а возростание β_3 для кристалла LGS — минимальной величины $r_{cp}(2d)$.

КРИСТАЛЛОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УГОЛ Ф

Величина угла ϕ обратно пропорциональна параметрам β_1 , β_2 , β_3 (табл. 2, 4). Наименее стабильны структурные параметры малого тетраэдра 2*d*. 1*a*, 3*f* более стабильны и меняются только для кристалла SGG. Величины β_1 , β_2 , β_1 в первом приближении равны для кристаллов LGT и LGN, LGS и CGG.

Рис. 2. Зависимость величины рефракции $R_{
m эксп}$ от параметра ячейки *с* для кристаллов LGN, LGT, LGS, SGG, CGG.

Величина угла φ также обратно пропорциональна отношениям длин связей (O2–O2)/(O3–O3), и объемов V(3e)/V(2d). Для ряда кристаллов LGT, LGN, CGG, LGS, SGG последовательность неокругленных отношений объемов полиэдров V(3e)/V(2d) равна 9.384, 9.389, 10.186, 10.950, 11.198 и соответствует уменьшению угла. Зависимость величины угла φ от величины разности $(a/c) - [r_{cp}(3e)/r_{cp}(3f) + r_{cp}(3e)/r_{cp}(2d)]$ (табл. 3–5) имеет гладкий характер (рис. 3) и, по-видимому, отражает отношение величин его ребер к высоте.

ФАКТОРЫ НЕИНВЕРСИОННОГО СМЕЩЕНИЯ ГРАНЕЙ ОКТАЭДРА

Устойчивости структуры соответствует баланс потенциалов притяжения и отталкивания ионов:

$$U_{ii} = -\{\pm A Z_i Z_i e^2 / 4\pi \varepsilon r_{ii}\} + b / r_{ii}^n, \qquad (3)$$

где A – постоянная Маделунга, Z – заряды ионов, r_{ii} – межионные расстояния. Первое слагаемое

Таблица 3. Величины $r_{\rm cp}$ и объемов V для полиэдров в кристаллах LGN, LGT, CGG, LGS, SGG *

Кристалл	LGN	LGT	CGG	LGS	SGG
$r_{\rm cp}(3e)$, Å	2.590	2.590	2.554	2.600	2.648
$r_{\rm cp}(1a), {\rm \AA}$	1.994	1.992	1.928	1.995	1.923
$r_{\rm cp}(3f), {\rm \AA}$	1.857	1.855	1.814	1.854	1.818
$r_{\rm cp}(2d), {\rm \AA}$	1.833	1.831	1.746	1.732	1.749
$V(3e), Å^3$	28.827	28.827	27.260	28.727	30.343
$V(1a), Å^3$	10.246	10.248	9.338	10.266	9.329
$V(3f), Å^3$	3.111	3.114	2.909	3.076	2.944
$V(2d), Å^3$	3.072	3.070	2.676	2.624	2.710

 * Последовательность кристаллов в табл. 3–6 соответствует уменьшению угла ф.

Рис. 3. Зависимость величины угла φ от разности $(a/c) - [r_{cp}(3e)/r_{cp}(2f) - r_{cp}(3e)/r(2d)]; a, c - параметры элементарной ячейки для кристаллов LGN, LGT, LGS, SGG, CGG.$

соответствует потенциалу притяжения, второе – отталкивания. Потенциал отталкивания, в том числе ионов O^{2-} , возрастает в степенной зависимости по мере сближения ионов и перекрывания их электронных оболочек. При этом наличие составляющей поляризации α_{\perp} (1) электронной оболочки катионов, перпендикулярной химической связи, увеличивает зависимость потенциала отталкивания ионов O^{2-} от расстояния между ними (2).

Структура кристалла формируется по линиям взаимодействия катионов в полиэдрах, имеющих общие ребра K(3e) и K(1a), K(3e) и K(2d). Катионы K(3e) и K(3f) смещаются по оси C_2 , K(2d) – оси C_3 .

Данные табл. 1–6 позволяют проследить динамику изменений угла ф в зависимости от структурных параметров и химических характеристик катионов. Отметим, что в дальнейшем тексте кристаллохимические характеристики второго и последующих кристаллов обсуждены в сравнении с предыдущим кристаллом.

Кристал LGN с наибольшим значением угла φ возьмем за репер. Ионный радиус иона Nb⁵⁺(6) равен 0.68 Å, иона La³⁺ – 1.16 Å, ионов Ga³⁺(6), Ga³⁺(4) – 0.62, 0.47 Å соответственно. Угол φ равен разности угла разворота граней правильного октаэдра (60°) и удвоенного угла между ребром O3–O3 и высотой *h* октаэдра.

Отталкивание (через ребро O3–O3) высокозарядных катионов La³⁺(3*e*) и Nb⁵⁺, Ga³⁺(1*a*) (табл. 1) для кристалла LGN максимально в рассматриваемом ряду. Компенсация отталкивания ионов O3, сближенных притяжением высокозарядными катионами, происходит путем увеличения *h* и соответствует минимальной величине отношения γ = (O3–O3)/*h*, равной 1.090 (табл. 6). Для кристалла LGN O3–O3 и *h* наиболее близки. Таким образом, для кристалла-репера LGN угол поворота

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

противоположных граней минимален, а угол ϕ – угол отклонения от 60° максимален (табл. 2).

Кристалл LGT отличается от LGN тем, что в нем в октаэдре 1а расположен более мелкий катион Ta^{5+} . Ион Ta^{5+} химически идентичен иону Nb⁵⁺, но имеет меньший радиус 0.64 Å и меньше сближает ионы O3.

Сравним параметры октаэдров для кристаллов LGT и LGN. Большему октаэдру в LNG соответствуют меньшие расстояния K–O3–O3 (L в табл. 6) и длина связи K–O3. Октаэдр LNG вытянут по высоте – величина h равна 2.447 и 2.439 Å для LNG и LTG соответственно. При этом уменьшение величины h для кристалла LTG больше уменьшения длины ребра O3–O3 и наклон ребра O3–O3 относительно высоты h октаэдра увеличивается. Это приводит к уменьшению угла ϕ (табл. 2).

Кристал CGG отличается более мелкими катионами, но изменение заряда по позициям — разное: ионы K(3e), K(1a) имеют меньший заряд, а K(3f), K(2d) — больший (табл. 1). Ионные радиусы равны: Ca²⁺ — 1.12, Ge⁴⁺(6), Ge⁴⁺(4) — 0.53, 0.39 Å соответственно.

В структуре происходит уменьшение величин $r_{\rm cp}(3e)$ (2.59 \rightarrow 2.55 Å) из-за меньших размеров катиона K(3e) (1.16 \rightarrow 1.12) и высоты h октаэдра. По данным табл. 3, 4 относительные изменения радиальных и объемных параметров произошли в первом приближении только в тетраэдре 2d. Притяжение ионов O²⁻ ионом с бо́льшим зарядом Ge⁴⁺(2d) уменьшает длину связи O2–O2 (3.765 \rightarrow 3.738 Å) меньше, чем более удаленной от тетраэдра 2d связи O3–O3 (2.664 \rightarrow 2.590 Å), так, что величина (O2–O2)/(O3–O3) возрастает (табл. 6). В результате наклон ребра O3–O3 относительно высоты h октаэдра увеличивается, а угол φ уменьшается (табл. 2).

Кристалл LGS аналог кристалла CGG, по относительным величинам r_{cp} полиэдров (табл. 3). Значительно увеличиваются длины связей O2– O2, O3–O3, K(3e)–(O3–O3) из-за увеличения заряда и размера катиона K(3e) (O2–O2)/(O3–O3). Увеличение h не так велико, так как разница в размерах катионов K(1a) не так существенна, как для катионов K(3e). В результате происходит увеличение наклона ребра O3–O3 относительно h и уменьшение угла φ (табл. 2).

Кристалл SGG отличается максимальным ионным радиусом K(3e), 1.26 Å и меньшим ионным радиусом K(1a) (ионов Ge⁴⁺ в октаэдре 1a – более 85%). В результате значительно возрастают величины β_1 , β_2 , β_3 , а также (O2–O2)/(O3–O3). Величина h имеет минимальное значение в соответствии с минимальной величиной $r_{cp}(1a)$ (табл. 6). В результате в кристалле SGG величина угла φ достигает минимума в ряду кристаллов LGN, LGT, CGG, LGS, SGG.

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

Таблица 4. Величины $\beta_1 = r_{cp}(3e)/r_{cp}(1a), \beta_2 = r_{cp}(3e)/r_{cp}(3f), \beta_3 = r_{cp}(3e)/r_{cp}(2d)$ и аналогичные отношения объемов v_1, v_3, v_3 для кристаллов LGN, LGT, CGG, LGS, SGG

Кри- сталл	β_1	β_2	β_3	ν_1	v_2	ν ₃
LGN	1.3	1.4	1.4	2.8	9.4	9.4
LGT	1.3	1.4	1.4	2.8	9.4	9.4
CGG	1.3	1.4	1.5	2.9	9.4	10.2
LGS	1.3	1.4	1.5	2.8	9.3	11.0
SGG	1.4	1.5	1.5	3.3	10.3	11.2

Таблица 5. Параметры ячейки и разность $\Delta = (a/c) - [r_{cp}(3e)/r_{cp}(3f) + r_{cp}(3e)/r_{cp}(2d)]$ для кристаллов LGT, LGN, LGS, SGG, CGG

Параметры	Кристалл					
разность	LGN	LGT	CGG	LGS	SGG	
<i>a</i> , Å	8.232	8.234	8.069	8.162	8.278	
<i>c</i> , Å	5.129	5.124	4.974	5.095	5.040	
Δ	0.195	0.185	0.156	0.105	0.100	

Таблица 6. Длины связей K–O, O^{2–}–O^{2–}, расстояния L–катион–ребро K–(O3–O3), высота h октаэдра, отношение $\gamma = (O3-O3)/h$ для кристаллов LGN, LGT, CGG, LGS, SGG

Кристалл	LGN	LGT	CGG	LGS	SGG
<i>K</i> –O1(3 <i>e</i>), Å	2.620	2.619	2.591	2.643	2.637
<i>K</i> –O2'(3 <i>e</i>), Å	2.879	2.876	2.849	2.886	2.887
<i>K</i> -O2(3 <i>e</i>), Å	2.462	2.460	2.428	2.501	2.598
<i>K</i> –O3(3 <i>e</i>), Å	2.413	2.417	2.348	2.355	2.482
O2–O2, Å	3.766	3.765	3.738	3.903	4.047
O3–O3, Å	2.667	2.664	2.590	2.673	2.635
(O2-O2)/(O3-O3)	1.41	1.41	1.44	1.46	1.54
<i>L</i> (3 <i>e</i>), Å	2.015	2.019	1.957	1.941	2.103
<i>L</i> (1 <i>a</i>), Å	1.482	1.483	1.430	1.480	1.400
<i>h</i> , Å	2.447	2.439	2.354	2.414	2.325
γ	1.090	1.092	1.100	1.107	1.133

ЗАКЛЮЧЕНИЕ

Главные факторы, влияющие на величину рефракции кристаллов LGN, LGT, LGS, SGG, CGG – размеры полиэдров структуры, в первую очередь додекаэдра 3*e* и октаэдра 1*a*. Это обусловлено зависимостью поляризуемости α от ионных радиусов, а также большими величинами α для крупных высокозарядных ионов в додекаэдре 3e и высоким числом, связываемых с ними ионов O^{2-} . При этом ионы O^{2-} , как показано, дают основной вклад в величину рефракции.

Величины $R_{_{3KC\Pi}}$, $R_{_{H}}$ пропорциональны параметру элементарной ячейки *с*. Этот факт, скорее всего, объясняется тем, что размер ячейки по оси *с* в большой степени определяется наиболее длинными химическими связями катиона додекаэдра и ионов O²⁻. К этим связям относятся *K*-O1, *K*-O2, *K*-O2'. Поэтому основной вклад в средние размеры полиэдров, которые влияют на величину поляризуемости, поступает от этих связей. Пропорциональность величин углов φ и $R_{_{3KC\Pi}}$, $R_{_{H}}$ обусловлена тем, что эти величины пропорциональны поляризуемостям α катионов и ионов O²⁻ структуры. Отличие зависимости *R* и φ от структурных параметров связано с тем, что для угла φ главную роль играют относительные размеры полиэдров.

Величина угла φ в ряду кристаллов LGN, LGT, CGG, LGS, SGG уменьшается. Это уменьшение является результатом уравновешивания потенциалов притяжения катионов в додекаэдре 3*e* и октаэдре 1*a* и отталкивания ионов O^{2–} в вершинах ребра O3–O3, что сохраняет устойчивость структуры.

Угол ϕ как структурная характеристика имеет множество "корреляций" с другими структурными характеристиками. Отмечены корреляции величины угла с рядом структурных параметров, в том числе с отношением длин связей О2-O2(3e)/O3-O3(3e), применяемом при изучении пъезоэлектрических свойств кристаллов исследованного структурного типа. Величины угла также величинами коррелируют с отношения V(3e)/V(2d) объемов додекаэдра 3*е* и тетраэдра 2*d*. Показана корреляция зависимости величины угла от разности $(a/c) - [r_{cp}(3e)/r_{cp}(3f) - r_{cp}(3e)/r_{cp}(2d)],$ которая, по-видимому, соответствует отношению размеров октаэдра по осям а и с.

Из относительных величин средних радиусов, а также объемов полиэдров, следует стабильность размеров октаэдра 1*a* и тетраэдра 3*f*. Это означает, что изменения химического состава кристалла приводят к повороту этих полиэдров относительно их общего иона О3 и к изменению угла φ . Нестабильный тетраэдр 2*d* в большей степени влияет на длины связей. Так, по-видимому, происходят изменения в структуре, уравновешивающие потенциалы притяжения и отталкивания ионов при изменении химического состава.

Знак вращения плоскости поляризации особенно чувствителен к разности $\alpha_{\parallel} - \alpha_{\perp}$. Отметим, что именно эта разность очень чувствительна к изменениям углов между химическими связями при вращении октаэдра 1*a* и тетраэдра 3*f*.

Автор выражает благодарность А.П. Дудке за полезные замечания и помощь в работе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Калдыбаев К.А., Константинова А.Ф., Перекалина З.Б. Гиротропия одноосных поглощающих кристаллов. М.: ИСПИН, 2000. 294 с.
- 2. Бацанов С.С. Структурная химия. Факты и зависимости. М.: Диалог-МГУ, 2000. 292 с.
- 3. Бацанов С.С. Экспериментальные основы структурной химии. М.: Изд-во стандартов, 1986. 239 с.
- 4. *Молчанов В.Н., Максимов Б.А., Кондаков А.Ф. и др. //* Письма в ЖЭТФ. 2001. № 74. С. 244.
- 5. *Милль Б.В., Клименкова А.А., Максимов Б.А. и др. //* Кристаллография. 2007. Т. 52. № 5. С. 816.
- Максимов Б.А., Молчанов В.Н., Милль Б.В. и др. // Кристаллография. 2005. Т. 50. № 5. С. 813.
- Тюнина Е.А., Каурова И.А., Кузьмичева Г.М. и др. // Химия и технология неорганических материалов. 2010. Т. 5. № 1. С. 57.
- 8. Веремейчик Т.Ф., Симонов В.И. // Кристаллография. 2010. Т. 55. № 6. С. 1189.
- 9. *Кизель В.А., Бурков В.И.* Гиротропия кристаллов. М.: Наука, 1980. 304 с.
- Glazer A.M., Stadnicka K. // J. Appl. Cryst. 1986. V. 19. № 1. P. 108.
- 11. Macfarlane P.I., Han T.P.J., Henderson B., Kaminskii A.A. // Opt. Mater. 1994. V. 3. P. 15.
- 12. Дудка А.П., Милль Б.В., Писаревский Ю.В. // Кристаллография. 2009. Т. 54. № 4. С. 599.
- 13. Dudka A.P. // J. Appl. Cryst. 2010. V. 43. P. 1440.
- 14. Дудка А.П., Симонов В.И. // Кристаллография. 2011. Т. 56. № 6. С.
- 15. Веремейчик Т.Ф., Галиулин Р.В. // Неорган. материалы. 2002. Т.38. № 9. С. 1110.
- Mill B.V., Pisarevsky Yu.V. // Proc. 2000 IEEE/EIA Intern. Frequency Control Symp., Kansas City, Missouru, USA, P. 133.