__ СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.73+548.5

Посвящается памяти Н.В. Белова

СТРУКТУРА КРИСТАЛЛА ТРИГИДРАТА КАЛИЙ НАТРИЕВОГО ТАРТРАТА

© 2011 г. А. Е. Егорова, В. А. Иванов, Н. В. Сомов, В. Н. Портнов, Е. В. Чупрунов

Нижегородский государственный университет E-mail: ae-egorova@yandex.ru Поступила в редакцию 13.04.2010 г.

Из водного раствора получены кристаллы тригидрата калий натриевого тартрата (*dl*-KNaC₄H₄O₆ · \cdot 3H₂O). Описана огранка кристаллов и определена их атомная структура. Проведено сравнение с известными ранее структурами *dl*-KNaC₄H₄O₆ · 4H₂O и *l*-KNaC₄H₄O₆ · 4H₂O.

ВВЕДЕНИЕ

Кристаллы солей винной кислоты (тартраты) имеют широкое применение в науке, технике, медицине, пищевой промышленности и т.д. Продолжается изучение их механических, термодинамических, электрических, нелинейно-оптических и других физических свойств [1–3].

По-прежнему определенный интерес для исследований вызывают физические свойства кристаллов калий натриевого тартрата. В [4] проведены измерения оптических свойств сегнетовой соли (*l*-KNaC₄H₄O₆ · 4H₂O). Изучалось также релаксационное поведение доменной структуры этого кристалла при переполяризации постоянным электрическим полем в широком интервале температур [5]. В [6] сообщается о диэлектрических и пироэлектрических свойствах нанокомпозитов с включениями *l*-KNaC₄H₄O₆ · 4H₂O. Проводятся опыты по совершенствованию методики выращивания монокристаллов [7], изучается влияние примесей на скорости роста их граней [8, 9].

Тартраты могут иметь три различные пространственные конфигурации молекул: левую, правую и мезо. В соответствии с наличием и соотношением разных молекулярных конфигураций в растворах из них выпадают кристаллы *l*-тартратов, *d*-тартратов, *dl*-тартартов и мезо-тартратов. Кроме того, в процессе кристаллизации могут образовываться кристаллы, содержащие различное количество молекул кристаллизационной воды.

В связи с этим представляет интерес исследовать различные формы кристаллизации тартратов. В рамках данной работы были впервые получены и описаны монокристаллы тригидрата калий-натриевого тартрата *dl*-KNaC₄H₄O₆ · 3H₂O (I). Определена их кристаллическая структура.

МЕТОДЫ ПОЛУЧЕНИЯ ОБРАЗЦОВ

Для получения кристаллов I водный раствор dl-KNaC₄H₄O₆, насыщенный при 25°С, нагревался до температуры 90°С. Затем в течение 5 мин раствор охлаждался до 22°С. Приблизительно через сутки из раствора выпадали небольшие (с линейными размерами 1–5 мм) кристаллы I. Затем образовывались кристаллы dl-KNaC₄H₄O₆ · 4H₂O (II). Если в раствор dl-KNaC₄H₄O₆ поместить затравку I, то вероятность появления кристаллов тригидрата существенно повышается. Приблизительно через сутки вырастал кристалл I с линейными размерами около 1.5–2 см. Применение затравки позволяет получить более крупные кристаллы, пригодные для дальнейшего изучения их физических свойств.

Поскольку однозначное определение типа полученного кристалла по его огранке и другим внешним признакам было невозможно, идентификация образцов осуществлялась рентгеновскими методами.

МЕТОДЫ ИССЛЕДОВАНИЯ

Измерение кристалла I проводилось на образце с линейными размерами 2 см при помощи прикладного гониометра с оптическим отсчетом. При построении формы кристалла (рис. 1) использовалась минералогическая установка для моноклинной сингонии [10].

Образцы для рентгеноструктурного анализа выбирались среди выпавших мелких визуально наиболее совершенных кристаллов.

Параметры рентгеноструктурного эксперимента и характеристики уточнения структуры приведены в табл. 1, структурная информация депонирована в кембриджской базе структурных данных CCDC [11] (№ 771647).

Сингония, пр. гр., Z	Моноклинная, $P2_1/n$, 4
<i>a</i> , Å	9.2672(18)
b, Å	11.9147(13)
<i>c</i> , Å	9.5336(19)
α, град	90
β, град	111.58(2)
ү, град	90
<i>V</i> , Å ³	978.9(3)
D_x , г/см ³	1.793
Излучение, λ, Å	MoK_{α} , 0.71073
μ, м ⁻¹	0.617
Дифрактометр	Oxford Diffraction Gem- ini S, CCD
Тип сканирования	ω
Учет поглощения, T_{\min} , T_{\max}	0.6125, 0.8847 [17]
θ ^{тах} , град	28.28
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$ \begin{array}{l} -12 \le h \le 10 \\ -15 \le k \le 7 \\ -7 \le l \le 12 \end{array} $
Число отражений: измерен- ных/независимых (N_1) , $R_{int}/c I > 2\sigma(I) (N_2)$	4676/2428, 0.0303/1828
Метод уточнения	МНК по <i>F</i> ²
Число уточняемых параметров	170
<i>R</i> ₁ по <i>N</i> ₂	0.0323
wR_2 по N_1	0.0731
S	0.982
$\Delta \rho_{max} / \Delta \rho_{min}$, $\Im / Å^3$	0.336/-0.229
Программы	SHELXS [15] SHELXL [15] CrysAlisPro [16]

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структуры кристалла dl-KNaC₄H₄O₆ · 3H₂O

Структура I определена прямым методом. Положения атомов водорода выявлены в разностном синтезе Фурье, и их параметры уточнялись по смешанной схеме. На некоторые параметры атомов водорода были наложены ограничения.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате измерения кристалла I было установлено, что в его огранке присутствуют грани пинакоидов $\{010\},\{10\overline{7}\},\{10\overline{2}\},\{101\}$ и ромбической призмы $\{111\}$, а также $\{11\overline{1}\}$ и $\{157\}$ (рис. 1).

В табл. 2 приведены межатомные расстояния и валентные углы. На рис. 2 представлен фрагмент атомной структуры изученного кристалла.

Рис. 1. Форма кристалла dl-КNaC₄H₄O₆ · 3H₂O.

В литературе имеются данные о двух тетрагидратах калия-натрия: dl-KNaC₄H₄O₆· 4H₂O (II) [12, 13] и l-KNaC₄H₄O₆· 4H₂O (III) [14]. Кристалл II триклинный и описывается пр. гр. $P\overline{1}$, кристалл III описывается ромбической пр. гр. $P2_12_12$.

Полученный в данной работе кристалл I имеет трехмерную каркасную структуру, в которой попеременно чередуются слои ионов натрия и калия, связанные между собой кислотными остатками винной кислоты. Аналогичный трехмерный каркас наблюдается в структуре кристалла III.

Рис. 2. Фрагмент атомной структуры кристалла dl-KNaC₄H₄O₆ · 3H₂O.

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

Межатомные расстояния, Å			Валентные углы, град				
K1-O4	2.8129(9)	Na1–O9 ⁱ	2.4364(9)	O4-K1-O8	67.58(2)	O4-C1-C2 ⁱ	119.72(9)
K1-O9	2.8511(8)	Na1–O4	2.5059(9)	O9-K1-O8	141.36(2)	O7 ⁱⁱⁱ -C1-C2 ⁱ	114.85(8)
K1-O5	2.8596(9)	Na1–Na1 ⁱ	3.4101(11)	O5-K1-O8	76.26(3)	O3-C2-C1 ⁱ	111.25(7)
K1-O6	2.8680(10)	Na1-K1 ⁱ	3.8880(7)	O6-K1-O8	83.29(3)	O3-C2-C4	109.82(8)
K1-O1	2.9130(9)	Na1-K1 ⁱⁱⁱ	4.1858(7)	O1-K1-O8	161.32(2)	C1 ⁱ -C2-C4	108.04(8)
K1-O8	2.9353(9)	O3–C2	1.4136(12)	O4-K1-O3	69.95(2)	O6 ^{iv} -C3-O1	125.86(9)
K1–O3	2.9396(8)	O4–C1	1.2451(11)	O9-K1-O3	55.81(2)	O6 ^{iv} -C3-C4	115.29(9)
K1–O7	2.9487(10)	O6–C3 ^{iv}	1.2518(13)	O5-K1-O3	143.96(3)	O1-C3-C4	118.77(9)
K1–Na1 ⁱ	3.8880(7)	O7–C1 ⁱⁱ	1.2611(13)	O6-K1-O3	68.51(2)	O9-C4-C3	114.88(8)
K1–Na1	3.9501(11)	O9–C4	1.4231(12)	O1-K1-O3	69.59(3)	O9-C4-C2	107.65(7)
K1–Na1 ⁱⁱ	4.1858(7)	C1-C2 ⁱ	1.5354(14)	O8-K1-O3	117.83(3)	C3-C4-C2	108.27(9)
Na1–O3	2.3027(9)	C2–C4	1.5371(13)	O4-K1-O7	89.94(3)	O3-Na1-O2	96.61(4)
Na1–O2	2.3763(10)	C3–O6 ^{iv}	1.2518(13)	O9-K1-O7	69.39(2)	O3–Na1–O5 ⁱⁱⁱ	88.21(3)
Na1–O5 ⁱⁱⁱ	2.3809(10)	C3–C4	1.5340(14)	O5-K1-O7	81.44(3)	O2-Na1-O5 ⁱⁱⁱ	90.98(3)
Na1–O4 ⁱ	2.3832(9)	O1–C3	1.2584(13)	O6-K1-O7	161.92(2)	O3–Na1–O4 ⁱ	69.80(3)
Валентные углы, град			O1-K1-O7	89.20(3)	O2–Na1–O4 ⁱ	88.59(3)	
O4-K1-O9	75.57(2)	C1-O4-K1	142.54(6)	O8-K1-O7	98.66(3)	O5 ⁱⁱⁱ –Na1–O4 ⁱ	157.79(3)
O4-K1-O5	141.07(2)	Na1 ⁱ –O4–K1	96.53(3)	O3-K1-O7	124.51(2)	O3–Na1–O9 ⁱ	160.11(3)
O9-K1-O5	133.79(2)	Na1-O4-K1	95.75(3)	C3-O1-K1	114.44(6)	O2-Na1-O9 ⁱ	90.96(3)
O4-K1-O6	107.24(3)	Na1 ⁱⁱ –O5–K1	105.66(3)	C2–O3–Na1	119.16(5)	O5 ⁱⁱⁱ –Na1–O9 ⁱ	110.10(3)
O9-K1-O6	119.57(2)	C3 ^{iv} -O6-K1	117.93(7)	C2-O3-K1	119.33(5)	O4 ⁱ -Na1-O9 ⁱ	92.12(3)
O5-K1-O6	81.59(3)	C1 ⁱⁱ –O7–K1	118.93(7)	Na1—O3-K1	97.04(3)	O3—Na1—O4	86.53(3)
O4-K1-O1	129.71(2)	C4-O9-Na1 ⁱ	125.08(5)	C1–O4-Na1 ⁱ	117.06(7)	O2-Na1-O4	176.71(3)
O9-K1-O1	57.32(2)	C4-O9-K1	108.25(6)	C1–O4–Na1	100.98(6)	O5 ⁱⁱⁱ –Na1–O4	90.11(3)
O5-K1-O1	88.29(3)	Na1 ⁱ -O9-K1	94.34(3)	Na1 ⁱ -O4-Na1	88.42(3)	O4 ⁱ -Na1-O4	91.58(3)
06-K1-01	84.10(3)	O4-C1-O7 ⁱⁱⁱ	125.39(9)			O9 ⁱ -Na1-O4	85.75(3)

Таблица 2. Межатомные расстояния и валентные углы в кристалле dl-KNaC₄H₄O₆ · 3H₂O

Примечание. ⁱ -x, -y, -z; ⁱⁱ x + 1/2, -y + 1/2, z + 1/2; ⁱⁱⁱ x - 1/2, -y + 1/2, z - 1/2; ^{iv} -x + 1, -y, -z.

Кристалл II имеет иную структуру, построенную из двумерных слоев, параллельных плоскости (010). Слои электронейтральны и состоят из катионов натрия и калия, связанных между собой тартрат-анионами. Межслоевое пространство заполнено молекулами кристаллизационной воды.

В атомной структуре кристалла dl-KNaC₄H₄O₆ · 3H₂O ион калия координирован восьмью атомами кислорода, два из которых принадлежат молекулам воды (O5, O8), два – OH-группам (O3, O9) и четыре (O1, O4, O6, O7) – карбоксильным группам четырех тартрат-анионов. Расстояния калий-кислород лежат в интервале 2.8129(9)– 2.9487(10) Å (табл. 2). Координационный полиэдр иона натрия представляет собой искаженный октаэдр, образованный шестью атоми кислорода, два из которых принадлежат молекулам воды (O2, O5), два – OH-группам (O3, O9) и два – карбоксильным группам (два атома симметрично эквивалентных O4). Расстояния натрий–кислород ва-

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

рьируют в пределах от 2.3027(9) до 2.5059(9) Å (табл. 2). Углы между смежными атомами кислорода, образующими октаэдр, лежат в диапазоне $85.75(3)^{\circ}-110.11(3)^{\circ}$.

Согласно литературным данным, в кристаллах тетрагидратов **III** и **II** координационные числа ионов калия и натрия также составляют 8 и 6 соответственно.

Координация иона калия в кристалле II следующая: три молекулы воды, две OH-группы и три карбоксильные группы, что на одну карбоксильную группу меньше, чем в кристалле I. В кристалле III присутствуют две неэквивалентные позиции, заселенные ионами калия, кислородное окружение которых различается по составу. Один из ионов калия координирован четырьмя молекулами воды, двумя OH-группами и двумя карбоксильными группами. Второй ион калия также координирован двумя карбоксильными группами, но уже шестью молекулами воды; OH-групп в ко-

ординационном полиэдре этого иона нет. Межатомные расстояния калий–кислород в кристалле II находятся в диапазоне 2.73(1)–2.90(1) Å; в кристалле III аналогичные расстояния имеют существенно больший разброс: 2.80(5)–3.37(6) Å.

Кислородное окружение иона натрия в кристалле II представляет собой искаженный октаэдр, аналогичный по составу и близкий по геометрии к наблюдаемому в кристалле I. Координация иона натрия в кристалле III также представляет собой искаженный октаэдр, состоящий из трех молекул воды, одной группы ОН и двух карбоксильных групп. Расстояния натрий– кислород лежат в диапазоне 2.29(1)–2.44(1) Å в кристалле II и 2.33(6)–2.51(4) Å в кристалле III.

Взаимная ориентация карбоксилатных групп в рассматриваемых кристаллах также различается. В кристалле I торсионный угол O3–C2–C4–O9 равен 51.43(3)°. Соответствующий торсионный угол в кристалле II равен 61.65(4)°, а в кристалле III – 67(1)°. Для сравнения в кристаллах винной кислоты данный торсионный угол составляет приблизительно 59(1)°.

Найденные межатомные расстояния и валентные углы в кристалле I согласуются с приводимыми в литературе.

Таким образом, проведенное сравнение позволяет сделать вывод, что атомная структура кристалла dl-KNaC₄H₄O₆ · 3H₂O по таким параметрам, как расстояния катион-анион, особенности координации катионов, конформация тартратанионов имеет более близкое сходство с кристаллом dl-KNaC₄H₄O₆ · 4H₂O, чем с l-KNaC₄H₄O₆ · · 4H₂O.

Работа выполнена при финансовой поддержке Федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009–2013 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. Arora S.K., Kothari A., Amin B., Chudasama B. // Cryst. Res. Technol. 2007. V. 42. P. 589.
- Atul Shah, Patel I.B., Sunil Chaki // Icfai University J. Phys. 2009. V. 2. P. 37.
- 3. Suryanarayana K., Dharmaprakash S.M. // Mater. Chem. Phys. 2002. V. 77. P. 179.
- Kobayashi J., Uchino K., Asahi. T. // Phys. Rev. B. 1991. V. 43. P. 5706.
- 5. Голицына О.М., Дрождин С.Н., Никишина А.И. // ФТТ. 2007. Т. 49. С. 1862.
- 6. Рогазинская О.В., Миловидова С.Д., Сидоркин А.С. // Тез. докл. XVIII Всерос. конф. по физике сегнетоэлектриков, Санкт-Петербург, 9–14 июня 2008. С. 61.
- 7. *Курнацкий А.В., Коломиец А.Г.* // Вісник СНУ ім В. Даля. 2008. № 1(119). С. 99.
- Vorontsov D.A., Portnov V.N., Chuprunov E.V. // Crystallography Reports. 2005. V. 50. P. S82.
- 9. Круглова Т.О., Малкин С.А., Марычев М.О., Портнов В.Н. // Вестн. НГУ им. Н.И. Лобачевского. Сер. ФТТ. 2006. Вып. 1(9). С. 125.
- 10. Флинт Е.Е. Начала кристаллографии. М.: Высш. шк., 1961. 242 с.
- 11. *Bergerhoff G., Brown I.D.* // Crystallographic Databases / Ed. Allen F.H. et al. (Hrsg.) Chester: International Union of Crystallography, 1987.
- 12. Sadanaga R. // Acta Cryst. 1950. V. 3. P. 416.
- 13. Clark J.R.// Acta Cryst. 1964. 17. P. 459.
- Solans X., Gonzalez-Silgo C., Ruiz-Pérez C. // J. Solid State Chem. 1997. V. 131. P. 350.
- Sheldrick G.M. SHELX97. Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany, 1997.
- 16. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.46 (release 27-08). 2009.