КРИСТАЛЛОГРАФИЯ, 2011, том 56, № 6, с. 1094–1101

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736: 549.612

Посвящается памяти Н.В. Белова

ОСОБЕННОСТИ СТРУКТУРЫ И ИЗОМОРФНЫЕ ЗАМЕЩЕНИЯ В V-ИЗУМРУДЕ И V-БЕРИЛЛИЕВОМ ИНДИАЛИТЕ, СИНТЕЗИРОВАННЫХ В РАСТВОР-РАСПЛАВНОЙ СРЕДЕ

© 2011 г. М. А. Михайлов, И. В. Рождественская*, И. И. Баннова*

Институт геохимии СО РАН, Иркутск E-mail: mikmik@igc.irk.ru *Санкт-Петербургский государственный университет

Поступила в редакцию 11.06.2010 г.Проведено рентгеноструктурное исследование изоструктурных V-изумруда (V-Iz) и V-бериллиевого индиалита (V-BI) (общая формула $M_2^{VI} T 2_3^{IV} T 1_6^{IV} O_{18}$)¹, синтезированных в раствор-расплавной системе Al₂Be₃Si₆O₁₈–Mg,Ca/F,Cl с примесью V₂O₅. Показано, что в V-Iz изоморфное замещение части Al³⁺ в октаэдре на более крупные катионы V³⁺ и Mg²⁺, небольшой доли Be²⁺ на Al³⁺ в межкольцевом тетраэдре *T*2 и внедрение щелочных ионов в пустоты *R* привело к увеличению средних длин связей в *M*-позиции, а также к увеличению параметра *a* элементарной ячейки при небольшом увеличении параметра *c*. В V-BI гетеровалентное замещение части Mg²⁺ ионом V³⁺ при сложной схеме изоморфизма во всех структурных позициях сопровождается изовалентной схемой Mg²⁺ → Fe²⁺. Эти замещения вызвали некоторое уменьшение параметра *c* при сохранении его параметра *a*. Выявлено, что в V-BI тетраэдры *T*1 существенно ближе к идеальным, чем в V-Iz, тетраэдры *T*2 искажены в значительно меньшей, а *M*-октаэдры – в немного большей степени. Однако степень искаженности кольцевого тетраэдра *T*1 в V-BI достигла 0.9 отн. %. Это говорит о близкой склонности V-BI и Cr-BI к конгруэнтному плавлению, худшей, чем у "беспримесной"

В природных бериллах (идеальная формула Al₂Be₃Si₆O₁₈) ванадий обычно не определяется изза ничтожности его содержания в образцах различного генезиса [1]. Однако именно к наличию примеси этого химического элемента (полуколичественно: 0.1-3 мас.% [2]) за счет изоморфного замещения $Al^{3+} \rightarrow V^{3+}$ в октаэдрической позиции, а не присутствию хрома, было впервые отнесено появление изумрудной окраски у бериллов месторождения Салининха (Бразилия) [2, 3]. Специальное исследование природных изумрудов разного генезиса показало, что в Cr-изумрудах, как правило, присутствует 0.01-0.08 мас.% V₂O₃, а в изумрудах широко известного месторождения Музо (Колумбия) обнаружено от 0.30% V₂O₃ при 0.09% Cr₂O₃ [4] до 0.64% V₂O₅ при 0.37% Cr₂O₃ [5]. В бериллы, синтезированные в гидротермальных условиях (из фторидных и хлоридных растворов), удалось внедрить до 3.65 мас.% V_2O_3 в октаэдрическую позицию [6, 7], а посредством газотранспортных реакций при введении в исходную шихту реактива V₂O₃ – до 8.5 мас. % V₂O₃ [8]. В обоих случаях полученный берилл приобрел желто-зеленую или зеленую окраску лишь при изоморфном замещении $Al_{Vl}^{3+} \rightarrow V_{Vl}^{3+2}$. При введении в исходную композицию VO₂ или VO₂/V₂O₅ в газотранспортном процессе степень внедрения ванадия в берилл резко уменьшалась, цветовая насыщенность снижалась до слабо зеленой, а при использовании V₂O₅ образовывались бесцветные бериллы "...с содержанием V в кристалле 0.02 мас.%..." [8, с. 45]. В окислительных условиях раствор-расплавной системы $Al_2Be_3Si_6O_{18} (PbO-V_2O_5)$, насыщенной ванадием, методом электронного парамагнитного резонанса установлено, что в берилле "...концентрация ионов V не превышала 0.10–0.15 мас.%..." ([7], с. 100). При этом происходили замещения $Al^{3+} \rightarrow V^{2+}$,

¹ Общепринятое обозначение позиций в соединениях структурного типа берилла: *М* – октаэдр, *T*1 – кольцевой тетраэдр, *T*2 – межкольцевой тетраэдр, *R* – канал структуры; римские цифры (VI и IV) отвечают координационному числу катиона по кислороду (октаэдр и тетраэдр соответственно).

² Здесь и далее схемы изоморфизма написаны по принципу было \rightarrow стало.

 $Al^{3+} \rightarrow V^{3+}$ (в октаэдре) и $Si^{4+} \rightarrow V^{4+}$ (в тетраэдре T1). Однако берилл здесь и при использовании других V-растворителей (собственно V2O5 и $Li_2O-V_2O_5$) оказался бесцветным [7, 9], что указывает на мизерность доли иона V³⁺ в этих бериллах. С другой стороны, специальные исследования показали, что "...термическое разложение V2O5 при температурах 700-1000°С ...протекает по реакции $V_2O_5 \leftrightarrow 2VO_2 + 1/2O_2...$ " ([10], с. 126), что предполагает сосуществование в расплаве двух форм ванадия: V⁵⁺ и V⁴⁺. Здесь упоминается альтернативная по результату работа, где утверждается, что в расплаве V_2O_5 существуют равновесия $VO_3^- + O_2^{2-} \leftrightarrow VO_4^{3-}$, $V_2O_7^{4-} + O_2^{2-} \leftrightarrow 2VO_4^{3-}$, $V_2O_5 + O_2^{2-} \leftrightarrow 2VO_3^-$ (т.е. равновесия между комплексами ванадия, где он только пятивалентен). Таким образом, на фоне этих данных по равновесиям разных V-ансамблей в расплаве V₂O₅ структура берилла, судя по [7], представляется матрицей, чутко улавливающей малые количества ванадия, имеющего валентные состояния (V²⁺), (V³⁺) и (V⁴⁺), в расплаве, где основной формой является (V^{5+}) . В существенно восстановительных условиях раствор-расплавной системы $Al_2Be_3Si_6O_{18} - Mg, Ca/F, Cl, буферированной стен$ ками стальных тиглей, введение всего 3 мас.% V₂O₅ привело к образованию интенсивно окрашенных зеленых V-изумрудов (V-Iz), содержащих до 6.70 мас. % V2O3, и желто-зеленых V-бериллиевых индиалитов (V-BI, идеальная формула $BI - Mg_2BeAl_2Si_6O_{18}$), вовлекших в свой состав до 2.4 мас.% V₂O₃ [11]. Сопоставление этих концентраций со спектрами ЭПР [12] и поглощения [13] позволило показать, что практически весь введенный в систему ванадий вошел в V-Iz и V-BI по разным схемам изоморфизма (из-за различия катионов-хозяев): $Al_{VI}^{3+} \rightarrow V_{VI}^{3+}$, $Mg_{VI}^{2+} \rightarrow V_{VI}^{3+}$ (основная часть) и $Al_{VI}^{3+} \rightarrow V_{VI}^{2+}$, $Mg_{VI}^{2+} \rightarrow V_{VI}^{2+}$ (незначительная доля) соответственно. Поскольку в системе Al₂Be₃Si₆O₁₈-Mg,Ca/F,Cl без хромофорных добавок формируются практически бесцветные бериллы и BI [11], понятно, что цвета V-Iz и V-BI вызваны внедрением катиона V³⁺ в *М*-позиции этих соединений.

Завершая этот краткий обзор, важно подчеркнуть, что до сих пор в международной базе данных по неорганическим соединениям (ICSD) отсутствуют структурные данные о положении катионов ванадия в соединениях типа берилла, несмотря на более чем сорокалетнюю историю обнаружения этого элемента в бериллах.

Восполнение этого пробела составляет основную задачу настоящей работы. В процессе исследования уточнены кристаллические структуры V-Iz и V-BI, сформировавшиеся в солевой систе-

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

ме $Al_2Be_3Si_6O_{18}$ -Mg,Ca/F,Cl с добавкой V_2O_5 , установлены особенности распределения атомов по позициям этих структур, описаны схемы изоморфизма и определено влияние изоморфных замещений на геометрию структурных элементов. Последнее особенно важно как продолжение работы по обоснованию структурного критерия конгруэнтности плавления веществ структурного типа берилла, предложенного в предыдущем исследовании [14].

МЕТОДЫ ИССЛЕДОВАНИЯ И РЕЗУЛЬТАТЫ

Основные условия синтеза исследованных соединений в системе Al₂Be₃Si₆O₁₈-Mg,Ca/F,Cl достаточно подробно описаны в [11, 12]. В качестве прекурсоров в этой раствор-расплавной системе использовалась смесь природного берилла состава Al_{1.94}Fe_{0.07}Ti_{0.01}Be_{3.20}Si_{5.87}O₁₈Na_{0.04}Li_{0.07} с реактивами MgF₂ (осч), CaCl₂ ("ч", содержащим 0.1 мас.% Na и 0.05 мас. % К) и примесью 3 мас. % V₂O₅ (осч). Для выполнения поставленной цели важен отмеченный во введении тот факт, что буферирование выбранного раствора-расплава стальным тиглем приводит к восстановлению исходного V₂O₅ до валентного состояния (V³⁺). Таким образом, обеспечивалось значительное изоморфное вхождение ванадия в обе рассматриваемые изоструктурные матрицы. Для рентгеноструктурного анализа (РСА) отбирались монокристальные области индивидов обоих соединений, свободные от секториальности (характерной для полученных кристаллов), а для установления их химического состава — зерна этих фаз с той же цветовой насыщенностью, что и для РСА. Цветовое различие и пространственное разделение V-Iz и V-BI даже при сокристаллизации [11] (рис. 1) исключало взаимозагрязнение проб этих фаз при отборе.

Химический состав V-Iz и V-BI определялся методом рентгеноспектрального микроанализа (РСМА, микрозонд ЈХА-5а, аналитик В.Ф. Махотко, Институт геологии СО РАН, Якутск) в сочетании с обычными методами химического анализа: атомно-абсорбционной спектрофотометрии (Perkin-Elmer-403) и эмиссионной спектрофотометрии пламени (ДФС-12, аналитик В.К. Халтуева, Институт геохимии СО РАН, Иркутск). В результате было установлено, что V-Iz (обр. 8-12, полученный в Cr-содержащем тигле из нержавеющей стали 1Х18Н9ТЛ) имеет состав (mac.%): 66.21 SiO₂, 16.72 Al₂O₃, 12.78 BeO, 2.76 V₂O₃, 0.02 Ti₂O₃; 0.05Cr₂O₃, 1.64 MgO, 0.01 CaO, 0.11 Na₂O, 0.11 K₂O, Σ = 100.41%, тогда как V-BI (обр. М-39, синтезированный в тигле из стали-3) – 61.32 SiO₂, 17.62 Al₂O₃, 4.72 BeO, 11.75 MgO, 2.03 V₂O₃, 0.05 Cr₂O₃, 1.86 FeO, 0.05 TiO₂, 0.07 Na₂O, 0.03K₂O, $\Sigma = 99.50\%$. Этим результатам отвечают кристаллохимические фор-

Рис. 1. Внешний вид кристаллов V-Iz (*1*) и V-BI (*2*) в образцах (8–12) (а) и (М-39) (в) и схемы типов сростков этих фаз (б) и (г) соответственно в сечениях, параллельных оси 6-го порядка; *3* – область немонофазных поликристаллических сростков (*1*) и (*2*).

мулы V-Iz: $(AI_{1.58}V_{0.20}^{3+}Mg_{0.22})(Be_{2.79}AI_{0.20}\Box_{0.02}Si_{5.99})O_{18} \cdot Na_{0.02}K_{0.01}$ и V-BI (обр. М-39): $(Mg_{1.69}V_{0.16}Fe_{0.15})(Be_{1.09}AI_{2.00}Si_{5.91})O_{18} \cdot Na_{0.01}$. Особенности проведения РСМА и пересчета этих данных на кристаллохимические формулы изложены ранее [15]. При расчетах использовались концентрации бериллия и микропримесей, полученные методом атомно-абсорбционной спектрофотометрии. Форма присутствия ванадия (валентность, структурная позиция) в обеих матрицах принята в соответствии с данными [12].

Массивы рефлексов для уточнения кристаллических структур V-Iz и V-BI получены на автоматическом дифрактометре Nicolett R3 (Мо K_{α} -излучение, ω -сканирование, $(\sin\theta/\lambda)_{max} = 0.995)$. Структуры уточнены по наборам независимых рефлексов с $F_{obs} > 4.0\sigma_{\rm F}$ с помощью комплекса программ CSD [16]. Уточнение рассеивающих способностей позиций проводилось следующим образом. Сначала в позициях М и Т2 задавались катионы Al³⁺ и Be²⁺; Mg²⁺ и Be²⁺ для берилла и бериллиевого индиалита соответственно. Рассеивающая способность этих позиций уточнялась по массиву рефлексов с $\sin \theta/\lambda < 0.5$. Тип атомов в каждой позиции корректировался по результатам уточнения и данным химического анализа. Если в уточняемой позиции предполагались два типа атомов, то программа позволяла уточнять их количество напрямую. Если число типов атомов в позиции больше двух, то использовались смешанные кривые, и количество каждого из сортов атомов в этой позиции выбиралось по наименьшему значению *R*-фактора. После уточнения координат атомов, рассеивающих способностей и параметров смещения в анизотропном приближении использовалась программа DIFABS [17] для учета поглощения по форме образца. Затем усреднялись симметрично связанные рефлексы, и на последнем этапе уточнение всех параметров проводилось по усредненному массиву. После завершения уточнения рассчитывался разностный синтез Фурье, по которому оценивалась частота синтеза уточненной структуры. Заселенности позиций рассчитывались с учетом их рассеивающих способностей, длин связей в полиэдрах, химического состава и электронейтральности кристаллохимической формулы. Параметры рентгеновского эксперимента и результаты расчетов приведены в табл. 1, координаты атомов, заселенности позиций, параметры смещения — в табл. 2, межатомные расстояния и углы — в табл. 3, длины ребер полиэдров и их отношения — в табл. 4, кристаллохимические формулы — в табл. 5.

Видно, что кристаллохимические формулы (табл. 5), полученные из данных PCA для образцов V-Iz и V-BI (табл. 2) и рассчитанные на основе PCMA и химических анализов, близки между собой. Некоторая разница коэффициентов в формулах, полученных разными методами, — следствие различия этих методов по степени локальности и специфике отбора проб для анализа.

ОБСУЖДЕНИЕ

Изоморфные замещения. Структурные данные, полученные для исследованных образцов V-Iz и V-BI, — величины параметров элементарных ячеек *a* и *c* (табл. 1, 5) и заселенности октаэдрических *M*-позиций (табл. 2), а также их кристаллохимические формулы, рассчитанные по PCMA и результатам химического анализа, вполне согласуются с предложенными ранее [12, 13] основными схемами изоморфного внедрения ванадия (1) и (2) в структуру типа берилла в системе $Al_2Be_3Si_6O_{18}$ -Mg,Ca/F,Cl:

$$Al_{VI}^{3+} \rightarrow V_{VI}^{3+} \text{ (B V-Iz)}, \tag{1}$$

$$Mg_{VI}^{2+} \to V_{VI}^{3+}$$
 (BV-BI). (2)

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

Соединение	V-Iz	V-BI		
Химическая формула	$(Al_{1.64}V_{0.16}Mg_{0.20})(Be_{2.82}Al_{0.18})$	$(Mg_{1.76}V_{0.14}^{3+}F_{0.10}^{2+})(Be_{1.06}Al_{1.94})$		
	$Si_{6.00}O_{18} \cdot Na_{0.03}K_{0.01}$	$(Al_{0.20}Si_{5.80})O_{18}\cdot Na_{0.08}K_{0.04}$		
Молекулярный вес	1091.5	1149.3		
Сингония, пр.гр., Z	Гексагональная, Р6/тсс, 2			
<i>a,</i> Å	9.241(2)	9.594(2)		
<i>c</i> , Å	9.198(1)	9.279(1)		
<i>V</i> , Å ³	680.2(3)	739.7(4)		
D_{x} , г/см ³	2.66	2.58		
Излучение; λ, Å	Мо K_{α} -излучение; 0.71069			
μ, см ⁻¹	10.15	10.45		
<i>Т</i> , К	293			
Размер образца, мм ³	$0.4 \times 0.3 \times 0.3 \qquad \qquad 0.4 \times 0.2 \times 0.2$			
Дифрактометр	Nicolett R3			
Тип сканирования	ω/2θ			
Учет поглощения	по программе DIFABS [17]			
θ _{max} , град	45	45		
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$0 \le h \le 15, 0 \le k \le 15, -18 \le l \le 18$	$0 \le h \le 16, 0 \le k \le 16, -18 \le l \le 18$		
Число отражений: измеренных/не- зависимых (N_1), R_{int} /с $I > 2\sigma(I)$ (N_2)	- 4195/821, 0.016/821 4567/925, 0.014/			
Метод уточнения	МНК по <i>F</i>			
Весовая схема	$1/[\sigma_F^2 + 0.0004 F_{abs}^2]$			
Число параметров	29 33			
Учет экстинкции, коэффициент	не уточнялся			
<i>wR</i> 2 по <i>N</i> ₂	0.031	0.029		
<i>R</i> / по <i>N</i> ₂	0.028	0.024		
S	1.45	1.42		
$\Delta \rho_{min} / \Delta \rho_{max}$	-0.31/0.53	-0.30/0.51		
Программа	ICSD [18]			

Таблица 1. Характеристика кристаллов, рентгеновского эксперимента и результатов уточнения структур

Кроме того, легко выявляются сопутствующие изоморфные замещения.

Так, в V-Iz состава ($Al_{1.64}V_{0.16}Mg_{0.20}$) ($Be_{2.82}Al_{0.18}$)Si_{6.00}O₁₈ · Na_{0.03}K_{0.01} установлено замещение 18% катиона-хозяина октаэдров Al_{VI}^{3+} (r = 0.53 Å) на более крупные V_{VI}^{3+} (r = 0.64 Å; в 8% позиций) и Mg_{VI}^{2+} (r = 0.72 Å). Гетеровалентное замещение $Al_{VI}^{3+} \rightarrow Mg_{VI}^{2+}$ (в 10% октаэдров) сопровождается изменением составов *T*2 и *R*. В итоге реализовались изоморфные замещения, которые (при некотором округлении коэффициентов в формуле) сводятся к простым схемам:

$$Al_{VI}^{3+} + Be_{IV}^{2+} \rightarrow Mg_{VI}^{2+} + Al_{IV}^{3+},$$
 (3)

$$Al_{VI}^{3+} \to Mg_{VI}^{2+} + (Na, K)_{R}^{+}.$$
 (4)

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

Судя по объему замещений, основную роль катионов-компенсаторов недостающего заряда в *M*-октаэдрах (из-за замещения $Al_{VI}^{3+} \rightarrow Mg_{VI}^{2+}$) здесь играют не однозарядные Na_R^+ и K_R^+ , а катионы Al_{IV}^{3+} , располагающиеся в том же *M*-*T*-слое структуры. В совокупности все эти изменения вполне ожидаемо вызвали в V-Iz рост параметра *a* до 9.241 Å (по сравнению с 9.212 Å в берилле идеального состава [18]), увеличение длины связи *M*-O с 1.903 до 1.918 Å при практически неизменных межатомных расстояниях *T*1–O и *T*2–O и небольшой рост параметра *c* с 9.187 до 9.198 Å (табл. 5).

Следует отметить, что достигнутый в V-Iz уровень внедрения V^{3+} по схеме (1) далеко не предельный. Так, среди кристаллов V-изумрудов, сформировавшихся в опыте 8–12, ранее [20] был обнаружен зональный кристалл, заключитель-

Соедине- ние	Позиция	x/a	y/b	<i>z</i> / <i>c</i>	q	Заселенность**	$U^*_{iso/eq} imes 100 \mathrm{\AA}^2$	
V-Iz	М	1/3	2/3	1/4	4	0.82Al + 0.1Mg + 0.08V	0.43(1)	
V-BI	М	1/3	2/3	1/4	4	0.88Mg + 0.07V + 0.05Fe	1.33(1)	
V-Iz	T1	0.38662(3)	0.11596(3)	0	12	1.0Si	0.36(1)	
V-BI	T1	0.37438(3)	0.10656(3)	0	12	0.97Si + 0.03Al	0.71(1)	
V-Iz	<i>T</i> 2	1/2	0	1/4	6	0.94Be + 0.06Al	0.71(3)	
V-BI	<i>T</i> 2	1/2	0	1/4	6	0.65Al + 0.35Be	0.75(1)	
V-Iz	01	0.3095(1)	0.2365(1)	0	12	1.	1.01(2)	
V-BI	01	0.3039(1)	0.22733(9)	0	12	1.	1.51(2)	
V-Iz	O2	0.49767(7)	0.14511(7)	0.14506(6)	24	1.	0.71(1)	
V-BI	O2	0.48361(7)	0.13594(7)	0.14278(6)	24	1.	1.13(1)	
V-Iz	R	0	0	0.0	2	0.03Na	6.6(33)	
V-BI	R	0	0	0.0		0.08Na	2.5(3)	
V-Iz	R	0	0	1/4	2	0.01K	5.6(52)	
V-BI	R	0	0	1/4		0.03K	4.3(6)	

Таблица 2. Координаты, кратности (q), заселенности позиций, параметры смещения в изученных структурах

* $U_{eq} = 1/3[U_{11}a^{*2}a^2 + ... + 2U_{23}b^*c^*bc\cos\alpha].$

**Погрешность не хуже 0.01.

Таблица 3. Длины связей катион-кислород (Å) и углы (град) в изученных структурах

Структурная характеристика	V-Iz	V-BI
<i>M</i> -O2 × 6	1.918(2)	2.082(2)
$\angle 02 - M - O2 \times 6$	96.90(7)	99.06(7)
$\angle 02 - M - O2 \times 3$	90.33(7)	86.14(7)
$\angle 02 - M - O2 \times 3$	76.51(6)	76.05(6)
среднее	90.16	90.08
<i>T</i> 1–O1	1.594(2)	1.607(2)
-01	1.597(2)	1.612(2)
$-O2 \times 2$	1.622(2)	1.624(2)
среднее	1.609	1.617
∠01- <i>T</i> 1-01	108.44(9)	109.3(1)
$\angle O1 - T1 - O2 \times 2$	108.26(9)	109.1(1)
$\angle O1 - T1 - O2 \times 2$	110.54(9)	110.3(1)
∠02- <i>T</i> 1-02	110.73(9)	109.1(1)
среднее	109.46	109.46
$\angle T1-O1-T1$	168.4(1)	169.3(1)
$T2-O2 \times 4$	1.661(2)	1.709(2)
$\angle O2 - T2 - O2 \times 2$	91.3(1)	97.3(1)
$\angle O2 - T2 - O2 \times 2$	109.0(1)	108.8(1)
$\angle O2 - T2 - O2 \times 2$	130.8(1)	123.5(1)
среднее	110.3	109.8
$Na-O1 \times 6$	2.300(2)	2.626(2)
K-O1 × 12	3.463(2)	3.504(2)

ным слоям которого отвечала формула $(Al_{1.28}V_{0.49}^{3+}Mg_{0.20}Cr_{0.03}^{3+})$ ($Be_{2.77}Al_{0.20}\Box_{0.02}$ $Si_{6.01}$) O_{18} · $Na_{0.02}K_{0.01}$. Этот состав рассчитан по РСМА, дополненному химическим анализом (мас.%): 65.68 SiO₂, 13.68 Al₂O₃, 12.50 BeO, 6.67 V₂O₃, 0.02 Ti₂O₃, 0.43 Cr₂O₃, 1.43 MgO, 0.02 CaO, 0.11 Na₂O, 0.11 K₂O, $\Sigma = 100.65\%$). Таким образом, продемонстрировано достижение изоморфного замещения Al_{VI}^{3+} только катионами V³⁺ почти на 25%. Отметим, что в этом образце кроме небольшого числа катионов, объединенных схемой (4), существенно большее количество катионов оказалось связано схемами (5) и (6):

$$17\text{Al}_{\text{VI}} + 23\text{Be}_{\text{IV}} \rightarrow 17\text{Mg}_{\text{VI}} + 20\text{Al}_{\text{IV}} + \text{Si}, \qquad (5)$$

$$Al_{VI}^{3+} \to Cr_{VI}^{3+}.$$
 (6)

Отсюда, в частности, видно, что Cr (элемент, неконтролируемо поступивший в среду из Cr-содержащих тиглей — нержавеющей стали) вовлечен матрицей V-Iz при своем росте лишь в незначительном количестве (всего 0.03 форм. ед.), несмотря на насыщенность среды синтеза хромом. Факт примечателен, поскольку при отсутствии ванадия в шихте Cr-изумруд встраивает в свою структуру на 1.5 порядка больше хрома (0.52 форм. ед., [14]). Это указывает на значительно бо́льшую предрасположенность октаэдрической *M*-позиции берилла к вовлечению V³⁺, чем Cr³⁺, при совместном присутствии этих катионов в расплаве.

В кристалле V-BI (обр. М-39), исследованном РСА, замещение части видообразующего катиона

Таблица 4. Отношения длин ребер полиэдров в изученных структурах

V-Iz		V-BI			
Тетраэдр <i>Т</i> 1		Тетраэдр <i>Т</i> 1			
ребро	длина, Å	ребро	длина, Å		
01–01	2.589(2)	01–01	2.626(2)		
01–02	2.608(2)	O1–O2	2.648(2)		
01–02	2.643(2)	O1–O2	2.636(2)		
O2–O2	2.668(2)	O2–O2	2.650(2)		
(O-O) _{max} /(O-	$-O)_{min} = 1.030$	$(O-O)_{max}/(O-O)_{min} = 1.009$			
Тетраэдр Т2		Тетраэдр <i>Т</i> 2			
02–02	2.375(2)	02–02	2.565(2)		
O2–O2	2.703(2)	O2–O2	2.779(2)		
O2–O2	3.020(2)	O2–O2	3.010(2)		
(O-O) _{max} /(O-	$-O)_{\min} = 1.271$	$(O-O)_{max}/(O-O)_{min} = 1.173$			
Октаэдр М		Октаэдр М			
02–02	2.375(2)	02–02	2.565(2)		
02–02	2.720(2)	02–02	2.843(2)		
O2–O2	2.871(2)	O2–O2	3.168(2)		
$(O-O)_{max}/(O-O)_{min} = 1.209$		$(O-O)_{max}/(O-O)_{min} = 1.235$			

 Mg^{2+} в октаэдре на более мелкий V_{VI}^{3+} компенсировалось вхождением более крупного (чем катион-хозяин) Fe_{VI}^{2+} (r = 0.77 Å). Присутствие этого катиона железа — следствие неконтролируемого поступления Fe^0 в среду из стальных тиглей и частичного преобразования $Fe^0 \rightarrow Fe^{2+}$. Изовалентное замещение 5% магния в V-BI по схеме (7) ($Mg_{VI}^{2+} \rightarrow Fe_{VI}^{2+}$) легко выявляется по заселенности *M*-позиции (табл. 2) и по кристаллохимической формуле этого образца (табл. 5). Характер основной схемы изоморфизма (8), заданный гетеровалентным вытеснением 7% Mg_{VI}^{2+} катионом V_{VI}^{3+} , вызвал значительные (тоже гетеровалентные, компенсирующие избыточный заряд в октаэдрах) замещения во всех остальных структурных позициях V-BI с изменением и расширением перечня ее участников (по сравнению с V-Iz):

$$Mg_{VI} + Si_{IV}^{T1} \rightarrow V_{VI} + Al_{IV}^{T1}, \qquad (8)$$

$$\operatorname{Si}_{\mathrm{IV}} \to \operatorname{Al}_{\mathrm{IV}}^{T1} + (\operatorname{Na}, \operatorname{K})_{R},$$
 (9)

$$Al_{IV}^{T2} \rightarrow Be_{IV}^{T2} + (Na, K)_R.$$
(10)

Изоморфные замещения практически не изменили параметр *a* и величину *M*–O, длина связи *T*2– O незначительно уменьшилась (табл. 5) – из-за замещения 3% Al_{IV}^{3+} (r = 0.39 Å) на Be_{IV}^{2+} (r = 0.27 Å). Отметим, что при этом катион Na⁺ в V-BI располагается на оси 6-го порядка на уровне кольца Si₆O₁₈ (z/c = 0), тогда как катион K⁺ – в плоскости сетки *T*2–*M* (z/c = 1/4), как в V-Iz (табл. 2), т.е. так же, как в Cr-Iz и Cr-BI [14].

Следует подчеркнуть, что структура BI может проявить и бо́льшую емкость на V, чем в образце М-39. Это было обнаружено при изучении закономерностей проявления эффекта грани в соединениях со структурой берилла в рассматриваемой раствор-расплавной системе [21]. В слитке 8-12 был найден сокристаллизующийся с V-Iz зональный V-BI (рис. 1а, 1б), заключительные слои которого в секторе роста пинакоида имели состав (мас.%): 61.75 SiO₂, 17.52 Al₂O₃, 11.45 MgO, 4.72 BeO, 2.74 V₂O₃, 0.05 TiO₂, 0.05 Cr₂O₃, 2.03 FeO, 0.07 Na₂O, 0.03 K₂O, $\Sigma = 100.41\%$, other чающий формуле $(Mg_{1.63}V_{0.21}^{3+}Fe_{0.16}^{2+})(Be_{1.09}\ Al_{1.91})$ $(Al_{0.07}\Box_{0.02}Si_{5.91})O_{18}\cdot Na_{0.01}$. Таким образом, в V-BI (обр. 8-12) было достигнуто изоморфное замещение $Mg_{\rm VI}^{2+}$ катионами V^3+ на 10.5%, т.е. в 1.5 раза выше, чем в образце М-39. Как следует из формулы, в V-BI (обр. 8-12) существенно изменилось соотношение между теми же элементами изоморфных замещений, что и в V-BI (обр. М-39). Анализ кристаллохимической формулы позволяет предположить, что кроме схем (7) и (8) реализовалась сложная схема (11):

Таблица 5. Состав, параметры элементарной ячейки (Å) и средние длины связи (Å) в полиэдрах разновидностей берилла и бериллиевого индиалита

Соединение	Формула	а	С	М-О	<i>T</i> 1–O	Т2-0
V-Iz [настоя- щая работа]	$(Al_{1.64}V_{0.16}Mg_{0.20})(Be_{2.82}Al_{0.18})Si_{6.00}O_{18}\cdot Na_{0.03}K_{0.01}$	9.241	9.198	1.918	1.609	1.661
V-BI [насто- ящая работа]	$(Mg_{1.76}V_{0.14}^{3+}F_{0.10}^{2+})(Be_{1.06}Al_{1.94})(Al_{0.20}Si_{5.80})O_{18} \cdot Na_{0.08}K_{0.04}$	9.594	9.279	2.082	1.617	1.709
Берилл [18]	$Al_2Be_3Si_6O_{18}$	9.212	9.187	1.903	1.607	1.660
БИ [19]	$(Mg_2)(Be_{0.98}Al_{2.02})(Si_{5.71}Al_{0.29})O_{18}$	9.591	9.295	2.082	1.625	1.714
Cr-Iz [14]	$(Al_{1.18}Cr_{0.52}Mg_{0.30})(Be_{2.70}Al_{0.30})Si_{6.00}O_{18}$	9.280	9.199	1.938	1.608	1.665
Cr-BI [14]	$(Mg_{1.68}Cr_{0.15}Ti_{0.01}Al_{0.14})(Be_{1.04}Al_{1.96})(Si_{5.64}Al_{0.36})O_{18} \cdot Na_{0.09}K_{0.05}$	9.606	9.279	2.082	1.619	1.711

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

Рис. 2. Фрагменты структуры типа берилла: а – проекция структуры на плоскость (0001), б – проекция структуры на плоскость, параллельную оси 6-го порядка [14].

$$14 \operatorname{Mg}_{VI} + 9 \operatorname{Al}_{IV}^{T2} + 2 \operatorname{Si}_{IV} \rightarrow$$

$$\rightarrow 14 \operatorname{V}_{VI} + 9 \operatorname{Be}_{IV}^{T2} + 2 \Box^{T1} + \operatorname{Na}_{R}^{3}.$$
(11)

Деформации кристаллической структуры. Известно, что плоская крупноячеистая М-Т-сетка в соединениях структурного типа берилла состоит из чередующихся М-октаэдров и Т2-тетраэдров, каждый из которых жестко сопрягается с соседними полиэдрами по двум противоположным ребрам (рис. 2). Углы О2-М-О2, опирающиеся на ребра О2–О2, общие для *М*- и *Т*2-полиэдров, не меняются, тогда как шесть углов, лежащие в плоскости (0001) этого соединения, увеличиваются (табл. 3). При этом горизонтальные ребра октаэдра *М* и тетраэдра *Т*2 растянуты в плоскости (0001), а наклонные - сжаты и имеют либо наименьшие (общие для М- и Т2-полиэдров), либо промежуточные значения (табл. 4). Это приводит к увеличению параметра а бериллов, но почти не сказывается на параметре с (табл. 5). Степень искаженности полиэдров оценивается по отношению длин их ребер, наиболее различающихся по размерам, $\delta = (O-O)_{max}/(O-O)_{min}$ (табл. 4).

Берилл идеального состава Al₂Be₃Si₆O₁₈ [18] характеризуется значительной искаженностью сопрягающихся по ребру *M*- и *T*2-полиэдров – δ = = 1.204 и 1.28 (т.е. 20 и 28% соответственно) при относительно слабой деформированности кольцевых тетраэдров *T*1: δ_{T1} = 1.027 (~2.7%) [14].

В V-Iz изоморфные замещения привели к незначительному (по сравнению с идеальным бериллом) увеличению искажения *М*-полиэдра $\delta_M = 1.209 (\sim 21\%)$ при слабом уменьшении значения показателя $\delta_{T2} (1.271\sim 27\%)$ и малом влиянии на отклонение от идеальности *T*1: $\delta_{T1} =$ = 1.030~3.0%.

Как подчеркивалось ранее [14], структурной особенностью синтезированного «беспримесно-

го» расплавного ВІ и раствор-расплавного Cr-BI является почти идеальная форма кольцевого тетраэдра *T*1 ($\delta_{T1} = 0.6$ и 0.8% соответственно) при значительно меньшей (по сравнению с бериллом) искаженности тетраэдра *T*2 ($\delta_{T2} = 17\%$ для обеих разновидностей) и несколько повышенной деформации октаэдра ($\delta_M \sim 24$ и 23% соответственно). Судя по отношениям длин ребер полиэдров в V-BI (табл. 4), рассматриваемые показатели: $\delta_{T1} = 0.9$, $\delta_{T2} = 17$, $\delta_M = 23.5\%$ – близки к этим величинам в Cr-BI.

Поскольку искаженность кольцевого тетраэдра предложена как структурная основа для суждения о склонности соединения структурного типа берилла к конгруэнтному плавлению [14], можно сделать вывод, что V-BI примерно в той же степени склонен к такому типу плавления, что и Cr-BI.

ЗАКЛЮЧЕНИЕ

Впервые с помощью рентгеноструктурного исследования определены основные структурные характеристики V-изумруда и V-бериллиевого индиалита, сформировавшихся в раствор-расплавной системе Al₂Be₃Si₆O₁₈-Mg,Ca/F,Cl в существенно восстановительных условиях при буферирующем влиянии стальных тиглей. На основе данных о заселенности структурных позиций выявлено, что если изоморфное внедрение ванадия в берилл происходит по простой схеме $Al_{VI}^{3+} \rightarrow V_{VI}^{3+}$, то Mg_{VI}^{2+} , замещая часть катиона-хозяина Al³⁺, вынуждает структуру к замещению части ${\rm Be}^{2+}$ на ${\rm Al}_{\rm IV}^{3+}$ в межкольцевом тетраэдре T2 и к вовлечению щелочных ионов в пустоты структуры по схемам изоморфизма $Al_{VI}^{3+} + Be_{IV}^{2+} \rightarrow Mg_{VI}^{2+} +$ $+ Al_{1V}^{3+}$ и $Al_{VI}^{3+} \rightarrow Mg_{VI}^{2+} + (Na, K)_{R}^{3}$. Установлено, что эти замещения в совокупности приводят к увеличению средних длин связей в позиции М и в основном к увеличению параметра а при небольшом росте параметра с берилла.

В V-BI реализуются другие схемы изоморфизма. Так, наряду с изовалентным замещением $Mg_{VI}^{2+} \rightarrow Fe_{VI}^{2+}$ осуществляется схема, вызванная гетеровалентным замещением двухвалентного магния на трехвалентный ванадий: $Mg_{VI} + Si_{IV}^{T1} \rightarrow$ $\rightarrow V_{VI} + Al_{IV}^{T1}$, а также $Si_{IV} \rightarrow Al_{IV}^{T1} + (Na, K)_R$ и $Al_{IV}^{T2} \rightarrow Be_{IV}^{T2} + (Na, K)_R$ или (при бо́льшем обогащении ванадием) $Mg_{VI} + Si_{IV}^{T1} \rightarrow V_{VI} + Al_{IV}^{T1}$ и $14Mg_{VI} + 2Al_{IV}^{T2} + 2Si_{IV} \rightarrow 14V_{VI} + 9Be_{IV} + 2\Box^{T1} +$ $+ Na_R$. Изоморфные замещения практически не

³ Некоторое неравенство зарядов в разных частях схемы – следствие погрешности анализа.

изменили параметр *а* и величину *М*–О в V–BI, длина связи *Т*2–О уменьшилась незначительно.

Установлено, что в V–BI кольцевые тетраэдры *T*1 в существенно большей степени приближаются к идеальным, а остальные полиэдры искажены: *T*2 – в меньшей, *M* – в большей степени, чем в V-изумрудах. Из сравнения величин искажения T1 V–BI ($\delta_{T1} = (O-O)_{max}^{T1} / (O-O)_{min}^{T1} = 0.9$ отн.%) и Cr-BI ($\delta_{T1} = 0.8$ отн.%) сделан вывод: V-BI примерно в той же степени склонен к конгруэнтному плавлению, что и Cr-BI.

СПИСОК ЛИТЕРАТУРЫ

- Косалс Д.А., Рылов Г.М. // Минералогия и геохимия рудных месторождений Сибири / Под ред. Соболева В.С. Новосибирск: Изд-во ин-та геологии и геофизики СО АН СССР, 1977. С. 134.
- 2. Wood D.L., Nassau K. // Am. Mineral. 1968. V. 53. № 5–6. P. 777.
- 3. *Платонов А.Н.* Природа окраски минералов. Киев: Наук. думка, 1976. 264 с.
- 4. Гавриленко Е.В., Дашевская Д.М. // Зап. Всесоюз. минерал. о-ва. 1998. № 1. С. 47.
- Aurisicchio C., Fioravanti G., Grubessi O., Zanazzi P.F. // Am. Mineral. 1988. V. 73. P. 826.
- Лебедев А.С., Кляхин В.А., Солнцев В.П. // Материалы по генетической и экспериментальной минералогии. Рост и свойства кристаллов / Под ред. Соболева Н.В. Новосибирск: Наука. Сиб. отд-ние, 1988. С. 75.
- Солнцев В.П. // Тр. ин-та геологии и геофизики СО АН СССР / Под ред. Годовикова А.А. Новосибирск: Наука. Сиб. отд-ние, 1981. Вып. 499. С. 92.

- Родионов А.Я., Солнцев В.П., Вейс Н.С. // Минералообразование в эндогенных процессах / Под ред. Соболева Н.В. Новосибирск: Наука. Сиб. отд-ние, 1987. С. 41.
- Linares R.C., Ballman A.A., Van Uitert L.G. // J. Appl. Phys. 1970. V. 33. P. 3209.
- 10. *Букин Г.В.* // Рост кристаллов. М.: Наука, 1991. Т. 19. С. 121.
- Mikhailov M.A. // J. Crystal Growth. 2005. V. 275. № 1–2. P. 867.
- 12. Солнцев В.П., Демина Т.В., Михайлов М.А. // Рентгенография и молекулярная спектроскопия минералов / Под ред. Архипенко Д.К. Новосибирск: Наука. Сиб. отд-ние, 1985. С. 121.
- Таран М.Н., Платонов А.Н., Михайлов М.А., Демина Т.В. // Конституция и свойства минералов / Под ред Поваренных А.С. Киев: Наук. думка, 1979. Вып. 13. С. 41.
- 14. *Михайлов М.А., Рождественская И.В., Баннова И.И. и др.* // Кристаллография. 2009. Т. 54. № 2. С. 231.
- 15. Демина Т.В., Михайлов М.А. // Зап. Всерос. минерал. о-ва. 2000. № 2. С. 97.
- Akselrud L.G., Grin Yu.N., Pecharski V.K. et al. Collect. Abstr. XII Europ. Cryst. Meeting. Moscow, 1989. V. 3. P. 155.
- 17. Wolker N., Stuart D. // Acta Cryst. 1983. V. 39. P. 158.
- 18. ICSD. Collection code: 70106.
- Смолин Ю.И., Шепелев Ю.Ф., Михайлов М.А. и др. // Кристаллография. 1999. Т. 44. № 3. С. 454.
- Михайлов М.А. Кристаллизация и кристаллохимические особенности соединений со структурой берилла в системе берилл–MgF₂–CaCl₂. Дис.... канд. геол.-мин. наук. Новосибирск: Ин-т геологии и геофизики СО АН СССР, 1984.
- 21. *Михайлов М.А., Демина Т.В., Белозерова О.Ю. //* Геология и геофизика. 2007. № 11. С. 1189.