КРИСТАЛЛОГРАФИЯ, 2011, том 56, № 6, с. 1088-1093

_ СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736.6

Посвящается памяти Н.В. Белова

КРИСТАЛЛИЗАЦИЯ, УТОЧНЕНИЕ СТРУКТУРЫ И ИК-СПЕКТРОСКОПИЯ СИНТЕТИЧЕСКОГО АНАЛОГА ГЕКСАГИДРОБОРИТА

© 2011 г. Н.А. Ямнова, Е.Ю. Боровикова, О.В. Димитрова

Московский государственный университет им. М.В. Ломоносова E-mail: natalia-yamnova@yandex.ru

Поступила в редакцию 07.06.2011 г.

Кристаллическая структура синтезированного гидротермальным методом при перекристаллизации кальциборита CaB₂O₄ (*M*) в системе $M - B_2O_3 - H_2O$ ($t = 250^{\circ}$ C, P = 70-80 атм.) аналога гексагидроборита Ca[B(OH)₄]₂ · 2H₂O (a = 7.9941(3), b = 6.6321(2), c = 7.9871(3) Å, $\beta = 104.166(4)^{\circ}$, V = 410.58(3) Å³, пр. гр. P2/c, Z = 2, $\rho_{\text{выч}} = 1.891$ г/см³; автодифрактометр Xcalibur S (CCD), 1196 рефлексов с $I > 2\sigma(I)$, λMoK_{α}) уточнена MHK в анизотропном приближении тепловых колебаний атомов, локализованы атомы H, $R_1 = 0.0260$). Основу структуры синтетического гексагидроборита составляют бесконечные вдоль оси *с* колонки из Ca-полиэдров, связанных по ребрам между собой и с [B(OH)₄]-ортотетраэдрами. Трансляционно-идентичные по двум другим осям колонки объединены лишь водородными связями. Наличие более прочной связи дискретных (Ca–B–O)-колонок вдоль кратчайшей (b = 6.6 Å) оси объясняет возможность смещения колонок на $1/2T_b$ и образование второй модификации Ca[B(OH)₄]₂ · 2H₂O. Проведены ИК-спектроскопические исследования кристаллов синтетического гексагидроборита и кристаллохимический анализ ряда природных метаборатов с общей формулой CaB₂O₄ · nH₂O (CaO : B₂O₃ = 1 : 1, n = 0-6), крайними членами которого являются кальциборит CaB₂O₄ и гексагидроборит CaB₂O₄ · 6H₂O.

ВВЕДЕНИЕ

При моделировании процессов минералообразования в гидротермальных условиях в системе $M - B_2 O_3 - H_2 O$ (где $M = CaB_2 O_4$ (кальциборит)) представляет интерес исследование влияния концентрации оксида бора на формирование типа боратного аниона и ТР-условий на его устойчивость. В ходе серии экспериментов по перекристаллизации кальциборита при $t = 250^{\circ}$ С и P == 70-80 атм с варьированным соотношением исходных компонентов $M:B_2O_3 = 1:(1-3)$ получены бесцветные, прозрачные, уплощенно-призматические кристаллы размером до 1 мм. Сравнение дифрактограммы порошка синтезированных кристаллов с имеющимися данными ICDD выявило близость полученного соединения с природным Са-боратом гексагидроборитом СаВ₂О₄ · $\cdot 6H_2O = Ca[B(OH)_4]_2 \cdot 2H_2O (a = 8.012, b = 6.649,$ c = 8.006 Å, $\beta = 104.21^{\circ}$, пр. гр. P2/c) и двумя синтетическими модификациями (I и II) того же состава. Метрические характеристики элементарной ячейки фазы (II) идентичны гексагидробориту, а фазы (I) — отличаются удвоением параметра aи повышением симметрии до пр. гр. С 2/с. Гексагидроборит структурно изучен в [1], обе синтетические модификации $CaB_2O_4 \cdot 6H_2O - B$ [2]. *OD*-

характер структур модификаций $CaB_2O_4 \cdot 6H_2O$, предполагающий возможность кристаллизации новых фазовых разновидностей, а также отсутствие в [2] данных по локализации атомов H при высоких значениях (>10%) *R*-факторов недостоверности определили целесообразность уточнения структуры синтезированного соединения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальный материал для рентгеноструктурного исследования синтезированного Са-бората получен на автоматическом монокристальном дифрактометре Xcalibur S CCD (λ Mo K_{α}). Основные кристаллографические данные, характеристики эксперимента и уточнения структуры синтетического гексагидроборита приведены в табл. 1, позиционные и тепловые параметры атомов – табл. 2. Полученные заключительные координаты базисных атомов подтвердили изоструктурность синтезированных кристаллов с природным гексагидроборитом Ca[B(OH)₄]₂ · 2H₂O и изученной ранее синтетической фазой (II). Кристаллографическая информация по исследованной структуре депонирована в банке данных **Таблица 1.** Кристаллографические характеристики, данные эксперимента и уточнения структуры кристалла $CaB_2O_4 \cdot 6H_2O$

Сингония, пр. гр., Z	Моноклинная, <i>Р</i> 2/ <i>с</i> , 2		
<i>a</i> , Å	7.9941(3)		
b, Å	6.6321(2)		
<i>c</i> , Å	7.9871(3)		
β, град	104.166(4)		
V, Å ³	410.58(3)		
D_x , г/см ³	1.891		
μ, мм ⁻¹	0.797		
<i>Т</i> , К	293(2)		
Размер образца, мм	$0.06 \times 0.23 \times 0.32$		
Дифрактометр	Xcalibur S (CCD)		
θ _{max} , град	32.68		
Пределы h, k, l	$-11 \le h \le 11$		
	$-9 \le k \le 9$		
	$-11 \le l \le 11$		
Число отражений: изме-	11488/1448, 0.0417/1196		
$(N_1), R_{int}/c I > 2\sigma(I) (N_2)$			
Метод уточнения	МНК по <i>F</i> ²		
Число уточняемых пара-	84		
метров			
Весовая схема	$1/[\sigma^2(F_o^2) + (0.0359P)^2 +$		
	$+0.0000 P$], $P = (F_o^2 + 2F_c^2)/3$		
${\it R}_1$, w ${\it R}_2$ по N_1	0.0358, 0.0635		
${\it R}_1$, w ${\it R}_2$ по N_2	0.0260, 0.0615		
S	1.023		
$\Delta \rho_{max} / \Delta \rho_{min}$, $\Im / Å^3$	0.39/-0.23		
Программы	SHELX97 [10]		

неорганических структур ICSD (депонент № 423168).

ОПИСАНИЕ СТРУКТУРЫ ИССЛЕДОВАННОГО КРИСТАЛЛА

В структуре синтетического аналога гексагидроборита атомы Са центрируют восьмивершинники (томсоновские кубы) с расстояниями Са-O = 2.382–2.607 (среднее 2.465) Å, атомы B – тетраэдры (B–O = 1.453–1.458 (среднее 1.467) Å. Основу структуры (рис. 1а, 1б) составляют бесконечные вдоль оси с колонки из Са-полиздров, связанных по ребрам между собой и с [B(OH)₄]-Трансляционно-илентичные ортотетраэдрами. колонки по двум другим осям объединены лишь водородными связями. В структуре синтетической фазы (I) Са[B(OH)₄]₂ · 2H₂O (рис. 2а) аналогичные (Са-В-О)-колонки в направлении оси а расположены на двух уровнях по b, в результате чего возникает дополнительная С-трансляция с одновременным удвоением параметра а по сравнению со структурой гексагидроборита и его синтетического аналога (рис. 2б). В структуре исследованного кристалла существует сложная система водородных связей, геометрические характеристики которых приведены в табл. 3, а детальный анализ проиллюстрирован на рис 3. Атом О5 молекулы H₂O образует четыре H-связи с О-вершинами В-тетраэдров: две связи (О5-Н4---О1 и О5-Н6-О4) участвуют в объединении трансляционных по оси b (Са-В-О)-колонок, третья связь (О4-Н3-О5) реализуется внутри колонки (рис. 3а), четвертая (О2-Н1-О5) – объединяет трансляционные по оси а колонки (рис. 3б). Оставшиеся две Н-связи (О3-Н2-О1 и О1-Н5…О2), образованные без участия молекул

Таблица 2. Координаты базисных атомов и эквивалентные тепловые поправки структуры кристалла $CaB_2O_4 \cdot 6H_2O_4$

Атом	x	у	Ζ	$U_{ m _{3KB}}$
Ca	0.00000	-0.03132(5)	0.25000	0.01411(9)
O(1)	0.2208(1)	0.5236(1)	0.6284(1)	0.0192(2)
O(2)	0.7774(1)	0.2496(1)	0.5986(1)	0.0174(2)
O(3)	0.9934(1)	-0.2213(1)	0.5342(1)	0.0172(2)
O(4)	0.2642(1)	-0.1160(1)	0.6907(1)	0.0177(2)
O(5)	0.4226(1)	0.2110(2)	0.5419(1)	0.0258(2)
В	0.8200(2)	0.2714(2)	0.4314(2)	0.0145(2)
H(1)	0.675(2)	0.238(2)	0.588(2)	0.033(4)
H(2)	0.936(2)	-0.308(3)	0.503(2)	0.031(4)
H(3)	0.314(2)	-0.157(3)	0.773(2)	0.034(5)
H(4)	0.380(2)	0.318(3)	0.568(2)	0.047(5)
H(5)	0.214(2)	0.505(2)	0.712(2)	0.034(5)
H(6)	0.381(3)	0.114(4)	0.582(3)	0.059(6)

Примечание. В скобках указаны стандартные отклонения. Для атомов Н приведены значения U_{изо}.

Рис. 1. Кристаллическая структура синтетического аналога гексагидроборита Ca[B(OH)₄]₂ · 2H₂O в проекции *xz* (а) и *yz* (б): связи D-H – сплошная линия, H····*A* – пунктирная; Малые белые кружки – центры инверсии.

Рис. 2. Кристаллические структуры полиморфных модификаций Ca[B(OH)₄]₂ · 2H₂O в проекции *xy*: фаза (I) (а) и фаза (II) (б): светлые и темные кружки – атомы O молекул воды на уровнях по $z \sim 0$ и $z \sim 1/2$ соответственно.

 H_2O , объединяют соседние по *b* (Ca–B–O)-колонки. В результате более прочная связь дискретных (Ca–B–O)-колонок существует вдоль кратчайшей (*b* = 6.6 Å) оси, а вдоль оси *a* она ослаблена, что делает возможным смещение колонок на $1/2T_b$, удвоение параметра *a* элементарной ячейки и образование фазы (I) (рис. 2a).

ИК-СПЕКТРОСКОПИЯ СИНТЕТИЧЕСКОГО АНАЛОГА ГЕКСАГИДРОБОРИТА

Для синтезированных кристаллов гексагидроборита проведены ИК-спектроскопические исследования. В ИК-спектре иона $[BO_4]^{5-}$ с симметрией правильного тетраэдра T_d наблюдаются всего две полосы поглощения: асимметричных валентных v_3 и асимметричных деформационных v_4 колебаний, характеризующихся F_2 модами (трижды вырожденные колебания). При понижении симметрии иона до C_1 снимается вырождение колебаний $F_2 \rightarrow 3A$ и становятся активными валентные симметричные $v_1(A)$ и валентные деформационные v_2 (2A) колебания. Для ИК-спектра кристалла с пр. гр. P12/c1 и фактор группой C_{2h} характерен переход моды A в моды $A_u + B_u$. Таким

D-H···A	<i>D</i> –Н, Å	H… <i>A</i> , Å	<i>D–A</i> , Å	Угол <i>D</i> HA, град
O(2)-H(1)···O(5)	0.803	1.972	2.772	175.10
O(3)-H(2)···O(1#1)	0.742	2.017	2.748	168.77
O(4)-H(3)···O(5#2)	0.735	2.138	2.851	163.87
O(5)-H(4)···O(1)	0.835	2.005	2.815	163.25
O(1)-H(5)···O(2#3)	0.694	2.259	2.835	141.43
O(5)-H(6)…O(4)	0.824	2.086	2.908	175.32

Таблица 3. Геометрические характеристики водородных связей в структуре кристалла $CaB_2O_4 \cdot 6H_2O_4$

Примечание. #1 -x + 1, -y, -z + 1; #2 x, -y, z + 1/2; #3 -x + 1, y, -z + 3/2.

образом, правилами отбора разрешены следующие колебания: $v_1 = A_u + B_u$, $v_2 = 2A_u + 2B_u$, v_3 и $v_4 = 3A_u + 3B_u$. ИК-спектр исследованного бората, полученный на фурье-спектрометре ФСП 1201 методом тонкодисперсной пленки на подложке КВг, представлен на рис. 4. Отнесение полос приведено в соответствие с [3]. Полосы 1038, 959, 912 см⁻¹ отнесены к v_3 – асимметричным валентным колебаниям [B(OH₄)]⁻ (рис. 4а): из шести разрешенных правилами отбора реализуются три полосы. Две полосы 758, 725 см⁻¹ отнесены к v_1 – валентным симметричным колебаниям боратного иона, а шесть полос в области $600-400 \text{ см}^{-1} - \text{к}$ его деформационным колебаниям v4. Частоты валентных колебаний молекул воды синтетического гексагидроборита (рис. 4б) 3500-3250 см⁻¹, согласно [4], соответствуют длинам связей d (D....A): 2.748-2.908 Å. Деформационные колебания H₂O представлены полосой 1676 см⁻¹ и плечом на ее фоне 1586 см⁻¹. Интенсивная полоса 1196 см⁻¹ и плечо 1242 см⁻¹, а также полоса 1086 см⁻¹ характеризуют деформационные плоские ("in plane") колебания связи В-ОН-, а полоса средней интенсивности 829 см⁻¹ – деформационные неплоские ("out of plane") колебания этой связи. ИК-спектр исследованного бората характерен для щелочных водных боратов: интенсивные полосы в области колебаний ионов OH⁻ и молекул воды и очень интенсивная полоса в районе ~1200 см⁻¹, отражающая деформационные колебания B–OH⁻. ИКспектр синтетического гексагидроборита передан в базу данных RRUFF Project [5].

ОСОБЕННОСТИ КРИСТАЛЛИЗАЦИИ И СТРОЕНИЯ РЯДА Са-МЕТАБОРАТОВ

В Са-системе при перекристаллизации CaB₂O₄ (кальциборит) при значениях температуры и давления ниже параметров минералообразования ($t < 300^{\circ}$ C) [6] наблюдается явление гидратации, которое приводит в итоге к синтезу соединения с формулой CaB₂O₄ · 6H₂O (гексагидроборит), т.е. под воздействием новых *TP*-условий исходные минералы становятся неустойчивыми и замещаются соединениями близкого химического состава, но разного строения. Добавление B₂O₃ в шихту позволяет корректировать значение pH среды, определяя тип боратного радикала. Кальциборит CaB₂O₄ и гексагидроборит CaB₂O₄ · 6H₂O являют-

Рис. 3. Водородные связи в структуре исследованного кристалла в проекции xz (а) и yz (б).

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

1091

ЯМНОВА и др.

Рис. 4. ИК-спектр синтетического аналога гексагидроборита $Ca[B(OH)_4]_2 \cdot 2H_2O$ в области колебаний связей $[B(OH_{4)}]^-$ тетраздра (1800–400 см⁻¹) (а) и в области валентных колебаний ионов гидроксила и молекул воды (3700–2900 см⁻¹) (б).

Рис. 5. Кристаллические структуры кальциборита $Ca_2[B^tO_3B^{\Delta}O]_2(a)$, фроловита $Ca[B^t(OH)_4]_2(b)$ и пентагидроборита $Ca[B_2^tO(OH)_6] \cdot 2H_2O(b)$.

ся крайними членами в ряду обнаруженных в скарнированных известняках Урала и Сибири эндогенных метаборатов, химический состав которых описывается валовой формулой СаВ₂О₄ · $\cdot nH_2O$ с постоянным отношением CaO : $B_2O_3 = 1$: : 1 и переменным содержанием воды. Количество и форма ее вхождения в структуру влияют на тип борокислородного радикала [7], а также на способ объединения отдельных фрагментов в структуре [8]. В безводном кальциборите CaB₂O₄ = = Ca₂[B^tO₃B^ΔO]₂ бесконечные вдоль оси *с* колонки из связанных по общим ребрам и граням четверок Са-полиэдров сцементированы в единый каркас вытянутыми в том же направлении цепочками из В-тетраэдров и В-треугольников (рис. 5а). В структурах минералов вимсита $Ca[B_2^tO_2(OH)_4]$ и уралборита $Ca_2[B_4^tO_4(OH)_8]$ с общей валовой формулой $CaB_2O_4 \cdot 2H_2O$ так же, как и в структуре кальциборита, присутствуют (Са-В-О)-каркасы, в образовании которых кроме Саполиэдров участвуют цепочки из В-тетраэдров (вимсит) и островные группы из четырех В-тетраэдров (уралборит). Дополнительную цементацию каркасам придают Н-связи. Структура нифонтовита 3(CaB₂O₄ · 2.67H₂O) = Ca₃[B^t₃O₃(OH)₆]₂ · 2H₂O с большим содержанием H₂O носит более "рыхлый" характер и образована лентами из Са-полиэдров, объединенными Н-связями в слои, которые сцементированы в каркас тройными кольцами из В-тетраэдров и Н-связями второго типа с участием молекул H₂O. При дальнейшем увеличении содержания Н₂О формируются кристаллические структуры с валентно-нейтральными (Са-В-О)-слоями, объединенными между собой

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

только Н-связями. В структуре фроловита $CaB_2O_4 \cdot 4H_2O = Ca[B^t(OH)_4]_2$ слои образованы дискретными парами Са-полиэдров и изолированными В-тетраэдрами (рис. 5б), а в структуре пентагидроборита $CaB_2O_4 \cdot 5H_2O = Ca[B_2^tO(OH)_6] \cdot$ · 2H₂O парами Са-полиэдров и диортогруппами из В-тетраэдров (рис. 5в). В последнем случае в объединении валентно-нейтральных фрагментов, как и в структуре гексагидроборита, участвуют Н-связи второго типа, реализованные через молекулы H₂O, не входящие в координационное окружение Са-катионов. В природе гексагидроборит, обнаруженный в месторождении Солонго [9], где также были ранее найдены вимсит и фроловит, находится в тесной ассоциации с пентагидроборитом. Учитывая близость строения и состава минералов, пентагидроборит и фроловит можно рассматривать как соединения, образование которых также возможно в процессе перекристаллизации кальциборита при определенных *ТР*-условиях и соотношениях исходных компонентов.

Авторы выражают благодарность Н.В. Зубковой за помощь в проведении дифракционного эксперимента и В.С. Куражковской за консультации в части ИК-спектроскопии.

Работа выполнена при финансовой поддержке гранта Президента РФ МК-143.2010.5.

СПИСОК ЛИТЕРАТУРЫ

- 1. Симонов М.А., Ямнова Н.А., Казанская Е.В.и др. // Докл. АН СССР. 1976. Т. 228. С. 1337.
- Sedlacek P., Dornberger-Schiff K. // Acta Cryst. B. 1971. V. 18. P. 767.
- 3. *Farmer V.C.* Infrared spectra of minerals. London. Publ. Mineral. Soc. 1974. 538 p.
- 4. *Libowitsky E. //* Monatschefte für chemie. 1999. B. 130. S.1047.
- 5. *Downs R.T.* The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, 2006. O03-13.
- 6. *Горбов А.Ф.* Геохимия бора. Л.: Недра, 1976. 207 с.
- Симонов М.А., Егоров-Тисменко Ю.К., Ямнова Н.А. // Кристаллохимическая систематика минералов. М.: МГУ, 1985. 201с.
- Симонов М.А., Егоров-Тисменко Ю.К., Белов Н.В. // Кристаллография. 1978. Т. 24. № 3. С. 439.
- 9. Симонов М.А., Малинко С.В., Белов Н.В. и др. // Зап. Всесоюз. минерал. о-ва. 1977. Сер. II. Ч. 106. № 6. С. 691.
- 10. *Sheldrick G.M.* SHELX97: Program for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany, 1997.