УДК 538.9

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Посвящается памяти Н.В. Белова

ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ МОНОКРИСТАЛЛОВ К₉H₇(SO₄)₈ · H₂O

© 2011 г. И. П. Макарова, Т. С.Черная, В. В. Гребенев, В. В. Долбинина, И. А. Верин, А. А. Симонов

> Институт кристаллографии РАН, Москва E-mail: secr@ns.crys.ras.ru Поступила в редакцию 24.06.2011 г.

Проведены исследования особенностей проводимости монокристаллических образцов $K_9H_7(SO_4)_8 \cdot H_2O$ в области температур суперпротонного фазового перехода. Определена и уточнена структура кристалла $K_9H_7(SO_4)_8 \cdot H_2O$ с учетом атомов водорода методом рентгеноструктурного анализа при температуре 295 К: моноклинная симметрия, пр. гр. $P2_1/c$, Z = 4, a = 7.059(1), b = 19.773(1), c = 23.449(1) Å, $\beta = 95.33(1)^\circ$, $R_1/wR_2 = 2.71/1.71$. Полученные структурные данные позволяют сделать вывод, что появление высокой проводимости в кристаллах $K_9H_7(SO_4)_8 \cdot H_2O$ при повышении температуры связано как с диффузией кристаллизационной воды и движением ионов K, так и с перестройкой системы водородных связей и движением протонов. Стабилизация высокотемпературной суперпротонной фазы и переохлаждение ее до низких температур обусловлены наличием каналов для движения ионов K и медленной обратной диффузией воды в кристалл.

ВВЕДЕНИЕ

Кристаллы K₉H₇(SO₄)₈ · H₂O в настоящее время являются единственным известным представителем семейства M₉H₇(AO₄)₈ · xH₂O. Впервые они были получены группой "Водораствор" ИК РАН, а затем исследованы в ИК РАН с точки зрения выявления возможных фазовых переходов [1]. Они принадлежат к довольно большому семейству, общую формулу которого можно записать M_m H_n(XO₄)_{(m + n)/2} (M = K, Rb, Cs, NH₄; X = S, Se, P) [2].

Интерес к данным соединениям на протяжении уже нескольких десятилетий связан с решением фундаментальной проблемы современной физики конденсированных состояний - структурными фазовыми переходами и стабилизацией фаз с высокой протонной проводимостью с целью создания новых функциональных материалов. Исследования процессов протонного транспорта имеют, несомненно, и фундаментальный научный интерес – для установления структурной обусловленности аномалий физических свойств, выявления влияния водородной подсистемы на физико-химические свойства материалов. Изучение процессов протонного транспорта в ИК РАН началось в 1980-х гг. на модельных объектах, и затем впервые была обнаружена аномально высокая протонная проводимость кристаллов $CsHSO_4$ и $CsHSeO_4$ [3]. По аналогии с супериониками подобные кристаллы были названы супер-протониками.

В большинстве водородсодержащих кристаллов атомы водорода, образующие водородные связи, полностью занимают кристаллографические позиции в структуре и образуют упорядоченную сетку водородных связей. Одномерные, двумерные или трехмерные системы водородных связей объединяют структурные единицы соответственно в цепочки, слои или трехмерные структуры. "Суперпротонные" кристаллы составляют особый класс, в котором в отличие от других водородсодержащих соединений происходят изменения при фазовых переходах в системе водородных связей приводящие к радикальному изменению их физических и физико-химических свойств. В частности, протонная проводимость в суперпротонных фазах этих кристаллов почти не отличается от проводимости расплавов этих солей и находится в пределах 10⁻³-10⁻¹ Ом⁻¹ см⁻¹ при относительно невысоких температурах, а коэффициент диффузии протонов составляет $D_p \approx$ 10^{-7} см² с⁻¹. Подобные кристаллы являются уникальными в классе протонных проводников, так как суперпротонная проводимость является не следствием введения легирующих добавок, а связана со структурными особенностями данных соединений.

Полученные структурные данные для кристаллов семейства $M_m H_n(XO_4)_{(m+n)/2}$ позволяют сделать вывод о возможном существовании в них различных структурных механизмов изменений физических свойств. В этих кристаллах наблюдаются низкотемпературные сегнето- или антисегнетоэлектрические фазовые переходы, приводящие к упорядочению протонов в двухминимумном потенциале водородной связи, выявляются высокотемпературные фазовые переходы, связанные с возможностью перестройки системы водородных связей.

Появление аномально высокой суперпротонной проводимости в кристаллах M_3 H(XO_4)₂ связано с формированием качественно новой системы водородных связей, что впервые было обнаружено при исследовании структурной обусловленности фазовых переходов в кристаллах $Rb_3H(SeO_4)_2$ [4, 5] и подтверждено для фазовых переходов в кристаллах $K_3H(SO_4)_2$ [6]. С повышением температуры при фазовом переходе в этих соединениях происходит формирование динамически разупорядоченной сетки водородных связей, в которой как положения центров водородных связей, так и их ориентация разупорядочены. На один протон приходится три кристаллографически эквивалентные позиции. Образовавшаяся сетка водородных связей позволяет протонам двигаться по вакантным позициям, что и приводит к высоким коэффициентам диффузии водорода и суперпротонной проводимости.

Исследования кристаллов вышеуказанного семейства при повышенных температурах показали, что в них наблюдаются также сложные физико-химические процессы, обусловленные диффузией [7, 8], что может проявляться в виде аномалий физических свойств, подобных аномалиям при фазовом переходе. С учетом этих особенностей исследовались фазовые переходы с аномально медленной кинетикой в кристаллах $K_{3}H(SO_{4})_{2}$ и возникновение в них многофазных состояний с высокой протонной проводимостью [6, 8]. Аномалии физических свойств могут быть связаны также с диффузией кристаллизационной воды и возможностью стабилизации состояний с высокой проводимостью, на что было указано при исследовании кристаллов $M_5H_3(AO_4)_4 \cdot xH_2O$ [9] и K₉H₇(SO₄)₈ · H₂O [10]. Исследования диффузионных процессов в данном семействе являются достаточно актуальными, так как эти процессы могут существенно влиять на температурное поведение характеристик кристаллов.

Несмотря на достигнутые успехи в исследовании кристаллов данного семейства, до сих пор существуют значительные разногласия в интерпретации свойств суперпротонных фаз, что связано и с плохой воспроизводимостью экспериментальных данных, и с отсутствием информации о кристаллической структуре высокотемпературных фаз многих соединений. Следует отметить, что

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

практический интерес к данным соединениям требует также решения вопроса о стабильности суперпротонных фаз в течение длительного времени.

Выявление структурной обусловленности фазовых переходов в кристаллах $K_9H_7(SO_4)_8 \cdot H_2O$ представляет несомненный интерес как для характеризации данного соединения, так и с точки зрения выяснения общих закономерностей и различий в семействе кристаллов $M_mH_n(XO_4)_{(m + n)/2}$.

РЕНТГЕНОСТРУКТУРНЫЕ ИССЛЕДОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ ОБРАЗЦОВ

Монокристаллы $K_9H_7(SO_4)_8 \cdot H_2O$ выращены с использованием методики кристаллизации медленным снижением температуры насыщенного раствора и методики отбора конденсата [6] и представляли собой бесцветные иглы.

Рентгеноструктурные исследования монокристаллов $K_9H_7(SO_4)_8 \cdot H_2O$ были проведены на дифрактометре Xcalibur S фирмы Oxford Diffraction с двумерным CCD- детектором при 295 К. В табл. 1 приведены основные кристаллографические характеристики, данные рентгеновского эксперимента и уточнения структуры $K_9H_7(SO_4)_8 \cdot H_2O$. Для проведения рентгеновского эксперимента использовался монокристаллический образец сферической формы диаметром 0.36 мм.

Интенсивности дифракционных отражений были пересчитаны в модули структурных амплитуд с учетом кинематического, поляризационного факторов и поглощения рентгеновского излучения в образце. Анализ закономерных погасаний и эквивалентных по симметрии отражений позволил однозначно выбрать пространственную группу $P_{2_1/c}$. Вычисления выполнялись по кристаллографическому комплексу программ JANA 2000 и JANA 2006 [11]. Уточнение структурных параметров кристаллов проводилось методом наименыших квадратов в полноматричном варианте. При введении поправок на вторичную экстинкцию использовался формализм Беккера–Коппенса [12].

Для уточнения модели структуры $K_9H_7(SO_4)_8$ · H_2O в качестве исходных данных основного мотива были взяты координаты базисных атомов из [13], хотя полученный этими авторами фактор расходимости экспериментальных и вычисленных структурных амплитуд (*R*-фактор) составлял более 6%. Дополнительно предпринятые попытки с использованием метода charge flipping привели к аналогичному основному мотиву атомной структуры.

Уточнение параметров неводородных базисных атомов структуры привело к фактору расходимости экспериментальных и вычисленных

Таблица 1. Основные кристаллографические характеристики, данные рентгеновского эксперимента и уточнения структуры $K_9H_7(SO_4)_8\cdot H_2O$

<i>Т</i> , К	295
Размер образца, мм	Сфера <i>d</i> = 0.36
Пр. гр., Z	$P2_{1}/c, 4$
<i>a</i> , Å	7.059(1)
<i>b</i> , Å	19.773(1)
<i>c</i> , Å	23.449(1)
α, град	90
β, град	95.33(1)
ү, град	90
$V, Å^3$	3258.95
D_x , г/см ³	2.283
Излучение; λ, Å	$MoK_{\alpha}, \lambda = 0.7106$
μ , cm ⁻¹	1.31
Дифрактометр	Xcalibur S
Тип сканирования	ω
Учет поглощения; T_{\min} , T_{\max}	0.616/0.622
θ _{max} , град	31.78
Пределы h, k, l	-4 < h < 9, -29 < k < 29, -34 < l < 34
Число отражений: измеренных/независимых с $I > 3\sigma(I)$, R_{int}	67112/7256, 0.0171
Метод уточнения	МНК по <i>F</i>
Весовая схема	$w = 1/\sigma^2(F)$
Число уточняемых пара- метров	492
Учет экстинкции, коэффи- циент (изотропная, тип1)	0.0281(4)
R1/wR2	2.71/1.71
S	2.03
$\Delta \rho_{max} / \Delta \rho_{min}$, $\Im / Å^3$	0.26/-0.28
Программы	JANA 2000, JANA 2006 [11]

структурных амплитуд $R_1/wR_2 = 3.23/2.54$. С использованием полученных параметров неводородных атомов по отражениям с $\sin \theta/\lambda \le 0.5$ были вычислены распределения разностной электронной плотности (рис. 1), на которых достаточно четко были видны пики, соответствующие шести атомам Н. Дополнительным фактом о локализации этих атомов Н было удлинение связей S–O, обычно наблюдаемое для атомов О, участвующих в водородных связях. По распределению электронной плотности и увеличенным параметрам тепловых колебаний можно предположить разупорядочение атома Н7 на водородной связи между атомами O4 и O33 (колебания в двухми-

нимумном потенциале). В этом случае уточнение параметров атома H7 можно провести с использованием однопозиционной модели с ангармоническими параметрами тепловых колебаний или с использованием двухпозиционной модели. Как показывают предыдущие прецизионные структурные исследования [14], в подобном случае при уточнении структурной модели небольшие смещения атома H компенсируются увеличением тепловых параметров, не влияя на параметры остальных атомов. Поэтому позиция атома H7 была установлена по центру связи O4–O33. Подключение вышеуказанных семи атомов H в уточнение снизило *R*-факторы до значений $R_1/wR_2 = 2.95/2.14$.

Более сложная картина наблюдалась вблизи атома ОЗЗ, входящего в молекулу H₂O (рис. 2). Анализ межатомных расстояний показал, что вблизи этого атома находятся пять атомов О из четырех разных тетраэдров SO₄ на расстоянии 2.627(2)-3.100(2) Å, включая водородную связь О4-Н7-О33. Возможные позиции двух атомов Н, по геометрическим характеристикам соответствующих молекуле воды, находятся на связях между атомом О33 и атомами О5, О20, О29, т.е. два атома водорода могут занимать любую из трех позиций. Характер распределения электронной плотности свидетельствует о динамическом разупорядочении молекулы H₂O. Подключение атомов Н в уточнение (3 позиции с заселенностью 2/3) снизило *R*-факторы до значений $R_1/wR_2 =$ = 2.71/1.71.

Уточненные позиционные и эффективные изотропные параметры тепловых колебаний базисных атомов структуры $K_9H_7(SO_4)_8 \cdot H_2O$ приведены в табл. 2. В табл. 3 даны основные межатомные расстояния полученной структурной модели. В табл. 4 указаны расстояния и углы, характеризующие водородные связи O–H...O в структуре $K_9H_7(SO_4)_8 \cdot H_2O$.

ИССЛЕДОВАНИЯ ПРОВОДИМОСТИ МОНОКРИСТАЛЛОВ

Проводимость монокристаллов $K_9H_7(SO_4)_8$ · H_2O была измерена методом импедансной спектроскопии в диапазоне частот 42 Гц–1 МГц в температурном интервале 290–450 К (LCR meter Hioki 3532-50). В настоящей работе приведены только температурные зависимости на частоте 1 МГц, а подробный анализ температурных зависимости будет приведен в отдельной работе. Серебряная паста типа "Degussa" была использована в качестве электродов. Следует сделать пояснения относительно обозначений направлений [001] и [100]. Так как в исследованиях проводимости не было возможности ориентировать кри-

Рис. 1. Распределение разностной электронной плотности в кристаллах $K_9H_7(SO_4)_8 \cdot H_2O$, полученное после уточнения структурной модели без учета атомов Н. Для вычислений использованы отражения с $\sin\theta/\lambda \le 0.5$. Изолинии проведены через $0.05 \ \text{э/Å}^3$. Показаны проекции положений атомов О и Н, расположенных вблизи данного сечения плотности.

Рис. 2. Распределение разностной электронной плотности в кристаллах $K_9H_7(SO_4)_8 \cdot H_2O$, полученное после уточнения структурной модели с учетом атомов H, за исключением атомов водорода H_2O . Для вычислений использованы отражения с $\sin\theta/\lambda \le 0.5$. Изолинии проведены через 0.05 э/Å³. Показаны проекции положений атомов O и H, расположенных вблизи данного сечения плотности.

1066

МАКАРОВА и др.

Атомы	Позиция	q	x/a	y/b	z/c	U
K1	4e	1	0.97550(6)	0.08326(2)	0.59689(2)	0.028(1)
K2	40	1	0.54173(6)	0.00320(2) 0.07777(2)	0.09009(2) 0.40728(2)	0.023(1)
K2 K3	40	1	0.31173(0) 0.19644(6)	0.07777(2) 0.24700(2)	0.33348(2)	0.027(1)
KA	40	1	0.19071(6)	0.24700(2) 0.23600(2)	0.35340(2) 0.16812(2)	0.020(1)
K5	40	1	0.36488(6)	0.23677(2)	0.10012(2) 0.40776(2)	0.029(1)
KJ V(40	1	0.30488(0)	0.36304(2) 0.41605(2)	0.40770(2)	0.029(1)
	40	1	0.00120(0)	0.41003(2)	0.70400(2)	0.020(1)
K/ K0	4e	1	0.03333(0)	0.40993(2)	0.22968(2)	0.028(1)
Kð	40	1	0.92065(6)	0.40980(2)	0.41223(2)	0.020(1)
K9	4e	1	0.77038(6)	0.24/15(2)	0.50137(2)	0.039(1)
51	4e	1	0.46003(7)	0.1063/(2)	0.56852(2)	0.024(1)
S2	4 <i>e</i>	1	0.04364(7)	0.09410(2)	0.42918(2)	0.023(1)
83	4 <i>e</i>	1	0.71552(7)	0.24637(2)	0.34893(2)	0.018(1)
S4	4 <i>e</i>	I	0.81354(7)	0.23866(2)	0.15090(2)	0.020(1)
S5	4 <i>e</i>	1	0.88188(7)	0.58726(2)	0.42855(2)	0.020(1)
S6	4 <i>e</i>	1	0.39067(7)	0.41263(2)	0.74574(2)	0.020(1)
S 7	4 <i>e</i>	1	0.12948(7)	0.40279(2)	0.25894(2)	0.020(1)
S 8	4 <i>e</i>	1	0.41991(7)	0.39039(2)	0.43047(2)	0.018(1)
01	4 <i>e</i>	1	0.5500(2)	0.3689(1)	0.0199(1)	0.044(1)
O2	4 <i>e</i>	1	0.5886(2)	0.4118(1)	0.1161(1)	0.045(1)
O3	4 <i>e</i>	1	0.3375(2)	0.4531(1)	0.0517(1)	0.033(1)
O4	4 <i>e</i>	1	0.3268(2)	0.3400(1)	0.0868(1)	0.040(1)
O5	4 <i>e</i>	1	0.8288(2)	0.6480(1)	0.0865(1)	0.040(1)
O6	4 <i>e</i>	1	0.0618(2)	0.6149(1)	0.0244(1)	0.038(1)
O 7	4 <i>e</i>	1	0.8269(2)	0.5349(1)	0.0506(1)	0.033(1)
O8	4 <i>e</i>	1	0.0725(2)	0.5681(1)	0.1192(1)	0.041(1)
O9	4 <i>e</i>	1	0.4009(2)	0.8038(1)	0.1832(1)	0.031(1)
O10	4 <i>e</i>	1	0.1457(2)	0.7768(1)	0.1102(1)	0.026(1)
011	4 <i>e</i>	1	0.4176(2)	0.7055(1)	0.1239(1)	0.039(1)
O12	4 <i>e</i>	1	0.1987(2)	0.7129(1)	0.1972(1)	0.029(1)
O13	4 <i>e</i>	1	0.9348(2)	0.2876(1)	0.1280(1)	0.041(1)
O14	4 <i>e</i>	1	0.7155(2)	0.2747(1)	0.2003(1)	0.035(1)
O15	4 <i>e</i>	1	0.9153(2)	0.1824(1)	0.1771(1)	0.037(1)
O16	4e	1	0.6578(2)	0.2201(1)	0.1099(1)	0.033(1)
O17	4e	1	0.2201(2)	0.0276(1)	0.0437(1)	0.041(1)
O18	4 <i>e</i>	1	0.9690(2)	0.1118(1)	0.0315(1)	0.036(1)
019	4e	1	0.0464(2)	0.0540(1)	0.1205(1)	0.028(1)
020	4e	1	0.2615(2)	0.1370(1)	0.0870(1)	0.033(1)
021	4e	1	0.5159(2)	0.1097(1)	0.2047(1)	0.033(1)
022	4e	1	0.4858(2)	0.0508(1)	0.2930(1)	0.031(1)
023	40	1	0.2667(2)	0.1404(1)	0.2618(1)	0.039(1)
024	40	1	0.2574(2)	0.0316(1)	0.2160(1)	0.037(1)
025	4e	1	0.7430(2)	0.9583(1)	0.2083(1)	0.037(1)
026	40	1	0.9976(2)	0.8774(1)	0.2017(1)	0.038(1)
027	4e	1	0.7412(2)	0.8517(1)	0.2577(1)	0.040(1)
028	4e	1	0.9657(2)	0.9403(1)	0.2874(1)	0.030(1)
029	40	1	0.7168(2)	0.8356(1)	0.0774(1)	0.034(1)
030	40	1	0.5013(2)	0.0000(1) 0.9041(1)	0.0771(1) 0.1257(1)	0.025(1)
031	40	1	0.6795(2)	0.9527(1)	0.0552(1)	0.023(1) 0.031(1)
032	40	1	0.0755(2) 0.4254(2)	0.9327(1) 0.8742(1)	0.0332(1) 0.0272(1)	0.031(1) 0.034(1)
032	40	1	0.4234(2) 0.1885(2)	0.0742(1) 0.2412(1)	0.0272(1) 0.5046(1)	0.054(1)
U33 H1	40	1	0.1005(2) 0.775(4)	0.2412(1) 0.540(1)	0.0040(1)	0.000(1) 0.062(9)
H2	$\Delta \rho$	1	0.741(4)	0.257(1)	0.022(1) 0.227(1)	0.002(9)
H3	те 40	1	0.771(7) 0.200(4)	0.237(1) 0.044(1)	0.227(1) 0.180(1)	0.041(0)
нэ Ц/	10	1	0.200(4)	0.077(1)	0.109(1)	0.077(0)
нч Ц5	40	1	0.231(4) 0.433(4)	0.033(1) 0.830(1)	0.019(1) 0.165(1)	0.07 + (3) 0.044(7)
н <i>5</i> Ц6	10	1	0.733(4) 0.670(4)	0.030(1)	0.103(1) 0.188(2)	0.07+(7)
нт Ц7	40	1	0.079(4) 0.258(4)	0.944(2) 0.201(1)	0.100(2) 0.546(1)	0.034(7)
11/ ЦQ	10	1 2/2	0.230(4)	0.201(1) 0.217(1)	0.370(1) 0.485(1)	0.000(7) 0.063(10)
но ПО	10	2/3	0.237(4)	0.217(1) 0.275(1)	0.703(1) 0.488(1)	0.003(10) 0.061(10)
117 日10	10	2/3	0.222(4) 0.316(A)	0.273(1) 0.257(1)	0.700(1)	0.001(10) 0.053(10)
1110	76	2/3	0.510(4)	0.237(1)	0.310(1)	0.055(10)

Таблица 2. Координаты (x/a, y/b, z/c), позиция, заселенность позиции (q), эффективные изотропные параметры тепловых колебаний (U, Å²) базисных атомов структуры K₉H₇(SO₄)₈ · H₂O при 295 K

К1-полиэдр		К2-полиэдр		К3-полиэдр		
-013	2.678(2)	- O 11	2.653(2)	-05	2.728(2)	
-07	2.743(2)	-O22	2.725(2)	-O29	2.753(2)	
-O28	2.747(2)	-O3	2.753(2)	-O23	2.769(2)	
-O2	2.810(2)	- O 1	2.840(2)	-O12	2.895(2)	
-06	2.900(2)	-O8	2.855(2)	-O10	2.919(2)	
-O4	2.935(2)	-O5	2.977(2)	-O11	2.930(2)	
-03	2.945(2)	-O7	2.991(2)	-O26	2.999(2)	
-08	3.104(2)	-O6	3.179(2)	-O27	3.038(2)	
-01	3.488(2)	-O2	3.438(2)	-O9	3.115(2)	
Сред. знач.	2.928	Сред. знач.	2.935	Сред. знач.	2.905	
-S1	3.574(1)	-82	3.547(1)	-S3	3.448(1)	
-S2	3.560(1)	-82	3.615(1)	- S 7	3.552(1)	
К4-по	К4-полиэдр		олиэдр	К6-полиэдр		
-O20	2.743(2)	-O16	2.733(2)	-O8	2.746(2)	
-O4	2.801(2)	-O31	2.758(2)	-O12	2.781(2)	
-013	2.900(2)	-O20	2.833(2)	-O15	2.844(2)	
-O27	2.901(2)	-O21	2.888(2)	-O21	2.860(2)	
-016	2.942(2)	-O32	2.916(2)	-O25	2.931(2)	
-023	2.949(2)	-O18	2.919(2)	-O28	2.943(2)	
-014	2.992(2)	-O19	2.976(2)	-O23	2.946(2)	
-O21	2.995(2)	-O17	3.238(2)	-O22	3.007(2)	
-015	3.008(2)	-O15	3.310(2)	-O24	3.154(2)	
Сред. знач.	2.915	Сред. знач.	2.952	Сред. знач.	2.912	
	3.485(1)	-S5	3.490(1)	-S6	3.451(1)	
-S6	3.493(1)	-S4	3.543(1)	—S7	3.622(1)	
К7-пс	олиэдр	К8-полиэдр		К9-полиэдр		
-02	2.654(2)	-O10	2.715(2)	-O10	2.797(2)	
-O24	2.793(2)	- O 17	2.770(2)	-O16	2.812(2)	
-014	2.831(2)	-O18	2.818(2)	-O1	2.828(2)	
-O27	2.936(2)	-O26	2.859(2)	-O32	2.916(2)	
-O28	2.943(2)	-O29	2.940(2)	-O33	2.948(2)	
-O22	2.948(2)	-O19	2.967(2)	-O6	2.956(2)	
-09	2.956(2)	-O31	2.978(2)	-O13	3.162(2)	
-O26	2.990(2)	-O32	3.021(2)	-O18	3.171(2)	
-O25	3.299(2)	-O30	3.031(2)	-O11	3.217(2)	
Сред. знач.	2.928	Сред. знач.	2.900	Сред. знач.	2.979	
-S7	3.495(1)	- S 8	3.532(1)	-S4	3.502(1)	
-S6	3.563(1)	-S5	3.543(1)	-S3	3.560(1)	

Таблица 3. Основные межатомные расстояния (Å) в $K_9H_7(SO_4)_8\cdot H_2O$ при 295 К

S1-тетраэдр			S2-тетраэдр					
S-	-0	0-	-0	S-O		0–0		
-01	1.441(2)	01–02	2.401(2)	-05	1.464(2)	05-06	2.388(2)	
-O2	1.417(2)	01–03	2.405(2)	-06	1.435(2)	05–07	2.390(2)	
-03	1.491(2)	01–04	2.393(2)	-O7	1.533(2)	05–08	2.407(2)	
-O4	1.506(2)	O2–O3	2.365(2)	-O8	1.431(2)	O6–O7	2.413(2)	
		O2–O4	2.381(2)			O6–O8	2.402(2)	
		O3–O4	2.386(2)			07–08	2.347(2)	
	S3-те	граэдр		S4-тетраэдр				
S-	S–O		0-0		S-O		0–0	
-09	1.555(2)	O9–O10	2.427(2)	-O13	1.430(2)	O13–O14	2.413(2)	
-O10	1.438(2)	O9–O11	2.399(2)	-O14	1.575(2)	013-015	2.388(2)	
-O11	1.433(2)	O9–O12	2.339(2)	-O15	1.431(2)	O13–O16	2.373(2)	
-O12	1.449(2)	O10-O11	2.379(2)	-O16	1.439(2)	O14–O15	2.400(2)	
		O10-O12	2.401(2)			O14–O16	2.380(2)	
		O11–O12	2.420(2)			O15–O16	2.410(2)	
S5-тетраэдр			S6-тетраэдр					
S-O		0–0		S–O		0–0		
-O17	1.555(2)	O17–O18	2.429(2)	-O21	1.436(2)	O21–O22	2.402(2)	
-O18	1.428(2)	O17–O19	2.330(2)	-O22	1.437(2)	O21–O23	2.387(2)	
-O19	1.457(2)	O17–O20	2.394(2)	-O23	1.438(2)	O21–O24	2.424(2)	
-O20	1.434(2)	O18–O19	2.399(2)	-O24	1.571(2)	O22–O23	2.419(2)	
		O18–O20	2.388(2)			O22–O24	2.338(2)	
		O19–O20	2.417(2)			O23–O24	2.403(2)	
S7-тетраэдр			S8-тетраэдр					
S–O		0–0		S-O		0-0		
-O25	1.574(2)	O25–O26	2.422(2)	-O29	1.451(2)	O29–O30	2.399(2)	
-O26	1.436(2)	O25–O27	2.405(2)	-O30	1.502(2)	O29–O31	2.382(2)	
-O27	1.439(2)	O25–O28	2.344(2)	-O31	1.472(2)	O29–O32	2.397(2)	
-O28	1.431(2)	O26–O27	2.387(2)	-O32	1.441(2)	O30–O31	2.372(2)	
		O26–O28	2.391(2)			O30–O32	2.397(2)	
		O27–O28	2.421(2)			O31–O32	2.416(2)	

Таблица 3. Окончание

сталл вдоль кристаллографических направлений, а кристаллы представляли собой бесцветные иглы, то обозначение образцов [100] соответствует ориентации кристалла вдоль иглы, а обозначение [001] соответствует перпендикулярному [100] направлению.

Исследования фазовых переходов в данном кристалле проводились ранее [8, 9]. Показано, что кристалл обладает суперпротонным фазовым переходом при $T_{sp} = 390$ K, сопровождающимся скачком проводимости на 2 порядка величины, и потерей кристаллизационной воды, что, вероятно,

стабилизирует протонпроводящую фазу до низких температур. Обратный переход возможен при отжиге в парах воды. Учитывая нелинейный характер поведения проводимости в окрестности перехода и его размытый характер [9], возникло предположение, что подобное поведение связано с кинетикой выхода кристаллизационной воды из кристалла. Естественным образом возникает вопрос, вероятно, именно выход воды "запускает" фазовый переход, что должно приводить к зависимости температуры скачка проводимости от скорости нагревания. ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ МОНОКРИСТАЛЛОВ

		-	, , , , , , , , , , , , , , , , , , ,	-
0–H0	O-H	НО	0-0	0–H0
O7–H1O3	0.75(3)	1.84(3)	2.576(2)	174(2)
O14-H2O12	0.72(3)	2.00(3)	2.714(2)	176(2)
O24–H3O19	0.76(3)	1.87(3)	2.609(2)	166(2)
O17-H4O31	0.66(3)	1.87(3)	2.518(2)	175(2)
O9–H5O30	0.72(3)	1.82(3)	2.536(2)	173(2)
O25-H6O30	0.69(3)	2.01(3)	2.682(2)	176(2)
O4–H7O33	1.314(2)	1.314(2)	2.627(2)	180
O33–H8O5	0.75(3)	2.18(3)	2.816(2)	
O33–H9O29	0.82(3)	2.02(3)	2.804(2)	
O33-H10O20	0.98(3)	2.71(3)	3.100(2)	

Таблица 4. Расстояния (Å) и углы (град) водородных связей О-Н...О в К₉H₇(SO₄)₈ · H₂O при 295 К

На рис. 3 и 4 представлены температурные зависимости проводимости кристалла в различных направлениях и при различных скоростях нагрева. Приведенные скорости нагрева – это средние скорости. Кристалл нагревался с шагом 1-3 град и выдерживался при этой температуре определенное время со стабилизацией температуры ±0.1 К. Средняя скорость нагрева являлась практически постоянной для всех экспериментов. Видно, что температура скачка проводимости сильно зависит от скорости нагревания, и эта температура будет также зависеть и от размера кристалла, который определяет время выхода воды из объема. Для уменьшения влияния этого эффекта на кинетику выхода воды все образцы были изготовлены из одного кристалла и приблизительно одного размера. Наблюдаемые для всех скоростей нагрева температуры скачков проводимости выше ранее определенной температуры $T_{sp} = 390$ K, за ис-

Рис. 3. Проводимость монокристаллов $K_9H_7(SO_4)_8$ · H_2O в направлении [100], измеренная на частоте 1 МГц при скоростях нагрева 0.2 и 0.5 К/мин.

КРИСТАЛЛОГРАФИЯ том 56 № 6 2011

400 420 380 360 340 320 *T*, K T = 405 K-∎-0.2 К/мин = 390 K 7 •°−0.015 К/мин $\ln \sigma T [K/(OM cM)]$ -102.4 2.6 2.8 3.0 3.2 $10^3/T$, K⁻¹

ключением кристалла, нагретого со скоростью

0.015 К/мин, для которого температура скачка

проводимости в точности совпадает с T_{sp}. Для это-

го образца отклонение проводимости от линей-

ного закона происходит уже при температуре $T \approx$

≈ 350 K, тогда как для остальных образцов лишь

при $T \approx 370$ K, и в области температуры перехода

проводимость снова становится линейно зависи-

мой от температуры. Стоит отметить, что величи-

на проводимости этого образца в области низких

температур является наименьшей. Очевидно, что

все эти эффекты связаны с выходом воды из кри-

сталла, а сам фазовый переход имеет температуру

 $T_{sp} = 390$ К. Как видно из рис. 3 и 4, проводимость

кристалла в суперпротонной фазе является ани-

зотропной вне зависимости от скорости нагрева-

ния, причем $\sigma_{[100]} > \sigma_{[001]}$.

Рис. 4. Проводимость монокристаллов $K_9H_7(SO_4)_8$ · H_2O в направлении [001], измеренная на частоте 1 МГц при скоростях нагрева 0.2 и 0.015 К/мин.

Рис. 5. Атомная структура соединения $K_9H_7(SO_4)_8 \cdot H_2O$. Выделены тетраэдры SO_4 .

Рис. 6. Основной мотив атомной структуры соединения $K_9H_7(SO_4)_8 \cdot H_2O$.

ОБСУЖДЕНИЕ

На рис. 5 и 6 представлены модель и отдельно — основной мотив атомной структуры кристаллов $K_9H_7(SO_4)_8 \cdot H_2O$. В независимой области элементарной ячейки содержатся девять неэквивалентных по симметрии атомов К и восемь тетраэдров SO₄. В структуре имеется: шесть водородных связей O–H...O, равных 2.518(2)–2.714(2) Å, включая связь O9–H5...O30...H6–O25, водородная связь 2.627(2) Å между молекулой воды и тетраэдром SO₄ с динамически разупорядоченным атомом H7, а также слабые водородные связи 2.816(2)–3.100(2) Å между молекулой воды и тремя тетраэдрами SO₄, устанавливаемые в процессе колебаний молекулы H₂O. Анализ связей S–O показывает, что во всех тетраэдрах SO_4 расстояние от атома S до атома O больше, если он участвует в водородной связи, причем величина удлинения больше для атома O – донора H-связи.

Вблизи каждого из атомов К расположены девять атомов О на расстоянии 2.653(2)–3.488(2) Å. Среднее расстояние K–O составляет порядка 2.92 Å, за исключением K9–O – 2.98 Å. У этого атома наблюдаются также существенно большие параметры тепловых колебаний, 0.039(1) Å², по сравнению с параметрами остальных атомов K – 0.026(1)–0.029(1) Å². Для эллипсоида тепловых колебаний атома K9 характерна сильная анизотропия: среднеквадратичные смещения вдоль направлений *a*, *b*, *c* (приблизительно, с учетом

 $\beta = 95.33(1)^{\circ}$) составляют 0.0592, 0.0356, 0.0219 Å², т.е. тепловые колебания атома K9 имеют предпочтительную направленность вдоль оси *a*.

На расстоянии порядка 1/2*a* (выше или ниже) от каждого атома К расположены атомы S. Вблизи атома K9 по направлению *a* находятся молекулы воды (рис. 7). Молекула воды ориентирована таким образом, что ее анион кислорода входит в координационный полиэдр одного катиона K9, а протоны расположены в направлении другого катиона K9 (трансляционно-эквивалентного), препятствуя сближению слоев. Схематически такое расположение атомов по направлению *a* можно записать:

 $\mathrm{K9^{+}...O33^{2-}-2H^{+}} \leftrightarrow \mathrm{K9^{+}...O33^{2-}-2H^{+}} \leftrightarrow$

Фактически в структуре $K_9H_7(SO_4)_8 \cdot H_2O$ имеются каналы, по которым мог бы двигаться атом K, но при температуре исследования эти каналы перекрыты молекулами H_2O . На основании полученных структурных данных можно сделать вывод, что при повышении температуры слабые водородные связи, динамически разупорядоченные, связывающие кристаллизационную воду, будут разрываться, и вода будет диффундировать из кристалла, освобождая каналы для движения атомов К. Этот вывод подтверждается и ранее полученными данными о диффузии кристаллизационной воды [10].

Система водородных связей в $K_9H_7(SO_4)_8 \cdot H_2O$ не является полностью двумерной (рис. 6), а молекула H_2O слабыми водородными связями этот каркас дополнительно "стягивает". В отсутствие молекул воды появится возможность формирования водородных связей между тетраэдрами SO_4 , ранее связанными с молекулой H_2O , что создаст дополнительные позиции для протонов.

"Запускает" ли выход кристаллизационной воды фазовый переход, т.е. приводит ли полное удаление воды к перестройке структуры при температурах $T < T_{sp}$? Точный ответ на этот вопрос связан с определением количества воды в низкотемпературной фазе кристалла в непосредственной близости температуры фазового перехода и будет решен подробным исследованием гравиметрическими методами. Однако из полученных данных, опираясь на структурные исследования кристалла, можно предположить следующую модель.

В структуре кристалла существуют каналы, занятые молекулами H_2O и ионами К. На рис. 3 и 4 можно увидеть, что при быстром нагреве величина проводимости выше, чем при медленном. Таким образом, можно предполагать, что вода вносит вклад в проводимость и выше температуры перехода при быстром нагреве, т.е. фазовый переход происходит и при неполном удалении воды из кристалла, но такой переход происходит при тем-

Рис. 7. Координационный полиэдр атома К9. Показаны также тэтраэдры SO₄ и молекулы H₂O (с разупорядоченными позициями H).

пературах $T > T_{sp}$. При медленном нагреве и удалении воды из кристалла в проводимости, возможно, участвуют и ионы К. В перпендикулярном направлении при формировании высокотемпературной фазе динамически разупорядоченной сетки водородных связей проводимость должна обеспечиваться подвижными протонами. Учитывая разное количество ионов калия и протонов на одну элементарную ячейку $(n_{\rm K}^+ > n_p)$, проводимость должна быть анизотропной, что и наблюдается в эксперименте ($\sigma_{[100]} >$ $> \sigma_{10011}$). Таким образом, исходя из данной модели, в высокотемпературной фазе кристалла основной вклад в проводимость в различных направлениях осуществляется разными носителями заряда – ионами калия и протонами.

Можно предположить, что при охлаждении при наличии образовавшихся новых связей между тетраэдрами SO_4 обратная диффузия воды будет затруднительной. Стабилизация высокотемпературной суперпротонной фазы и переохлаждение ее до низких температур обусловлены, следовательно, наличием каналов для движения ионов К и медленной обратной диффузией воды в кристалл. В литературных данных отсутствует описание кристаллов, в которых проводимость в различных направлениях осуществлялась бы разным сортом носителей заряда, поэтому выдвигаемые в данной работе предположения требуют дальнейшей экспериментальной работы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 09-02-00577, 11-02-01145).

СПИСОК ЛИТЕРАТУРЫ

- 1. Якушкин Е.Д., Баранов А.И. // ФТТ. 2000. Т. 42. Вып. 8. С. 1474.
- 2. Баранов А.И. // Кристаллография. 2003. Т. 48. Вып. 6. С. 1081.
- Баранов А.И., Шувалов Л.А., Щагина Н.М. // Письма в ЖЭТФ. 1982. Т. 36. Вып. 11. С. 381.
- 4. *Макарова И.П., Верин И.А., Щагина Н.М. //* Кристаллография. 1986. Т. 31. Вып. 1. С.178.
- 5. Баранов А.И., Макарова И.П., Мурадян Л.А. и др. // Кристаллография. 1987. Т. 32. Вып. 3. С. 682.

- 6. Макарова И.П., Черная Т.С., Филаретов А.А. и др. // Кристаллография. 2010. Т. 55. Вып. 3. С.429.
- Cowan L.A., Morcos R.M., Hatada N. et al. // Solid State Ionics. 2008. V. 179. P. 305.
- 8. Baranov A.I., Grebenev V.V., Bismaer U., Ludwig J. // Ferroelectrics. 2008. V. 369. P. 108.
- 9. Baranov A.I., Sinitsyn V.V., Vinnichenko V.Yu. et al. // Solid State Ionics. 1997. V. 97. P. 153.
- 10. Vrtnik S., Apih T., Klanjšek M., Jeglič P. et al. // J. Phys.: Condens. Matter. 2004. V. 16. P. 7967.
- 11. *Petříček V., Dušek M., Palatinus L. //* Institute of Physics. Praha, Czech Republic, 2005.
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129.
- 13. Dilanyan R.A., Zorina L.V., Narymbetov B.J.et al. // In press.
- 14. Makarova I.P. // Acta Cryst. B. 1993. V. 49. P. 11.