КРИСТАЛЛОГРАФИЯ, 2011, том 56, № 5, с. 944–951

## РОСТ КРИСТАЛЛОВ

УДК 548.73

# ВЫРАЩИВАНИЕ КРИСТАЛЛОВ ФОСФОПАНТЕТЕИН АДЕНИЛИЛТРАНСФЕРАЗЫ, КАРБОКСИПЕПТИДАЗЫ Т И ТИМИДИНФОСФОРИЛАЗЫ НА МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ МЕТОДОМ ВСТРЕЧНОЙ ДИФФУЗИИ В КАПИЛЛЯРЕ

© 2011 г. И. П. Куранова<sup>1</sup>, Е. А. Смирнова<sup>1</sup>, Ю. А. Абрамчик<sup>1,2</sup>, Л. А. Чупова<sup>2</sup>, Р. С. Есипов<sup>2</sup>, В. Х. Акпаров<sup>3</sup>, В. И. Тимофеев<sup>1</sup>, М. В. Ковальчук<sup>1,4</sup>

<sup>1</sup>Институт кристаллографии РАН, Москва E-mail: inna@ns.crys.ras.ru <sup>2</sup>Институт биоорганической химии РАН, Москва <sup>3</sup>ГУНИИ генетики и селекции промышленных микроорганизмов, Москва <sup>4</sup>Национальный исследовательский центр "Курчатовский институт", Москва Поступила в редакцию 27.04.2011 г.

Кристаллы фосфопантетеин аденилилтрансферазы из *Mycobacterium tuberculosis*, тимидинфосфорилазы из *Escherichia coli*, карбоксипептидазы T из *Thermoactinomyces vulgaris* и ее мутантных форм, а также кристаллы комплексов этих белков с функциональными лигандами и ингибиторами были выращены на Международной космической станции методом встречной диффузии в капилляре в экспериментальном модуле Kibo. На источнике синхротронного излучения SPring 8 от полученных кристаллов были собраны рентгенодифракционные наборы высокого разрешения, пригодные для установления пространственных структур закристаллизованных белков при высоком разрешении. Приведены условия кристаллизации белков и характеристики собранных от них рентгенодифракционных наборов. Выращенные в невесомости кристаллы давали дифракционную картину до более высокого разрешения, чем выращенные в тех же условиях на Земле.

## **ВВЕДЕНИЕ**

Выращивание кристаллов белков в условиях невесомости является одним из способов, позволяющих повысить качество дифракционной картины кристаллов [1, 2]. В невесомости благодаря отсутствию конвекционных потоков транспорт вещества к растущему кристаллу осуществляется преимущественно посредством диффузии. Отсутствие седиментации и сферическая геометрия диффузионного поля способствуют росту наиболее изометричных кристаллов. При отсутствии силы тяжести вокруг растущего кристалла устанавливается стабильный концентрационный градиент молекул белка и примесей, обеспечивающий, с одной стороны, усиленную сегрегацию примесей, с другой - позволяющий белковым молекулам включаться в кристаллизационную решетку в оптимальной ориентации [3, 4].

Благодаря стабильному концентрационному градиенту вокруг кристалла в невесомости снижается вероятность вторичной нуклеации, что позволяет избежать срастания кристаллов и образования друз. Отмечены случаи, когда в невесомости удавалось получать монокристаллы вместо двойников в наземных условиях [5].

Выращивание кристаллов белков в невесомости проводится в специально разработанном для этих целей оборудовании, но при этом используются те же методы, что и на Земле. Однако было показано, что наиболее распространенный при единичной гравитации метод диффузии паров растворителя в условиях микрогравитации имеет определенные недостатки: из-за присутствия свободной поверхности при увеличении размера кристалла в капле вокруг него возникают конвекционные потоки (конвекция Марангони), отрицательно влияющие на качество кристалла [6].

Поэтому для экспериментов в невесомости предпочитают использовать метод свободной диффузии через поверхность раздела белковый раствор/раствор осадителя, а также метод встречной диффузии. Метод свободной диффузии был использован нами при выращивании кристаллов белков на Международной космической станции (МКС) в кристаллизаторе Модуль 1 [7, 8]. В настоящей работе описано выращивание кристаллов фосфопантетеин аденилилтрансферазы из Mycobacterium tuberculosis (PPAT Mt), тимидинфосфорилазы (ТФ) из из Escherichia coli, карбоксипептидазы Т (КПТ) из Thermoactinomyces vulgaris и ее мутантных форм, а также кристаллов комплексов этих белков с функциональными лигандами и ингибиторами методом встречной диффузии в капилляре на МКС в кристаллизационном модуле Ківо японского аэрокосмического агентства (JAXA). Эксперименты проведены при участии сотрудников японского аэрокосмического агентства JAXA.

## МАТЕРИАЛЫ И МЕТОДЫ

фосфопантетеин Приготовление аденилилтрансферазы из Mycobacterium tuberculosis. Рекомбинантная PPAT Мt была приготовлена так, как описано в [9]. Авирулентный штамм-продуцент E. coli ER2566/pER PPAT культивировали в среде YT, содержащей 50 мг/мл ампициллина, и выращивали при 37°С. Клетки отделяли центрифугированием. После дезинтегрирования ультразвуком гомогенат центрифугировали. Содержащий белок супернатант фракционировали последовательно на Sepharose Q XL, на Sepharose Q HP в градиенте NaCl. Очистку белка завершали гельфильтрацией на Sepharose S 200. Раствор белка в HEPES/HCl буфере, pH 8, хранили замороженным при температуре -80°.

Рекомбинантная карбоксипептидаза T из Thermoactinomyces vulgaris (KПТwt) была получена путем клонирования гена КПТ в E. coli с последующей ренатурацией белка из телец включения и очисткой аффинной хроматографией на *n*-аминобензилянтарной кислоте, связанной с активированной сефарозой [10].

Мутантные варианты гена *pro-cpT* получали по стандартной схеме направленного ПЦР мутагенеза, наличие мутаций подтверждали секвенированием гена. Экспрессию мутантных форм проводили в клетках *E. coli* BL21(DE3)pLysS, согласно инструкции производителя Novagene. Активацию проКПТ5 проводили с использованием субтилизина. Активированную КПТ5 очищали на колонке с аффинным сорбентом CABSсефарозой и концентрировали на мембране Миллипор [11]. КПТ5 содержала следующие замены в центре первичной специфичности: G215S, A251G, T257A, D260G, T262D.

Рекомбинантная тимидинфосфорилаза E. coli была получена в бактериальном штамме E. coli BL21(DE3)/pER-Thy1. На первой стадии очистки супернатант подвергался двойному высаливанию сульфатом аммония. Дальнейшая очистка белка проведена посредством анионообменной хроматографии на сорбенте Sepharose Q HP и гидрофобной хроматографией на сорбенте Phenyl Sepharose HP [12].

Первоначальные условия кристаллизации для всех белков были найдены с использованием метода диффузии паров растворителя. Найденные условия были модифицированы применительно к методу встречной диффузии посредством варьирования концентраций белка и осадителя.

Кристаллизация методом встречной диффузии в капилляре. Использовали стеклянные капилляры фирмы Confocal Science Inc. длиной 60 мм и внут-





**Рис. 1.** Капилляр с раствором белка и с присоединенной к капилляру силиконовой трубкой, заполненной агарозным гелем.

ренним диаметром 0.3 или 0.5 мм с присоединенной к каждому из них силиконовой трубкой, наполненной агарозным гелем. Для оптимизации условий использовали капилляры с внутренним диаметром 0.3 мм, для экспериментов в невесомости и контрольных наземных экспериментов использовали капилляры с внутренним диаметром 0.5 мм.

Для заполнения капилляра каплю белкового раствора объемом 3-5 мкл (капилляр диаметром 3 мм) или 8–10 мкл (капилляр диаметром 0.5 мм) помещали на поверхность силиконированного стекла и, прикасаясь концом капилляра к капле, вводили раствор в капилляр. Удаленный от раствора конец капилляра герметически закрывали, погружая его в пластилиновую замазку. На конец капилляра с раствором надевали силиконовую трубку длиной 15 мм, заполненную 1%-ным агарозным гелем (рис. 1). При постановке эксперимента в наземных условиях раствор осадителя помещали в пробирку (так называемый GT-метод) [13]. Трубку острым лезвием укорачивали до желаемой длины, после чего капилляр с трубкой опускали в пробирку с завинчивающейся пробкой, содержащую 1 мл раствора осадителя. При этом трубка с гелем целиком погружалась в раствор (рис. 2). Через каждые 4-6 дней капилляр вынимали из пробирки и под микроскопом наблюдали за появлением кристаллов и их ростом; цифровой камерой, присоединенной к микроскопу, фотографировали кристаллы в капиллярах.

Заполнение капилляров и сборка кристаллизационного бокса JCB для отправки на МКС. Для проведения кристаллизационного эксперимента в невесомости были приготовлены растворы белков и осадителей, состав и концентрация компонентов в которых соответствовала найденным оптимальным условиям для роста кристаллов.

Предполетное заполнение капилляров приготовленными растворами, сборка, герметизация и упаковка кристаллизационных боксов японского аэрокосмического агентства (JCB – JAXA Crystallization Box) для отправки на МКС проводилась представителями японского аэрокосмического агентства JAXA по протоколу, разработанному в JAXA [14].

Стеклянный капилляр диаметром 0.5 мм и длиной 60 мм заполняли белковым раствором до



**Рис. 2.** GT-метод кристаллизации: капилляр с надетой на него гелевой трубкой в пробирке с раствором осадителя.

высоты 30 мм, один конец капилляра запечатывали пластилином, на другой одевали заполненную 1%-ным агарозным гелем силиконовую трубку, предварительно в течение суток вымоченную в растворе осадителя. В каждый из двух соединенных между собой пластиковых цилиндров емкостью 180 мкл вносили половинный объем осадителя и в каждый цилиндр вставляли заполненный белковым раствором капилляр с присоединенной к нему трубкой. При этом раствор осадителя, частично вытесняясь из цилиндра, заполнял весь его объем. Нижние отверстия обоих цилиндров (дно цилиндров) закрывали пробками с микроотверстиями для удаления воздуха и избытка раствора, затем тщательно герметизировали с помощью клея. По шесть цилиндров с капиллярами помещали в полиэтиленовые футляры, содержащие небольшое количество воды, футляры герметизировали и укладывали в контейнеры (рис. 3). Контейнеры доставляли на космодром в термоизолированной сумке. Контроль за температурой осуществляли с помощью пластиковых пакетов, содержащих гексадекан и гептадекан.

Использованные в полетах условия роста кристаллов белков и их комплексов с функциональными лигандами и ингибиторами, в которых получены кристаллы наилучшего качества, приведены в табл. 1.

Визуальная оценка морфологии кристаллов и их расположения в капиллярах. После завершения полета боксы с капиллярами просматривали и фотографировали под микроскопом Олимпус, не доставая их из пластиковых пакетов, после чего снова помещали в контейнеры и отправляли на



**Рис. 3.** Кристаллизационный бокс JAXA (JCB): шесть капилляров уложены в бокс, помещенный в герметизированный пластиковый пакет.

синхротрон SPring 8 (Япония) для распаковки и получения дифракционных наборов.

Приготовление консервирующих растворов и криорастворов для выгрузки и съемки кристаллов. Для каждого вида кристаллов были приготовлены соответствующие крио- и консервирующие растворы. Консервирующие растворы для выгрузки кристаллов содержали повышенный процент растворителя по сравнению с маточным раствором, в котором выросли соответствующие кристаллы. Растворы для заморозки кристаллов перед съемкой содержали компоненты той же концентрации, что и консервирующие растворы, плюс 20–25% глицерина.

Получение дифракционных наборов на синхро*троне SPring 8.* Для выгрузки кристалла капилляра под микроскопом разрезали таким образом, чтобы выбранный для сбора данных кристалл находился в коротком отрезке капилляра. Кристалл удаляли из капилляра, осторожно вымывая его в каплю консервирующего раствора током консервирующего раствора через плотно прижатый к капилляру наконечник пипетки. Кристалл из консервирующего раствора вылавливали нейлоновой петлей на магнитном держателе, на несколько секунд переносили в содержащий глицерин криораствор, после чего замораживали в парах азота. Дифракционные наборы при температуре 100 К собирали на синхротроне SPring-8 (Япония), станция BL41XU. В качестве детектора использовались ССД-детекторы МХ225НЕ или QUANTUM-315.

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Целью экспериментов, проведенных совместно с японским аэрокосмическим агентством ЈАХА, было выращивание в условиях невесомости методом встречной диффузии кристаллов белков высокого дифракционного качества.

Главная особенность метода встречной диффузии, предложенного Гарсиа-Руисом и Морено [15], состоит в том, что при кристаллизации смешивание раствора белка с раствором осадителя

## ВЫРАЩИВАНИЕ КРИСТАЛЛОВ ФОСФОПАНТЕТЕИН АДЕНИЛИЛТРАНСФЕРАЗЫ 947

| Белок, концентрация                                                     | Состав раствора белка                                                                                                     | Состав раствора осадителя                                                                                                                            | Размеры кри-<br>сталла, мм |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| РРАТ Мt,<br>конц. 12 мг/мл                                              | 10 мМ HEPES, pH 8.0,<br>0.15 M NaCl, 1 мМ ДТТ                                                                             | 40 мМ какодилат, pH 5.5, 20 мМ MgCl <sub>2</sub> ,<br>20 мМ [Co(NH <sub>3</sub> ) <sub>6</sub> ]Cl <sub>3</sub> , 15% MPD                            | 0.15-0.25                  |
| РРАТ Мt/CoA,<br>конц. 12 мг/мл                                          | 10 мМ HEPES, pH 8.0,<br>0.15 M NaCl, 14 мМ СоА.<br>1 мМ ДТТ                                                               | 20 мМ какодилат, pH 5.5, 5 мМ MgCl <sub>2</sub> ,<br>0.075M NaCl, 12 % МПД, 5 мМ НЕРЕЅ pH 8.<br>20 мМ гексамина кобальта, 14 мМ СоА.                 | 0.15-0.30                  |
| РРАТ Мt/DPCoA,<br>конц. 16 мг/мл                                        | 10 мМ HEPES, pH 8.0,<br>0.15 M NaCl, 14 мМ DPCoA,<br>1 мМ ДТТ                                                             | 20 мМ какодилат, pH 5.5, 5 мМ MgCl <sub>2</sub> ,<br>0.075 M NaCl, 15 %-ный МПД, 5 мМ<br>HEPES pH 8. 20 мМ гексамина кобальта,<br>14 мМ DPCoA        | 0.20-0.45                  |
| РРАТ Mt/ATP (I),<br>конц. 12 мг/мл                                      | 10 мМ HEPES, pH 8.0,<br>0.15 M NaCl, 14 мМ АТР,<br>1 мМ ДТТ                                                               | 20 мМ какодилат, pH 5.5, 5 мМ MgCl <sub>2</sub> ,<br>0.075 M NaCl, 12 %-ный МПД, 5мМ<br>HEPES pH 8. 20 мМ гексамина кобальта,<br>14 мМ АТР           | 0.20-0.35                  |
| РРАТ Мt/АТР (II),<br>конц. 10 мг/мл                                     | 10 mM HEPES, pH 8.0,<br>0.15M NaCl, 14 мМ АТР                                                                             | 0.1 M NaAc, pH 5.0, 10 мМ MgCl <sub>2</sub> , 5 мМ<br>HEPES pH 8.0, 0.075 M NaCl, 14 мМ ATP,<br>1.1 M сульфат аммония                                | 0.05-0.20                  |
| КПТ wt,<br>конц. 10 мг/мл                                               | 250 mM NaCl, 10 мM<br>Mes/NaOH, pH 6                                                                                      | 1.6 M (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 5% MPD, 50 мМ<br>Mes/NaOH pH6.0                                                              | 0.35-0.45                  |
| КПТ wt/Z-L-Lys,<br>конц. 10 мг/мл                                       | 250 мМ NaCl, 1 мМ CaCl <sub>2</sub> ,<br>10 мМ Mes/NaOH, pH 6.0                                                           | 1.4 М (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 5% MPD, 50 мМ<br>Mes/NaOH, pH 6.0, 18 мг/мл Z-L-Lys                                          | 0.15-0.35                  |
| КПТ wt/BOC-L-Leu,<br>конц. 10 мг/мл                                     | 250 мМ NaCl, 1 мМ CaCl <sub>2</sub> ,<br>10 мМ Mes/NaOH, pH 6.0                                                           | 1.4 М (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 5% MPD, 50 мМ<br>Mes/NaOH, pH 6.0, 2.4 мМ BOC-L-Leu                                          | 0.20-0.35                  |
| КПТ 5,<br>конц. 11.4 мг/мл                                              | 250 мМ NaCl, 1 мМ CaCl <sub>2</sub> ,<br>1 мМ ZnAc, 10 мМ<br>Mes/NaOH, pH 6.0                                             | 1.2 M (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 250 мМ NaCl, 5% MPD,<br>1 мМ CaCl <sub>2</sub> , 1мМ ZnAc, 50 мМ Mes/NaOH,<br>pH 6.0         | 0.1-0.4                    |
| КПТ 5, Z-L-Lys,<br>конц. 11.4 мг/мл                                     | 250 мМ NaCl, 1 мМ CaCl <sub>2</sub> ,<br>1 мМ ZnAc, 10 мМ<br>Mes/NaOH, pH 6.0                                             | 1.2 M (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 5% MPD, 50 мM<br>Mes/NaOH, pH 6.0, 1 мM CaCl <sub>2</sub> ,<br>Z-Lys 18 мг/мл                | 0.3–0.4                    |
| КПТ 5/BOC-L-Leu,<br>конц. 11.4 мг/мл                                    | 250 мМ NaCl, 1 мМ CaCl <sub>2</sub> ,<br>1 мМ ZnAc, 10 мМ<br>Mes/NaOH, pH 6.0                                             | 1.4 M (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 5% MPD, 50 мM<br>Mes/NaOH, pH 6.0, 1 мM CaCl <sub>2</sub> , 1 мM<br>ZnAc BOC-L-Leu 2.4 мг/мл | 0.3–0.4                    |
| Тимидинфосфорилаза<br>из <i>E. coli</i> , конц. 10 мг/мл                | 0.1 M KH <sub>2</sub> PO <sub>4</sub> , pH 7.3,<br>0.04% NaN <sub>3</sub>                                                 | 25 % (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 0.1 М цитрат Na, pH 5.5, 0.04% NaN <sub>3</sub>                                               | 0.15-0.4                   |
| Тимидинфосфорилаза<br>из <i>E. coli</i> /ингибитор 1,<br>конц. 17 мг/мл | 0.025 M KH <sub>2</sub> PO <sub>4</sub> , pH 7.3,<br>0.04% NaN <sub>3</sub> , 2 MM 3'-NH <sub>2</sub> -2'-<br>F-2',3'-ddT | 30% (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 0.1 М цитрат Na, pH 5.5,<br>0.04% NaN <sub>3</sub> , 2 мМ 3'-NH <sub>2</sub> -2'-F-2',3'-ddT   | 0.15-0.5                   |
| Тимидинфосфорилаза<br>из <i>E. coli</i> /ингибитор 2,<br>конц. 35 мг/мл | 0.05 M KH <sub>2</sub> PO <sub>4</sub> , pH 7.3,<br>0.04% NaN <sub>3</sub> , 4 мМ 3'-NH <sub>2</sub> -<br>2',3'-ddT       | 25%, (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> , 0.1 М цитрат Na, pH 5.5,<br>0.04% NaN <sub>3</sub> , 4 мМ 3'-NH <sub>2</sub> -2',3'-ddT       | 0.5                        |

| Габлица 1. | Условия кристаллизации | белков в невесомости в полетах | JAXA1–JAXA3 |
|------------|------------------------|--------------------------------|-------------|
|------------|------------------------|--------------------------------|-------------|

происходит не непосредственно через поверхность раздела между растворами белка и осадителя, а через слой геля, помещенного между ними. Сам процесс кристаллизации происходит в капилляре. Благодаря введению гелевой пробки замедляется процесс диффузии осадителя в белковый раствор и даже при единичной гравитации в капилляре уменьшаются конвекционные потоки [4]. Вдоль капилляра устанавливаются разнонаправленные концентрационные градиенты белка и осадителя. Кристаллы, появляющиеся на разных расстояниях от входа в капилляр, растут при разных соотношениях концентраций белка и осадителя, благодаря чему в одном капилляре удается протестировать несколько условий роста.

Для проведения экспериментов по росту кристаллов методом встречной диффузии в невесомости испанскими исследователями был предложен кристаллизационный бокс Granada Crystallization box (**GCB**) [16]. В GCB кристаллы выращивали непосредственно в тонкостенном рентгеновском капилляре, один конец которого был запечатан вакуумной смазкой, а другой погружен в пропитанный буферным раствором слой агарозного геля, находящегося в пластиковом боксе и покрытого раствором осадителя. Пластиковый бокс вмещал шесть капилляров.

Японские исследователи предложили модифицированный вариант кристаллизационного

КРИСТАЛЛОГРАФИЯ том 56 № 5 2011



**Рис. 4.** Кристаллы РРАТ *Mt*: а – свободного фермента, б – комплекса с DPCoA.

устройства для метода встречной диффузии, названного JAXA Crystallization box (JBC) [14]. Вместо хрупких рентгеновских капилляров для кристаллизации используются толстостенные стеклянные капилляры диаметром 0.3 или 0.5 мм. Агарозный гель полимеризуется в длинной силиконовой трубке, после чего трубка с гелем разрезается на части длиной до 1.5 мм. Отрезок трубки с гелем одевается на конец капилляра. Капилляр с трубкой, через которую должен диффундировать осадитель, погружают в малый объем раствора осадителя, находящегося в цилиндрической трубке, оба отверстия которой тщательно герметизируют. Длину одетой на капилляр силиконовой трубки с гелем можно изменять, что позволяет регулировать начальное время кристаллизации. Модифицированный таким образом вариант метода имеет ряд преимуществ. Поскольку трубка с гелем присоединяется отдельно к каждому капилляру, для них можно выбрать разные осадители. Малый объем геля в трубке позволяет уменьшить объем осадителя, необходимый для проведения эксперимента. Последнее обстоятельство особенно важно в тех случаях, когда для получения кристаллов комплексов белка с нековалентно связанными лигандами в раствор осадителя необходимо добавлять дорогостоящий лиганд.

Для оценки изменений концентрации белка и осадителя в любой точке капилляра в зависимости от времени Н. Tanaka и др. была разработана расчетная программа (1-*D* simulation program) [13]. В качестве математической модели для описания диффузии белка и осадителя в геле и в капилляре были использованы дифференциальные уравнения, описывающие одномерный диффузионный процесс, причем коэффициент диффузии оценивается, исходя из данных о молекулярном весе и исходной концентрации белка и осадителя. Рассчитанные таким методом концентрации белка и осадителя, при которых появились кристаллы, можно использовать как стартовые условия кристаллизации для последующих экспериментов.

В данной работе первоначальный поиск условий кристаллизации белков проводили методом диффузии паров растворителя в висячей капле. Найденные условия оптимизировали применительно к методу встречной диффузии в капиллярах диаметром 0.3 мм, в которые вносили по 3 мкл белкового раствора, после чего капилляры помещали в пробирку с завинчивающейся крышкой, содержащую 0.5–1.0 мл раствора осадителя.

Кристаллизационные эксперименты на МКС проводили в экспериментальном модуле Kibo японского аэрокосмического агентства, используя кристаллизационный бокс JBC [14].

На МКС в период полетов JAXA1-JAXA3 методом встречной диффузии были выращены кристаллы PPAT Мt и ее комплексов с функциональными лигандами, карбоксипептидазы T из КПТ wt, ее мутантной формы КПТ5 со встроенным центром первичной специфичности карбоксипептидазы B, тимидинфосфорилазы из *E. coli*, а также кристаллы комплексов этих белков.

В табл. 1 перечислены закристаллизованные белки и их комплексы с лигандами и приведены условия кристаллизации, при которых выросли кристаллы, использованные при получении дифракционных наборов. Фотографии ряда кристаллов представлены на рис. 4–7.

РРАТ из *Мусовасterium tuberculosis* участвует в процессе биосинтеза кофермента A (CoA), катализируя предпоследнюю стадию синтеза – образование дефосфокофермента A (DPCoA) из 4'-фосфопантетеина и АТФ. Катализируемая РРАТ реакция является ключевой, ее скорость регулируется конечным продуктом цикла – коферментом А. Последний, образуя комплекс с РРАТ, ингибирует действие фермента. Поскольку кофермент A необходим для жизнедеятельности вызывающей туберкулез микобактерии, РРАТ представляет удобную мишень для приготовления антитуберкулезных лекарств, особенно принимая во внимание, что в организмах млекопитающих биосинтез кофермента A осуществляется

КРИСТАЛЛОГРАФИЯ том 56 № 5 2011





**Рис. 5.** Кристаллы РРАТ *Мt*: а – комплекса с СоА, б – комплекса с АТФ.

бифункциональным ферментом, отличным от бактериальных РРАТ. Наряду с кристаллами свободного фермента на МКС были получены кристаллы комплексов РРАТ с природным ингибитором коферментом A, с продуктом реакции – дефосфокоферментом A и с субстратом – АТФ.

АТФ является одним из субстратов катализируемой РРАТ- реакции. Комплекс РРАТ *Mt*/АТФ был выращен при использовании двух различных осадителей: сульфата аммония в одном случае и 2-метил-2,4-пентандиола (**МПД**) в присутствии гексамина кобальта в другом. Сравнение структур кристаллов, выращенных с разными осадителями, позволит определить, насколько ослабление водородных связей, вызванное присутствием органического растворителя (МПД), влияет на характер межмолекулярных связей в кристаллической решетке. Комплекс РРАТ/АТФ был закристаллизован в присутствии ионов магния, которые необходимы для протекания реакции.

Данные о строении комплекса PPAT/CoA важны для понимания механизмов ингибирования фермента. СоА не принимает непосредственного участия в катализируемой PPAT-реакции, но является природным ингибитором фермента. Когда

КРИСТАЛЛОГРАФИЯ том 56 № 5 2011





**Рис. 6.** Кристаллы карбоксипептидазы Т:  $a - K\Pi T$  wt,  $6 - K\Pi T$  5.

концентрация СоА повышается, он образует комплекс с РРАТ, тем самым прерывая процесс биосинтеза на предпоследней стадии.

Ранее при первоначальном поиске условий кристаллизации методом диффузии паров растворителя авторами были выращены кристаллы комплекса РРАТ Мt/CoA, с использованием которых пространственная структура была установлена при разрешении 2.1 Å [9]. Собранные в настоящей работе наборы дают возможность повысить разрешение данной структуры до 1.59 Å.

Установление пространственной структуры свободного РРАТ и его комплексов с субстратами и продуктами реакции позволит проследить конформационные изменения, сопровождающие ферментативную реакцию, что необходимо для понимания ее механизма. Кроме того, данные о пространственной структуре белка-мишени и его комплексов являются структурной основой для направленного поиска специфических ингибиторов фермента — потенциальных антитуберкулезных лекарств.

Рекомбинантная бактериальная карбоксипептидаза из *Thermoactinomyces vulgaris* (КПТ) представляет особый интерес как удобный объект для



**Рис. 7.** Кристалл свободной тимидинфосфорилазы из *E. coli.* 

изучения структурных основ специфичности этого семейства ферментов. Направленное изменение специфичности важно не только в теоретическом плане для понимания особенностей ферментативного катализа, но и является одной из актуальных задач инженерной энзимологии.

КПТ имеет строение активного центра, сходное с карбоксипептидазами А и В млекопитающих, но отличается от них более широкой специфичностью, отщепляя, хотя и с различной скоростью, С-концевые остатки положительно заряженных, отрицательно заряженных, а также гидрофобных аминокислот. Мутант КПТ5 содержит пять замен в субстрат-связывающем центре S1', что делает этот центр сходным по строению с S1'центром карбоксипептидазы В. Однако при исследовании свойств мутанта оказалось, что, несмотря на введенные замены, КПТ5 сохраняет специфичность карбоксипептидазы Т. Этот результат подтверждает предположение о том, что специфичность фермента зависит не только от природы аминокислотных остатков, непосредственно контактирующих с субстратом, но и от остатков, которые удалены от связанного субстрата.

Чтобы сравнить расположение боковых цепей аминокислотных остатков, связывающихся в S1'центре в обеих формах фермента, были выращены пригодные для структурного исследования кристаллы комплексов КПТwt и КПТ5 с производными лейцина и лизина (BOC-L-Leu, Z-L-Lys).

Таблица 2. Характеристики выращенных в невесомости белковых кристаллов и собранных от них рентгенодифракционных наборов

| Кристаллы<br>белков  | Разрешение, Å            |       | Простран-                                | Параметры ячейки,                                                       | Полнота   | Rmerge | I/sisses |
|----------------------|--------------------------|-------|------------------------------------------|-------------------------------------------------------------------------|-----------|--------|----------|
|                      | наземн.                  | косм. | ствення<br>группа                        | Å, град                                                                 | набора, % | (1), % | I/sigma  |
| PPAT                 | кристаллы<br>отсутствуют | 1.6   | H32                                      | a = b = 98.67, c = 113.85,<br>$\alpha = \beta = 90.00, \gamma = 120.00$ | 91.0      | 4.4    | 48.538   |
| PPAT/CoA             | 1.8                      | 1.4   | H32                                      | a = b = 98.88, c = 114.86,<br>$\alpha = \beta = 90.00, \gamma = 120.00$ | 98.2      | 4.8    | 58.095   |
| PPAT/dpCoA           | 1.8                      | 1.5   | H32                                      | a = b = 99.22, c = 115.85,<br>$\alpha = \beta = 90.00, \gamma = 120.00$ | 98.8      | 4.9    | 53.602   |
| PPAT/ATP             | 1.8                      | 1.5   | H32                                      | a = b = 99.75, c = 114.78,<br>$\alpha = \beta = 90.00, \gamma = 120.00$ | 95.5      | 6.6    | 35.159   |
| PPAT/ATP + Mg        | >5                       | 1.81  | P321                                     | a = b = 106.472, c = 71.323,<br>$\alpha = \beta = 90, \gamma = 120$     | 91.1      | 6.7    | 15.786   |
| КПТ5                 | 1.4                      | 1.09  | <i>P</i> 6 <sub>3</sub> 22               | a = b = 158.101, c = 104.584,<br>$\alpha = \beta = 90, \gamma = 120$    | 97.3      | 4.5    | 20.306   |
| КПТ5/Z-L-Lys         | 1.9                      | 1.4   | <i>P</i> 6 <sub>3</sub> 22               | a = b = 158.243, c = 104.657,<br>$\alpha = \beta = 90, \gamma = 120$    | 98.2      | 6.3    | 46.182   |
| КПТ5/BOC-L-<br>Leu   | 1.7                      | 1.4   | <i>P</i> 6 <sub>3</sub> 22               | a = b = 157.866, c = 104.516,<br>$\alpha = \beta = 90, \gamma = 120$    | 96.4      | 5.1    | 49.325   |
| КПТ wt/Z-L-Lys       | кристаллы<br>отсутствуют | 1.21  | <i>P</i> 6 <sub>3</sub> 22               | a = b = 158.093, c = 104.072,<br>$\alpha = \beta = 90, \gamma = 120$    | 98.5      | 10.6   | 12.602   |
| КПТ wt/BOC-L-<br>Leu | кристаллы<br>отсутствуют | 1.12  | <i>P</i> 6 <sub>3</sub> 22               | a = b = 157.914, c = 104.068,<br>$\alpha = \beta = 90, \gamma = 120$    | 99.0      | 8.3    | 18.790   |
| ТΦ                   | >2                       | 1.52  | <i>P</i> 4 <sub>3</sub> 2 <sub>1</sub> 2 | a = b = 129.951, c = 67.809,<br>$\alpha = \beta = \gamma = 90$          | 97.0      | 5.7    | 41.443   |
| ТФ/ингибитор 1       | >2                       | 1.7   | <i>P</i> 4 <sub>3</sub> 2 <sub>1</sub> 2 | a = b = 129.691, c = 67.905,<br>$\alpha = \beta = \gamma = 90$          | 99.5      | 5.2    | 59.295   |
| ТФ/ингибитор 2       | кристаллы<br>отсутствуют | 1.85  | <i>P</i> 4 <sub>3</sub> 2 <sub>1</sub> 2 | a = b = 130.561, c = 68.160,<br>$\alpha = \beta = \gamma = 90$          | 99.9      | 14.1   | 14.892   |

КРИСТАЛЛОГРАФИЯ том 56 № 5 2011

Определение пространственной структуры КПТ и ее мутантных форм, содержащих замены в субстрат-связывающем центре и его окружении даст возможность выявить удаленные структурные детерминанты специфичности фермента. Выращенные ранее в наземных условиях кристаллы КПТ5 дифрагировали до разрешения 2.1 Å [11]. Выращенные в невесомости кристаллы КПТ5 дифрагировали до разрешения 1.09 Å.

ТФ катализирует катаболическую реакцию фосфоролиза пиримидиновых нуклеозидов в бактериальных клетках. ТФ используется при синтезе пуриновых и пиримидиновых дезоксинуклеотидов, многие из которых являются лекарственными препаратами.

Тимидинфосфорилаза играет важную роль в клетке, будучи стимулятором роста новых кровеносных сосудов. Уровень этого фермента заметно повышен в клетках ряда опухолей. Поэтому в настоящее время ведется активный поиск специфических ингибиторов тимидинфосфорилазы и изучается их взаимодействие с ферментом. Кристаллы выращивали, модифицируя условия, приведенные в [17]. В данной работе наряду с кристаллами свободного белка выращены кристаллы комплексов ТФ с двумя ингибиторами — 3-амино-2-фтор-2,3дидезокситимидином (ингибитор 1) и 3-амино-2,3-дидезокситимидином (ингибитор 2).

Как уже упоминалось, параллельно в тех же условиях и в том же оборудовании, которое применялось на МКС, были выращены кристаллы на Земле.

Морфологию наземных и космических кристаллов оценивали сначала визуально под микроскопом. По морфологии наземные и космические кристаллы в большинстве случаев не отличались друг от друга. Дифракционные наборы от космических и наилучших наземных кристаллов были собраны на синхротроне SPring 8 при температуре 100 К. Некоторые характеристики собранных дифракционных наборов представлены в табл. 2.

Все космические кристаллы дифрагировали до более высокого разрешения. В некоторых случаях, например, в случае комплекса тимидинфосфорилазы с 3-амино-2,3-дидезокситимидином, в наземных капиллярах кристаллы отсутствовали, а выросшие в невесомости кристаллы дифрагировали до 1.85 Å. Все наборы, собранные от космических кристаллов, имели лучшие характеристи-

КРИСТАЛЛОГРАФИЯ том 56 № 5 2011

ки, чем соответствующие наземные, и оказались пригодными для установления пространственной структуры соответствующих белков при высоком разрешении.

Работа выполнена при финансовой поддержке ЦНИИМаш Роскосмоса и Российского фонда фундаментальных исследований (грант № 10-04-01541).

Авторы выражают благодарность японским коллегам M. Sato, H. Tanaka, K. Inaka и их сотрудникам за предоставленные консультации, заправку и сборку кристаллизационного бокса JCB, за помощь при получении дифракционных наборов на синхротроне SPring 8.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. McPherson A. // Cryst. Rev. 1996. V. 6. № 2. P. 157.
- 2. *Куранова И.П.* // Поверхность. Рентген., синхрофазотрон. и нейтр. исслед. 2004. № 6. Р. 6.
- 3. Chernov A.A. // Acta Cryst. A. 1998. V. 54. 859.
- Otalora F., Novella M.I., Gavira J.A. et al. // Acta Cryst. D. 2001. V. 57. P. 412
- Tanaka H., Umehara T., Inaka K. et al. // Acta Cryst. F. 2007. V. 63. P. 1.
- 6. *Kundrot G.E., Juge R.A., Pussey M.L. et al.* // Crystal Growth Des. V. 1. P. 87.
- 7. Smirnova E.A., Kislitsyn Y.A., Sosfenov N.I. et al. // Crystallography reports. 2009. V. 54. P. 901.
- 8. Timofeev V.I., Chuprov-Netochin R.N., Bezuglov V.V. et al. // Acta Cryst. 2010. V. F66. P. 5.
- 9. *Timofeev V.I., Smirnova E.A., Chupova, L.A. et al.* // Crystallography reports. 2010. V. 55. P. 1050.
- 10. Акпаров В.Х., Гришин А.М., Юсупова М.П. и др. // Биохимия. 2007. Т. 72. С. 515.
- 11. Akparov V.Kh., Grishin A.M., Timofeev V.I. et al. // Crystallography Reports. 2010. V. 55. P. 802.
- 12. Есипов Р.С., Гуревич А.И., Мирошников А.И., Чувиковский Д.В. Патент № 2188234.
- 13. Tanaka H., Inaka K., Sughiyama Sh. et al. // J. Synchrotron Rad. 2004. V. 11. P. 45.
- 14. Takahashi S., Tsurumura T. Aritake K. et al. // Acta Cryst. F. 2010. V. 66. P. 846.
- Garcia-Ruiz J.M., Moreno A. // Acta Cryst. D. 1994. V. 50. P. 484.
- 16. Garcia Ruiz J.M., Gonzalez-Ramirez L.A., Gavira J.A. et al. // Acta Cryst. D. 2002. V. 58. P. 1638.
- 17. Cook W.J., Koszalka G.W., Hall W.W. et al. // J. Biol. Chem. 1987. V. 262. P. 3788.