= ЖИДКИЕ КРИСТАЛЛЫ ==

УДК 534.535

О ВЗАИМОСВЯЗИ РЕЛАКСАЦИОННЫХ И ГИДРОДИНАМИЧЕСКИХ ЯВЛЕНИЙ В НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛАХ

© 2011 г. О. А. Капустина

Акустический институт РАН, Москва E-mail: oakapustina@yandex.ru Поступила в редакцию 17.05.2010 г.

Экспериментально обосновано предсказание теории о взаимосвязи релаксационных процессов и гидродинамических явлений, наблюдаемых в нематических жидких кристаллах (НЖК) при бинарном акустическом воздействии на частотах МГц-диапазона. По результатам измерений скорости стационарного акустического потока НЖК в плоском капилляре с гомеотропными граничными условиями, индуцированного одновременным воздействием когерентных волн сжатия и сдвига, доказано существование нового, релаксационного механизма генерации потоков в тонких слоях мезофазы. Впервые апробирована модель, которая учитывает вклад в формирование потока не только классических конвективных, но и нелинейных релаксационных напряжений. Показано, что в рассматриваемой области частот только такая модель дает адекватное экспериментальным данным описание этого явления.

ВВЕДЕНИЕ

Известно, что воздействие акустических волн на нематические жидкие кристаллы (НЖК) приводит к неравновесному состоянию среды, возбуждая внутренние степени свободы. Долговременные релаксации, являющиеся проявлением этих неравновесных процессов, привлекают к себе внимание исследователей не одно десятилетие [1, 2]. Однако до сих пор рассматривался только один аспект проблемы: влияние структурных изменений в НЖК в волновых полях на наблюдаемые в опытах акустические аномалии вблизи точки фазового перехода мезофазы в изотропную жидкость, а именно: дисперсию скорости, аномальное поглощение и акустическую анизотропию. Эти аномалии получили объяснение в рамках неравновесной термодинамики: дисперсию скорости и аномальное поглощение связывают с релаксацией параметра ориентационного порядка и его флуктуаций в поле давления звуковой волны, а акустическую анизотропию - со структурной релаксацией в поле деформаций в звуковой волне [3]. В последние годы была сформулирована новая концепция о взаимосвязи релаксационных процессов с гидродинамическими явлениями, инициируемыми акустическим воздействием в НЖК, и их значимости в механизме генерации стационарных акустических потоков в тонких слоях мезофазы на частотах МГц-диапазона [4]. Особый интерес к этой проблеме сегодня обусловлен развитием исследований, направленных на создание моделей ориентационного воздействия ультразвука на макроструктуру НЖК в слоях с различными граничными условиями [5].

Современная теоретическая и экспериментальная ситуация в акустике ЖК такова, что универсальной модели, которая описывает акустически индуцированные ориентационные явления в НЖК, до сих пор нет, но наиболее обоснованными представляются модели, постулирующие гипотезу о потоковом механизме искажения макроструктуры слоя мезофазы [6]. Среди факторов, способных привести к образованию стационарных акустических потоков в слое НЖК, называют поглощение звука [7], радиационное давление [8], взаимодействие волн [9–14]. Анализ несостоятельности большинства известных моделей механизма генерации потоков в НЖК [7–14] дан в обзоре [15], а расхождение следующих из этих моделей выводов с данными опытов в рамках классической гидродинамики НЖК Лесли–Эриксена [16] пока объяснения не находит. Это может быть связано с тем, что при теоретических построениях, базирующихся на таком подходе, бинарный характер воздействия ультразвука на НЖК в уравнениях движения учитывался только через конвективные напряжения вида $\sigma_{ij} \sim -\rho v_i v_j$. При этом коэффициенты вязкости Лесли α_n [16] полагались постоянными, и процессы структурной релаксации не рассматривались [7-10, 14]. (Здесь ρ – плотность НЖК, v_i и v_i – колебательные скорости.) В действительности значения этих коэффициентов зависят от ориентационной упорядоченности НЖК, и при ее изменении в акустическом поле в условиях сжатия слоя или при его сдвиговой деформации также меняются [16]. Релаксационное запаздывание структурных изменений НЖК и изменений его коэффициентов

Рис. 1. Упрощенная схема эксперимента: *1* и 2 – стеклянные пластины, составляющие плоский капилляр, 3 – НЖК, 4 – зеркальное покрытие, 5 – адгезионный слой, 6 – излучатель продольных волн, 7 – излучатель волн сдвига, 8 – звукопровод.

вязкости δα относительно деформации среды в упругих и вязких волнах приводит к стационар-

ным нелинейным напряжениям $\sigma_{ij}^{(r)}$, квадратичным по амплитуде воздействия. Впервые влияние этого фактора в области ультразвуковых частот учтено в [4], где построена модель, которая описывает "бинарный" механизм генерации стационарных акустических потоков в условиях воздействия на НЖК упругих и вязких волн с учетом релаксационных нелинейных напряжений.

В настоящей работе обобщены результаты экспериментальных и теоретических исследований стационарных акустических потоков, которые формируются в плоском капилляре с гомеотропными граничными условиями при одновре-

КАПУСТИНА

менном воздействии на НЖК когерентных волн сжатия и сдвига, и впервые апробирована модель, базирующаяся на идее о бинарной природе механизма этого явления и учитывающая влияние нелинейных релаксационных напряжений.

НОВАЯ МОДЕЛЬ И ЕЕ АНАЛИЗ

Модель [4] построена в рамках новой концепции о бинарной природе механизма генерации потоков в НЖК для области частот, где длина λ_{ν} вязкой волны значительно меньше толщины слоя, так что выполняются следующие неравенства: kd < 1, $qd \gg 1$. Здесь k – волновое число в ультразвуковой волне, $k = \omega/c$, $\omega = 2\pi f$, f – частота ультразвука, – скорость ультразвука в НЖК, *d* – толщина слоя, q — волновое число в вязкой волне, $q = (\omega \rho / 2\eta_2)^{1/2}, \eta_2 -$ вязкость НЖК в вязких волнах, распространяющихся вдоль или ортогонально оси кристалла, $\eta_2 = (\alpha_2 + \alpha_4 + \alpha_5)/2$ [16]. Геометрия задачи показана на рис. 1. Координаты z = 0 и z = d определяют нижнюю и верхнюю границы слоя НЖК, ось z направлена по нормали к его плоскости, а ось х совпадает с направлением смещения частиц среды в вязких волнах. Смещения частиц в поле упругих волн U_z и в вязких волнах U_x заданы в следующем виде: $U_z = U_{z0} \sin kz \sin \omega t$ й $U_x = U_{x0} \sin [\omega t - q(d-z)] \exp[-q(d-z)]$. При построении теории предполагалось, что вдоль слоя НЖК гидродинамические переменные меняются медленно по сравнению с их изменениями по его толщине. Это позволяет в уравнении движения не учитывать производные по х и рассматривать только одну отличную от нуля составляющую скорости потока $V_x(z) = V$, которую определяют при решении уравнения вида $\eta_2 \partial^3 V / \partial z^3 = -\partial^2 [\sigma_{xz}^{(2)} + \sigma_{xz}^{(r)}] / \partial z^2$, по-строенного при условии баланса возникающих в НЖК напряжений. Здесь $\sigma_{xz}^{(2)}$ – стационарные на-пряжения, появление которых связано с конвекцией скорости и угла поворота молекул, описывающего отклонение директора НЖК от оси z в вязких волнах; $\sigma_{xz}^{(r)}$ – стационарные нелинейные релаксационные напряжения, которые получены при усреднении микронапряжений, вызванных вращением отдельных молекул при внешнем воздействии и их тепловым движением, по неравновесному угловому распределению ориентации молекул и одновременно по периоду колебаний в упругой волне, на основе молекулярной модели НЖК [17]. В области частот, ограниченных сверху неравенством $\eta_2 \omega q d / \rho c^2 < 1$, решение уравнения для скорости стационарного акустического потока в направлении оси х имеет следующий вид:

$$V_{x}(z) = V_{x}(z)^{(c)} + V_{x}(z)^{(r)},$$
(1)

где $V^{(c)} = \{ [\rho \omega^2 U_{x0} U_{z0} (1 - \alpha_2/\eta_2) \sin kd] / 4q\eta_2 \}$ $\{ F_1(q, z, d) \exp[-q(d - z)] + 2z/d - 3z^2/d^2 \}; V^{(r)} =$

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

 $= [kqU_{x0}U_{z0} (\sigma_1 + 2/3\sigma_2)/4q\eta_2] \cos kd(1 + 4\langle P_4 \rangle/3\langle P_2 \rangle)$ $\{F_2(f_1, f_2, q, d, z) \exp[-q(d-z)] + F_3(f_1, f_2, d, z)\} - \text{co-}$ ставляющие скорости, обусловленные соответственно конвективными и релаксационными нелинейными напряжениями; $P_m(L_1)$ – полиномы Лежандра, L_1 – проекция единичного вектора L, который определяет ориентацию длинных осей молекул на ось кристалла **n**, $f_1 = \omega \tau (1 + \omega \tau) / (1 + \omega^2 \tau^2)$ $\mu f_2 = = \omega \tau (1 + \omega \tau) / (1 - \omega^2 \tau^2), \tau$ – время релаксации параметра ориентационного порядка НЖК, σ_1, σ_2 – коэффициенты, имеющие размерность напряжений. Формульное представление для коэффициентов σ_1 , σ_2 и функций F_1 , F_2 , F_3 можно найти в [4]. Отметим особенности механизма формирования неоднородного акустического потока в НЖК при бинарном воздействии сжатия в упругих и сдвига в вязких волнах, предсказанные теорией: на верхней (подвижной) границе слоя НЖК конвективные и релаксационные напряжения имеют максимальные значения, а их отношение зависит от толщины слоя и частоты ультразвука¹; по мере удаления от этой границы оба вида напряжений убывают по экспоненциальному закону; образование потока обусловливает процессы в тонком слое (порядка длины вязкой волны в НЖК), который сосредоточен вблизи подвижной границы ячейки; в пределах пограничного слоя напряжения разгоняющие потоки наиболее велики, поэтому их скорость достигает максимального значения $|V_{\max}|$; в слоях толщиной 60 и 10 мкм, где значение параметра qd составляет 36 и 6 соответственно, пограничная область в более тонком слое захватывает большую его часть, и изменения скорости потока – более плавные. На рис. 2 представлено семейство кривых, иллюстрирующих теоретическую зависимость приведенной скорости потока $V/V_{\rm max}^{(c)}$ от координаты z/dдля слоев НЖК толщиной 10 и 60 мкм на частоте 3 МГц. Расчеты выполнены для следующих ситуаций: учтены а) релаксационная и конвективная составляющие скорости потока (кривые 1 и 2; толщина слоя 10 и 60 мкм соответственно); б)

только конвективная составляющая потока ($\sigma_1 = \sigma_2 = 0$) (кривые *3* и *4* отвечают значениям *d*, равным 10 и 60 мкм) [4]. Значения скорости *V* нормированы на максимальное (по модулю) значение скорости $V_{\text{max}}^{(c)}$, которое рассчитано с учетом только конвективных напряжений в НЖК. Анализ этих данных позволяет выявить целый ряд характерных особенностей явления:

 – релаксационные напряжения почти не меняет конфигурацию потока, но влияют на величину его скорости;

$$\left| \sigma_{xz}^2 / \sigma_{xz}^{(r)} \right|_{z=d} = qk(\sigma_1 + 2/3\sigma_2)(1 + 4\langle P_4 \rangle/3\langle P_2 \rangle)f_1 / [\rho\omega^{(2)}(1 - \alpha_2/\eta_2) \operatorname{tg} kd].$$

10 КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

Рис. 2. Распределения приведенной скорости акустического потока в слоях НЖК толщиной 10 и 60 мкм на частоте 3 МГц; расчеты выполнены с учетом конвективной и релаксационной составляющей скорости потока (*I и 2*) или только конвективной составляющей скорости потока (*3 и 4*). Нормирование проведено по максимальному (по модулю) значению скоро-

сти $V_{\text{max}}^{(c)}$, рассчитанному с учетом вклада только конвективных напряжений в НЖК.

 уменьшение толщины слоя НЖК ведет к увеличению роли релаксационных напряжений в механизме формирования потока;

– симметрия в распределении скорости потока по толщине слоя НЖК по отношению к средней плоскости с координатой z = 0.5d отсутствует, что вызвано асимметрией движения границ ячейки, при этом точка, где $V/V_{max}^{(c)} = 0$, смещена в сторону подвижной границы;

— направление акустического потока в слое НЖК меняется в точке с координатой $z_0 = 2/3$, где вязкие волны исчезают, и роль пограничных эффектов падает; значение z_0 определяется из следующего условия: $F_3 = (f_1 - f_2)[2z/d - 3(z/d)^2] = 0$ [4].

Для постановки опытов, направленных на апробацию модели [4], необходимо выявить области влияния двух независимых акустических механизмов генерации потока относительно значений параметров d и f. Соответствующие сочетания этих параметров можно подобрать, сопоставляя следующие из теории относительные вклады конвективных и релаксационных напряжений в механизм формирования акустического потока при различных значениях частоты ультразвука и толщины слоя НЖК. На рис. За представлено семейство графиков, рассчитанное по формуле (1) для частот 3 и 29 МГц, которые демонстрируют характер взаимосвязи отношения скоростей релаксационного и конвективного потоков $V_{\max}^{(r)}/V_{\max}^{(c)}$ с амплитудами колебаний $U_{x0}U_{z0}$. Видно, что в рассмотренном интервале значений U_{x0} , U_{z0} , d, f это отношение при изменении комбинации амплитуд колебаний $U_{x0}U_{z0}$ сохраняет постоянное значение, определяемое толщиной слоя НЖК и частотой ультразву-

Рис. 3. Влияние амплитуд колебаний на отношение релаксационной и конвективной составляющих скорости потока НЖК для частот 3 МГц (толщина слоя 10 и 60 мкм, графики 1 и 2 соответственно) и 29 МГц (толщина слоя 60 и 10 мкм, графики 3 и 4) (а). Взаимосвязь максимальной скорости потока в НЖК с амплитудами сдвиговых и продольных колебаний для значений параметров d и f, отвечающих областям "действия" различных механизмов релаксационного и конвективного. Данные опытов: • – частота 3 МГц, d = 10 мкм; • – частота 29 МГц, d = 60 мкм. Теория: графики 1 (f = 3 МГц, d = 10 мкм) и 2 (f = 29 МГц, d = 60 мкм) (б).

ка. Результаты этих расчетов показывают, что вклад нелинейных релаксационных напряжений в механизм формирования потока наиболее значим в тонких слоях НЖК (10 мкм) и на низких частотах (3 МГц), тогда как в толстых слоях (60 мкм) и на высоких частотах (29 МГц) преобладают конвективные напряжения. В свете этих выводов можно утверждать, что именно при таких сочетаниях значений d и f удается разделить сферы влияния различных механизмов генерации потока в НЖК и провести корректное сопоставление теоретических значений полной скорости потока $V_{\max} = V_{\max}^{(r)} + V_{\max}^{(c)}$ и экспериментальных данных. (Значения $V_{\max}^{(r)}$ и $V_{\max}^{(c)}$ отвечают максимуму функций $V^{(r)}(z)$ и $V^{(c)}(z)$, которые соответственно представляют распределение скоростей релаксационного и конвективного потоков по оси z.)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальные исследования проводились на типичном представителе НЖК: эвтектическая смесь МББА (4-метоксибензилиден-4'-бутиланилин) и ЭББА (4-этоксибензилиден-4'-бутиланилин). Такой смесью заполняли ячейку в виде плоского капилляра, составленного пластинами 1 и 2 из стекла. Ориентация молекул НЖК в слое 3 – гомеотропная: "директор" п НЖК [16] расположен вдоль нормали к плоскости слоя (ось z) (рис. 1). Ориентационное состояние макроструктуры слоя контролировали методом коноскопии. Зеркальное покрытие 4 на пластине 2 ячейки позволяет вести эти наблюдения в отраженном свете. Через слой салола 5 ячейка связана со звукопроводом 6. Излучатели продольных волн (кварц Х-среза) 7 и волн сдвига (кварц У-среза) 8 расположены на торце этого звукопровода. Положение излучателя волн сдвига таково, что колебания происходят вдоль оси х. Амплитуды колебаний сдвига U_{x0} и продольных колебаний U_{z0} на границе слоя НЖК с координатой z = 0 контролировали путем измерения электрического напряжения, подводимого к излучателям, и его пересчета по известной методике [18] с учетом добротности колебательной системы.

Эксперименты ставились следующим образом: ячейку заполняли НЖК, содержащим мелкие частицы бронзовой пудры, устанавливали с помощью прокладок определенную толщину слоя и контролировали ориентационное состояние его макроструктуры. Далее к излучателям подводили электрическое напряжение и повышали его до тех пор, пока не достигали уровня воздействия, при котором в ячейке возникает движение взвешенных в НЖК микрочастиц. Наблюдение потоков проводили с помощью призмы полного внутреннего отражения и микроскопа, применяя боковую подсветку микрочастиц узким пучком света, что позволяет исследовать распределение скоростей потока в освещенной плоскости. (Элементы оптического блока установки на рис. 1 не показаны). Отслеживая через окуляр микроскопа движение микрочастиц, освещаемых этим пучком и фотографируя их с определенной экспозицией, по длине треков этих микрочастиц на фотографии определяли локальные значения скорости потока. Фокусируя объектив микроскопа на различные "глубины" слоя НЖК и "переходя" от верхней пластины ячейки к ее нижней пластине, получали такие данные на разных участках слоя.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Проведены две серии опытов по определению локальных скоростей потока в двух "предельных" случаях, когда, согласно расчетам и предсказа-

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

нию теории, значения толщины слоя и частоты ультразвука отвечают областям действия различных механизмов генерации потока в НЖК: релаксационного (d = 10 мкм, f = 3 Мгц) или конвективного (d = 60 мкм, f = 29 МГц). По результатам измерений, проведенных на разных участках слоя, были установлены максимальные значения скорости потока $V_{\rm max}$ при различных амплитудах колебаний и значениях толщины слоя НЖК и частоты ультразвука, которые соответствуют условиям реализации этих "предельных" случаев. Совокупность экспериментальных данных о взаимосвязи максимальной скорости потока V_{max} с амплитудами сдвиговых и продольных колебаний, представленных в виде комбинации $U_{x0}U_{z0}$, на частотах 29 и 3 МГц приведена на рис. 36. Теоретические данные о влиянии амплитуд сдвиговых и продольных колебаний на изменения в указанных выше предельных случаях, максимальных по модулю значений полной скорости потока $V_{\rm max}$, также даны на рис. Зб в виде графиков 1. Обобщая эти данные, можно сделать следующие выводы:

 экспериментальные данные качественно и количественно согласуются с результатами расчетов, выполненных в рамках модели [4];

– связь максимальной скорости потока V_{max} с амплитудами продольных и сдвиговых колебаний представляет функция следующего вида: $V_{\text{max}} \sim U_{x0}U_{z0}$;

— в рассмотренной области значений d и f при повышении толщины слоя и частоты ультразвука скорость V_{max} потока возрастает;

- вклад релаксационных напряжений в механизм формирования акустического потока наиболее значителен в тонких слоях НЖК и при низких частотах ультразвука, а при большой толщине слоя и на высоких частотах конвективные напряжения доминируют. Так, по оценкам для указанных выше предельных случаев численные значения релаксационной и конвективной составляющих скорости потока, предсказанные теорией и коррелирующие с данными опытов, при $U_{x0}U_{z0} =$ = 0.3 Å² составляют: $V_{\text{max}}^{(r)}$ = 38 нм/с и $V_{\text{max}}^{(c)}$ = 115 нм/с при d = 60 мкм, f = 29 МГц (доминируют конвективные напряжения) или $V_{\rm max}^{(r)} = 1.7$ нм/с и $V_{\text{max}}^{(c)} = 0.54$ нм/с при d = 10 мкм, f = 3 МГц (преобладает вклад релаксационных напряжений). Все расчеты выполнены по формуле (1) для значений физических параметров такого типичного НЖК, как МББА.

ЗАКЛЮЧЕНИЕ

Впервые удалось экспериментально обосновать предложенный в модели [4] и базирующийся на концепции о бинарной природе явления новый подход к описанию механизма генерации

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

стационарных акустических потоков в НЖК при одновременном воздействии когерентных волн сжатия и сдвига для частот МГц-диапазона.

Апробирована модель, которая учитывает вклад в формирование стационарного акустического потока не только конвективных, но и нелинейных релаксационных напряжений в среде.

По результатам измерений скорости стационарного акустического потока НЖК в плоском капилляре с гомеотропными граничными условиями, индуцированного одновременным воздействием когерентных волн сжатия и сдвига, доказано существование в области МГц-частот двух независимых механизмов генерации потоков в тонких слоях мезофазы: конвективного и релаксационного.

Показано, что в рассматриваемой области частот только модель [4] дает адекватное экспериментальным данным описание механизма явления.

Определены сферы влияния различных механизмов генерации потока: релаксационные напряжения вносят определяющий вклад при малой толщине слоя и в области низких частот, тогда как влияние конвективных напряжений доминирует на высоких частотах и в более толстых слоях.

Показано, что учет релаксационных напряжений практически не меняет конфигурацию потока, но влияет на величину его скорости, причем роль этого фактора в механизме генерации потоков при уменьшении толщины слоя и частоты ультразвука возрастает.

Данные опытов согласуются с расчетами, проведенными на основе модели [4], качественно и количественно, что убедительно доказывает ее справедливость и обосновывает необходимость привлечения идеологии, базирующейся на представлениях неравновесной термодинамики и статистической гидродинамики, для описания механизма генерации акустических потоков в НЖК в области частот, где длина вязкой волны значительно меньше толщины слоя.

Идея о бинарной природе механизма генерации акустических потоков в НЖК и взаимосвязи релаксационных процессов с гидродинамическими явлениями, впервые высказанная и апробированная применительно к НЖК, оказалась весьма плодотворной и ее применение для описания механизма генерации акустических потоков в других типах мезофазы представляется весьма перспективным.

Нелинейные релаксационные напряжения определены в рамках молекулярно-кинетического подхода на основе молекулярной модели НЖК при усреднении микронапряжений, обусловленных вращением отдельных молекул НЖК под внешним воздействием и при тепловом движении, одновременно по неравновесному угловому распределению ориентации молекул НЖК и периоду колебаний в упругой волне [17].

Проблема генерации стационарных потоков в изотропных жидкостях при акустическом воздействии не теряет актуальность уже более 150 лет: впервые факт образования акустических потоков вблизи колеблющейся мембраны установил Фарадей еще в 1831 г., а первую теорию генерации акустических потоков построил Рэлей в конце того же столетия [19]. В анизотропных жидкостях, к каковым относится НЖК, анализ акустически инициированных гидродинамических явлений с учетом структурной релаксации НЖК в ультразвуковом поле проведен впервые.

Автор выражает благодарность И.А. Романову за программное обеспечение работы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 07-02-763).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Капустин А.П.* Экспериментальные исследования жидких кристаллов. М.: Наука, 1978.
- Khabibullaev P., Gevorkyan E., Lagunov A. Reology of Liquid Crystals. New York: Allerton Press, 1994.
- 3. Кожевников Е.Н. // Акуст. журн. 1996. Т. 42. С. 800.
- 4. Кожевников Е.Н. // Акуст. журн. 2010. Т. 56. С. 26.

- 5. *Kapustina O.* Properties of Liquid Crystals, Wiley VCH. Germany: Weinheim, 1999.
- Kapustina O. // J. Acoust. Soc. America. 2008. V. 123. P. 3279.
- Nagai S., Peters A., Candau S. // Rev. Phys. Appl. 1977.
 V. 12. P. 21.
- Peters A., Candau S., Ferre A., Waton G. // Mol. Cryst. Liq. Cryst. 1980. V. 61. P. 7.
- 9. Perbet J., Hareng M., Le Berre S., Mourrey B. // Rev. Techn. Tomson. 1979. V. 11. P. 873.
- Nagai S., Iizuka K. // Jpn J. Appl. Phys. 1974. V. 13. P. 189.
- Sripaipan S., Hayes C., Fang G. // Phys. Rev. A. 1977. V. 15. P. 1297.
- 12. Miyano K., Shen Y. // Appl. Phys. Lett. 1972. V. 28. P. 473.
- 13. Аникеев Д.И., Бочаров Ю.В., Вужва А.Д., Капустина О.А. // Акуст. журн. 1989. Т. 35. С. 966.
- 14. *Капустина О.А.* // Кристаллография. 2009. Т. 54. С. 345.
- 15. Капустина О.А. // Акуст. журн. 2008. Т. 54. С. 219.
- 16. *Де Жен П*. Физика жидких кристаллов. М.: Мир, 1977.
- 17. *Кожевников Е.Н.* //Изв. СамГУ. Сер. Механика. 2008. Т. 2. С. 1.
- Домаркас В.И., Кажис Р.Ю. Контрольно-измерительные пьезоэлектрические преобразователи. Вильнюс: МИНТАС, 1975.
- 19. Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики. М.: Наука, 1975.