КРИСТАЛЛОГРАФИЯ, 2011, том 56, № 3, с. 516–520

## ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 548:537.611.46

# МАГНИТНЫЕ СВОЙСТВА СВЕРХСТЕХИОМЕТРИЧЕСКОГО СаFe<sub>2</sub>O<sub>4+8</sub>, СИНТЕЗИРОВАННОГО ТЕРМОБАРИЧЕСКИМ МЕТОДОМ

© 2011 г. Л. С. Лобановский, С. В. Труханов

Научно-практический центр НАН Беларуси по материаловедению, Минск E-mail: Lobanov@physics.by Поступила в редакцию 22.03.2010 г.

Исследована кристаллическая структура и магнитные свойства сверхстехиометрического по кислороду соединения  $CaFe_2O_{4+\delta}$  в температурном интервале 5–300 К и интервале магнитных полей 0±10 Тл. Установлено большее значение объема элементарной ячейки этого соединения относительно исходного стехиометрического  $CaFe_2O_4$ . Исследования температурных и полевых зависимостей намагниченности, а также магнитной восприимчивости указывает на формирование ферримагнитного упорядочения в соединении  $CaFe_2O_{4+\delta}$  ниже температуры Нееля, равной 180 К.

### введение

Оксидные соединения, содержащие ионы железа, широко используются для практических приложений. В частности, ферриты применяются как магнитные материалы для электро- и радиотехники. В настоящее время широко исследуются магнитные и транспортные свойства ферросодержащих соединений со структурой перовскита изза наличия в них таких эффектов, как зарядовое диспропорционирование, спиновая поляризация носителей заряда, магниторезистивный эффект [1–3].

Для описания свойств этих соединений исследователи часто оперируют углами и длинами связи между ионами железа и кислорода. В качестве объектов исследований также выступают параметры кислородных октаэдров и их взаимная ориентация, устанавливается влияние этих параметров на свойства соединений и твердых растворов.

В то же время одной из структур, отличной от структуры перовскита, в которой все ионы железа окружены кислородными октаэдрами, является структура  $CaFe_2O_4$  [4]. В этой структуре кислородные октаэдры соединены друг с другом как вершинами, так и ребрами в отличие от структуры перовскита, где октаэдры соединены друг с другом только вершинами.

Для стехиометрического соединения CaFe<sub>2</sub>O<sub>4</sub> в [4] проводились исследования магнитных свойств, исходя из которых авторы предположили антиферромагнитный характер магнитных взаимодействий. Позднее [5] были выполнены исследования магнитной структуры этого соединения методами нейтронной дифракции. Расшифровка нейтронограмм в модели антиферромагнитного упорядочения магнитных моментов ионов дала хорошее соответствие теоретических и экспериментальных данных. Однако ориентация магнитных моментов ионов железа, принадлежащих одним и тем же кристаллографическим позициям, в [4, 5] была различной.

Были проведены исследования  $CaFe_2O_4$  методами  $\gamma$ -резонансной спектроскопии [6]. Из вычислений градиента тензора электрического поля установлено, что ось максимума градиента поля перпендикулярна оси *с* для обеих структурных позиций ионов железа в кристаллической решетке. В свою очередь проекция компонентов тензора на ось *с* для этих ионов имеет противоположный знак. Таким образом, их суммарный вклад может компенсировать друг друга.

По данным магнитных, нейтронографических и  $\gamma$ -резонансных измерений разных авторов температура магнитного упорядочения в CaFe<sub>2</sub>O<sub>4</sub> сильно разнится и варьируется в диапазоне 180–200 К.

Известно, что соединение  $CaFe_2O_4$  слабо подвержено изменению кислородной стехиометрии [6]. Однако представляет интерес изучение магнитных свойств сверхстехиометрического по кислороду соединения  $CaFe_2O_{4+\delta}$ , поскольку в перовскитоподобных системах, содержащих разновалентные ионы железа, могут наблюдаться эффекты зарядового диспропорционирования, связанные с упорядочением разновалентных ионов железа, аналогичного обнаруженным в шпинели  $Fe_3O_4$  [7] и перовските  $La_{1/3}Sr_{2/3}FeO_{3-\delta}$ [1]. Одним из методов получения сверхстехиометрического по кислороду соединения может служить термобарический метод синтеза с использованием окислителя.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец  $CaFe_2O_{4+\delta}$  был синтезирован в два этапа из оксидов и карбонатов соответствующих



**Рис. 1.** Рентгенограмма соединения CaFe<sub>2</sub>O<sub>4 + δ</sub>, при комнатной температуре. Рентгенограмма обработана с помощью программы Fullprof: точки – экспериментальные данные, сплошная кривая – теоретический расчет. Сплошная линия в отрицательной области интенсивности представляет собой разностную кривую между экспериментальными и теоретическими данными. Вертикальные черточки показывают брегговские позиции структурных рефлексов.

элементов высокой чистоты. На первом этапе синтезировался прекурсор Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> со структурой браунмиллерита. Прекурсор Са<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> был получен методом твердофазовой реакции в воздушной среде из CaCO<sub>3</sub> и Fe<sub>2</sub>O<sub>3</sub>, взятых в стехиометрическом по катионному составу соотношении. Далее в полученный прекурсор добавлялось стехиометрическое количество оксида Fe<sub>2</sub>O<sub>3</sub>. Полученная шихта перетиралась на планетарной мельнице. Затем шихта, отделенная от окислителя пористой перегородкой, упаковывалась в капсулу из фольги нержавеющей стали и помещалась в контейнер аппарата высокого давления. В качестве окислителя использовался перманганат калия КМпО<sub>4</sub>. Навеска перманганата калия выбиралась такой, чтобы после его разложения содержание кислорода в образце составляло 4.01. Синтез образца CaFe<sub>2</sub>O<sub>4 +  $\delta$ </sub> проводился термобарическим методом при температуре 1373 К и давлении ~10 ГПа. Давление создавалось с помощью пресса ДО-130 усилием 500 т на аппаратах высокого давления типа "трапеция". При нагревании выше 550 К перманганат калия разлагается на манганат калия, оксид марганца и кислород, который, проникая через пористую перегородку, взаимодействует с шихтой. Капсула обеспечивает герметичность в процессе химической реакции, исключая взаимодействие компонентов шихты с графитовым нагревателем контейнера высокого давления.

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

Исследования кристаллической структуры проводились на рентгеновском дифрактометре общего назначения ДРОН-3М в  $CuK_{\alpha}$ -излучении, монохроматизированном графитовым фильтром.

Исследования магнитных свойств были выполнены на вибрационном магнитометре фирмы Сryogenic (Лондон) в температурном интервале 5-300 К и интервале магнитных полей 0 ± 10 Тл.

#### РЕЗУЛЬТАТЫ

Кристаллическая структура. Исследование кристаллической структуры соединения  $CaFe_2O_{4+\delta}$  методом рентгенофазового анализа (рис. 1) показало, что  $CaFe_2O_{4+\delta}$  кристаллизуется в структуру, изоморфную  $CaTi_2O_4$  и  $CaV_2O_4$  (рис. 2), с орторомбической симметрией элементарной ячейки (пр. гр. Pbnm). Расчет параметров проводился методом полнопрофильного анализа рентгенограммы. Параметры элементарной ячейки полученного соединения составляют a = 10.695, b = 9.245, c == 3.023 Å. Объем элементарной ячейки сверхстехиометрического по кислороду соединения  $CaFe_2O_{4+\delta}$  (V = 298.90 Å) несколько больше объема элементарных ячеек, вычисленных по экспериментальным данным [4], [6]. Параметры элементарной ячейки исследованного соединения  $CaFe_2O_{4+\delta}$  представлены в таблице.

*Магнитные свойства*. Исследования магнитных свойств, выполненные в зависимости от температуры и внешнего магнитного поля, показали,



**Рис. 2.** Элементарная ячейка соединения CaFe<sub>2</sub>O<sub>4 + δ</sub>. Выделены кислородные октаэдры, сформированные вокруг ионов железа.

что магнитная структура не является чисто антиферромагнитной. На зависимости намагниченности образца  $CaFe_2O_{4+\delta}$  от температуры обнаружено резкое возрастание величины намагниченности ниже температуры ~180 К (рис. 3). Однако при понижении температуры ниже 140 К наблюдается постепенный спад намагниченности, и даже смена знака величины намагниченности ниже температуры 55 К. Такое поведение намагниченности от температуры не присуще антиферромагнетикам.

Из измерений полевых зависимостей намагниченности при температурах 160 и 5 К можно видеть (рис. 4), что в образце  $CaFe_2O_{4+\delta}$  существует небольшой спонтанный магнитный момент; в сильных магнитных полях ярко выражен парапроцесс и наблюдается линейная зависимость намагниченности от поля.

Температурная зависимость восприимчивости, снятая в парамагнитной области, представлена на рис. 5. Экстраполяция линейной части парамагнитной восприимчивости пересекается с осью абсцисс в парамагнитной точке Кюри ~(-80) К, что может указывать на преимущественно анти-ферромагнитный характер обменных взаимодействий.

### ОБСУЖДЕНИЕ

Содержание кислорода в исследованном твердом растворе вычислялось косвенным методом в предположении изменения параметров элемен-

| Тип атома | Атомная<br>позиция | Координаты |       |            | Заполнение атом- |
|-----------|--------------------|------------|-------|------------|------------------|
|           |                    | x/a        | y/b   | <i>z/c</i> | ной позиции      |
| Ca        | 4 <i>c</i>         | 0.345      | 0.233 | 0.25       | 1                |
| Fe1       | 4 <i>c</i>         | 0.108      | 0.059 | 0.25       | 1                |
| Fe2       | 4 <i>c</i>         | 0.602      | 0.079 | 0.25       | 1                |
| 01*       | 4 <i>c</i>         | 0.647      | 0.306 | 0.25       | 1                |
| O2        | 4 <i>c</i>         | 0.980      | 0.381 | 0.25       | 1                |
| O3        | 4 <i>c</i>         | 0.219      | 0.473 | 0.25       | 1                |
| O4        | 4 <i>c</i>         | 0.920      | 0.088 | 0.25       | 1                |

Параметры элементарной ячейки соединения CaFe<sub>2</sub>O<sub>4 + δ</sub>, синтезированного термобарическим методом

\* Для ионов кислорода параметр "заполнение позиции" рентгенографическими методами не уточнялся из-за малой отражающей способности этих ионов и, как следствие, возникающих больших погрешностей вычисления этого параметра.



**Рис. 3.** Температурная зависимость удельной намагниченности соединения  $CaFe_2O_{4+\delta}$ , измеренная в режиме охлаждения во внешнем магнитном поле индукцией 0.1 Тл.

тарной ячейки по закону Вегарда, принимая во внимание результаты [4, 6]. Из экспериментальных данных [4, 6] следует, что объем твердого раствора  $CaFe_2O_{4\pm\delta}$  возрастает с ростом концентрации кислорода. Полученная величина объема элементарной ячейки окисленного образца CaFe2O4+ б укладывается в эту зависимость. Однако значение коэффициента при кислороде, вычисленное путем линейной экстраполяции (δ ~ 0.002), значительно ниже ожидаемой величины ( $\delta \sim 0.01$ ), заложенной в условия химической реакции. Вероятно, в данном случае следует учитывать влияние способа получения образца термобарическим методом. Несколько меньший объем элементарной ячейки соединения  $CaFe_2O_{4+\delta}$ , чем ожидается из зависимости Вегарда, связан с дополнительным уменьшением объема элементарной ячейки вследствие влияния внешнего давления при синтезе.

Более существенными оказались изменения в поведении магнитных свойств. В частности, поведение температурной зависимости намагниченности (рис. 3) указывает на формирование ферримагнитного состояния в сверхстехиометрическом по кислороду  $CaFe_2O_{4+\delta}$ . Причем на температурной зависимости намагниченности наблюдается точка компенсации вблизи 55 К, при которой две магнитные подрешетки компенсируют друг друга. Предположение о ферримагнитном упорядочении подтверждается полевыми измерениями намагниченности и измерениями магнитной восприимчивости. Наличие на полевой зависимости намагниченности петли гистерезиса и выраженного парапроцесса укладывается в предположение о ферримагнитном характере обменных взаимодействий. Отрицательная тем-

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011



**Рис. 4.** Полевая зависимость удельной намагниченности соединения  $CaFe_2O_{4+\delta}$ , измеренная при температуре 160 К. На вставке показана зависимость при 5 К.



**Рис. 5.** Температурная зависимость парамагнитной восприимчивости образца  $CaFe_2O_{4+\delta}$ . Пунктирной линией показана экстраполяция линейной части восприимчивости в область низких температур.

пература в парамагнитной точке Кюри, вычисленная из температурной зависимости обратной магнитной восприимчивости, свидетельствует о доминировании отрицательных обменных взаимодействий в данном образце и подтверждает предположение о ферримагнетизме в CaFe<sub>2</sub>O<sub>4 + δ</sub>.

Ферримагнитное состояние формируется вследствие изменения валентности части ионов железа, согласно формуле  $Ca^{2+}Fe^{3+}_{2-2\delta}Fe^{4+}_{2\delta}O^{2-}_{4+\delta}$ . Ожидается, что индуцированные ионы  $Fe^{4+}$  ( $3d^4$ ) локализуются статистически в двух магнитных подрешетках. Однако температурное поведение

намагниченности может свидетельствовать о том, что на фоне статистического распределения ионов Fe<sup>4+</sup> существует некоторое преимущественное их распределение в одной из подрешеток с более выраженными обменными взаимодействиями типа "двойного обмена". Вероятно, поэтому на температурной зависимости намагниченности при понижении температуры сначала наблюдается резкое увеличение намагниченности, связанное с упорядочением подрешетки, содержащей ионы Fe<sup>3+</sup> и Fe<sup>4+</sup>. Дальнейшее понижение температуры ведет к упорядочению магнитных моментов ионов железа во второй подрешетке, содержащей преимущественно  $Fe^{3+}$  ( $3d^5$ ). Поскольку вторая подрешетка обладает большим магнитным моментом на ион железа, а между подрешетками действует антиферромагнитное взаимодействие, в результате упорядочения подрешеток наблюдается смена знака намагниченности на температурной зависимости.

Таким образом, можно заключить, что при термобарическом синтезе сверхстехиометрического по кислороду соединения  $CaFe_2O_{4+\delta}$  происходит формирование ферримагнитного упорядочения. Присутствие ионов Fe<sup>4+</sup> не ведет к существенному изменению температуры Кюри, которая сравнима с температурой Нееля исходного соединения  $CaFe_2O_4$ , но ведет к появлению ряда аномалий на магнитных свойствах, связанных с упорядочением магнитных подрешеток.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Ф08Р-148).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *Battle P.D., Gibb T.C., Lightfoot P. //* J. Solid State Chem. 1990. V. 84. P. 271.
- 2. *Takeda T., Kanno R., Kawamoto Yo. et al.* // Solid State Sci. 2000. V. 2. P. 673.
- Klencsár Z., Németh Z., Kuzmann E. et al. // J. Magn. Magn. Mater. 2007. V. 314. P. 69.
- Decker B.F., Kasper J.S. // Acta Cryst. 1957. V. 10. P. 332.
- Bertaut E.F., Chappert J., Apostolov A., Semenov V. // Bull. Soc. Franc. Mineral. Crist. 1966. V. 89. P. 206.
- 6. *Tsipis E.V., Pivak Y.V., Waerenborgh J.C. et al.* // Solid. State Ionics. 2007. V. 178. P. 1428.
- 7. Vervey E.J.V., Haaijman P.W. // Physica. 1941. V. 8. P. 979.