КРИСТАЛЛОГРАФИЯ, 2011, том 56, № 3, с. 470-477

УДК 548.736

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

СТРУКТУРА И СВОЙСТВА МОЛИБДАТА ЛАНТАНА La₂Mo₂O₉, ЛЕГИРОВАННОГО СУРЬМОЙ

© 2011 г. О. А. Алексеева, И. А. Верин, Н. И. Сорокина, Е. П. Харитонова*, В. И. Воронкова*

Институт кристаллографии РАН, Москва E-mail: olalex@ns.crys.ras.ru * Московский государственный университет им. М.В. Ломоносова Поступила в редакцию 20.10.2010 г.

Методом твердофазного синтеза получены поликристаллические образцы состава $La_2Mo_{2-x}Sb_xO_{9-y}$

при $0 \le x \le 0.05$. Методом спонтанной кристаллизации из раствора в расплаве выращены монокристаллы $La_2Mo_{1.96}Sb_{0.04}O_{8.17}$ и рентгеноструктурным анализом при комнатной температуре определена структура их метастабильной β_{ms} -фазы. Установлено смещение атомов La, Mo и O1 относительно тройной оси, на которой находятся эти атомы в высокотемпературной β -фазе. Показано, что часть атомов молибдена в структуре замещается атомами сурьмы, которые располагаются на оси третьего порядка. Внедрение атомов сурьмы приводит к возвращению части атомов лантана в позицию на оси третьего порядка и повышает степень порядка в координационном окружении катионов молибдена, что способствует стабилизации при комнатной температуре кубической фазы. Введение примеси Sb в структуру La₂Mo₂O₉, по данным калориметрических исследований (ДСК), способствует понижению температуры фазового перехода $\alpha \rightarrow \beta$ от 570 до 520°C и его частичному подавлению. Поведение проводимости с температурой подтверждает результаты ДСК – введение Sb способствует стабилизации при комнатной температуре кубической фазы.

ВВЕДЕНИЕ

Кристаллические материалы нового кислородпроводящего семейства LAMOX, полученные на основе $La_2Mo_2O_9$ (LM) с помощью различных замещений, представляют интерес как с точки зрения фундаментальных научных исследований, так и для использования в водородной энергетике в качестве кислородно-обменных мембран [1, 2]. В отличие от других известных на данный момент кислородпроводящих соединений LM обладает собственными вакансиями по кислороду [2]. При 580°С LM испытывает фазовый переход первого рода [1]: низкотемпературная моноклинная αфаза ($P2_1$) переходит при нагреве в высокотемпературную кубическую β -фазу ($P2_13$) с увеличением проводимости на 2 порядка (0.06 См/см при 800°С). В зависимости от скорости охлаждения образцов после процесса их приготовления они могут существовать при комнатной температуре как в виде стабильной моноклинной α-фазы, так и в виде кубической метастабильной β_{ms} -фазы или смеси этих фаз [3, 4]. При медленном охлаждении LM испытывает фазовый переход I рода типа динамический беспорядок (β-фаза) – статический порядок (α-фаза), при закалке – фазовый переход II рода типа динамический беспорядок $(\beta-\phi asa) -$ статический беспорядок $(\beta_{ms}-\phi asa)$ [5]. Существование метастабильной кубической β_{ms} фазы при комнатной температуре связано со сложностью упорядочения слишком большого количества атомов кислорода, которые в структуре высокотемпературной кубической β-фазы находятся в состоянии динамического разупорядочения.

Многие из примесей при определенной концентрации подавляют переход $\alpha \rightarrow \beta$ и приводят к переходу при температуре порядка 450°С высокотемпературной кубической β-фазы с динамическим беспорядком атомов кислорода в кубическую β_{ms} -фазу со статическим беспорядком этих атомов [6–10].

В структуре высокотемпературной β-фазы LM, которая была изучена в 2000 г. [2], вокруг атомов La, находящихся на оси 3, на расстояниях 2.5–2.8 Å имеется 15 частично заселенных атомами О позиций (рис. 1а). Три атома О1 находятся в экваториальной плоскости. Выше и ниже этой плоскости находится по три атома О2 и О3 на расстояниях от 2.5 до 2.8 Å. Атомы Мо, также находящиеся на оси 3, окружены семью атомами кислорода: три О2 в экваториальной плоскости, один О1 над плоскостью в апикальной позиции, три О3 под плоскостью (рис. 1б). Присутствие в структуре LAMOX вакансий по кислороду и недозаселенных кислородных позиций (О2 и О3) создает возможность для реализации высокой анионной проводимости. В метастабильной кубической β_{ms} -фазе LM катионы лантана и молибдена имеют аналогичное окружение, однако атомы La, Мо и

Рис. 1. Координационные полиэдры: а – атома La в структуре высокотемпературной кубической β-фазы соединения La₂Mo₂O₉ [2]; б – атома Mo в структуре высокотемпературной кубической β-фазы соединения La₂Mo₂O₉ [2]; в – атома La в допированной сурьмой структуре La₂Mo₂O₉; г – атома Mo в допированной сурьмой структуре La₂Mo₂O₉.

O1 смещены с оси 3 и соответственно разупорядочены по трем позициям каждый [11].

Авторами [12–16] изучен структурный аспект фазового перехода в кристаллах LM и установлено, что стартовая точка проводимости данного семейства кристаллов – моноклинная фаза. С повышением температуры атомы кислорода, находящиеся при комнатной температуре в статическом порядке (α -фаза, $P2_1$), способны перейти в состояние динамического беспорядка, повысив симметрию кристалла от моноклинной до кубической (β -фаза, $P2_1$ 3). Высокая симметрия обеспечивает равные потенциалы между занятыми и вакантными местами атомов кислорода, что приводит к увеличению проводимости по кислороду на два порядка при этом переходе. Следует также

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

отметить высокую концентрацию анионных вакансий в данном семействе кристаллов. Авторами [16] изучена температурная зависимость геометрических параметров структуры допированного калием La₂Mo₂O₉ и установлено, что с ростом температуры значения всех длин связей La-O в структуре (двух связей La-O1 и средние значения связей La-O2 и La-O3) увеличиваются линейно. Среднее значение длин связей Мо-О тоже увеличивается с температурой, однако это увеличение происходит за счет регулярного увеличения с температурой длин только двух связей Мо-О. Значение самой длинной связи Мо-О с температурой уменьшается от 1.9 до 1.8 Å. В результате уменьшается разница между значениями длин трёх связей Мо-О, и расположение кислородных ионов вокруг атомов Мо при высокой температуре становится более симметричным. Таким образом, возможность вариации по температуре степени порядка в расположении атомов кислорода вокруг катионов молибдена, по мнению авторов [14, 16], — ключ к образованию низкоэнергетической тропы для движения ионов кислорода.

Целью настоящей работы был синтез поли- и монокристаллов, исследование полиморфизма, структуры и свойств соединения La₂Mo₂O₉, легированного сурьмой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовались как монокристаллы (для исследования их структуры и полиморфизма), так и поликристаллические образцы (для исследования полиморфизма и проводящих свойств).

Монокристаллы $La_2Mo_2O_9$, легированные сурьмой (LM : Sb), были выращены на воздухе методом спонтанной кристаллизации из раствора в расплаве в системе $La_2O_3-MoO_3-Sb_2O_3$ по методике, описанной в [3], при скорости охлаждения 2 град/ч. Содержание сурьмы в исходном расплаве составило 2 мол. %.

Поликристаллические образцы были приготовлены на воздухе по схеме $La_2Mo_{2-x}Sb_xO_{9-y}$ (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06) с замещением молибдена сурьмой методом твердофазного синтеза из оксидов La₂O₃, MoO₃ и Sb₂O₃ чистоты "ос. ч.". Оксид лантана предварительно прокаливался при температуре ~1000°C в течение часа для удаления воды и оксида углерода. Образцы в виде спрессованных таблеток обжигались в воздушной среде сначала при 600°С в течение 6 ч, затем проводился трехкратный обжиг при температурах 960, 970 и 1050°С в течение 12 ч с промежуточным растиранием и прессованием образцов. Нагрев до температуры обжига и охлаждение образцов до комнатной температуры проводили со скоростью 5 град/мин. Процесс фазообразования контролировали с помощью рентгеновского дифрактометра ДРОН-2.0 (Си K_{α} -излучение).

Дифференциальная сканирующая калориметрия (ДСК) моно- и поликристаллических образцов проводилась на оборудовании NETZSCH DSC 204F1 в воздушной атмосфере в интервале температур 30–600°С при скорости нагрева и охлаждения 10 град/мин с использованием алюминиевых тиглей. Проводимость образцов измерялась в диапазоне температур 25–800°С на частоте 1 МГц при помощи моста Tesla BM 431E с использованием платиновых электродов.

Для рентгеноструктурного анализа отбирались наиболее совершенные мелкие монокристаллы LM : Sb. Путем обкатки им придавалась сферическая форма. Полученные образцы подвергались первичному рентгеноструктурному исследованию, в результате которого был выбран монокристалл, для которого профили дифракционных пиков и сходимость интенсивностей эквивалентных по симметрии дифракционных отражений оказались наилучшими. Полный дифракционный эксперимент для отобранного монокристалла был получен при комнатной температуре на дифрактометре Xcalibur S производства фирмы Oxford Diffraction, который оборудован двумерным CCD-детектором.

Поиск элементарной ячейки исследованного монокристалла LM : Sb завершился выбором кубической ячейки, которая позволила проиндицировать около 90% измеренных рефлексов. Ранее были изучены строение и свойства β_{ms} -фазы монокристалла La₂Mo₂O_{8 43} [11] и трех монокристаллов LM, легированных 2, 3 и 9% висмута [17]. Установлено, что для β_{ms} -фазы чистого La₂Mo₂O_{8,43} кубическая ячейка позволяет проиндицировать только 84% рефлексов, для В_{тв}-фазы монокристаллов состава La_{1.96}Bi_{0.04}Mo₂O_{8.60} это уже 90%, состава $La_{1.94}Bi_{0.06}Mo_2O_{8.51} - 97\%$ рефлексов и состава $La_{1.82}Bi_{0.18}Mo_2O_{8.76} - 98\%$ рефлексов. Полученные данные свидетельствуют о том, что введение в кристалл примеси сурьмы, так же как и висмута, способствует стабилизации при комнатной температуре кубической фазы.

Интегрирование дифракционных пиков, коррекция на фактор Лоренца и поляризацию излучения проведены в программе CrysAlis [18]. Структура уточнена в программе JANA2000 [19] методом наименьших квадратов в полноматричном анизотропном приближении по F^2 . При учете эффекта экстинкции наилучший результат дала модель Беккера–Коппенса [20]. Основные кристаллографические параметры и результаты уточнения изученного монокристалла приведены в табл. 1, значения координат, заселенностей позиций и эквивалентных тепловых параметров – в табл. 2, основные величины межатомных расстояний – в табл. 3.

Информация об исследованной структуре депонирована в Банке данных неорганических структур ICSD (CSD № 422288).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным рентгенофазового анализа, твердые растворы $La_2Mo_{2-x}Sb_xO_{9-y}$ со структурой $La_2Mo_2O_9$ образуются в узкой области концентраций $0 \le x \le 0.05$. Результаты калориметрических исследований поликристаллических образцов и измельченных монокристаллов (рис. 2, 3) показали, что введение примеси Sb способствует понижению температуры фазового перехода $\alpha \rightarrow \beta$ от 570 до 520°C и его заметному подавлению, однако полного подавления этого фазового перехода не происходит, по-видимому, вследствие недостаточной концентрации примеси, входящей в твердый раствор. Следует отметить, что на кривых ДСК в режиме нагрева даже при малой концентрации Sb возникает дополнительный эндотермический эффект вблизи 450°С, свидетельствующий о стабилизации низкотемпературной кубической фазы β_{ms} и ее переходе при 450°C в режиме нагрева в моноклинную фазу α, что наблюдалось ранее в [10, 21] при легировании LM примесями Ві и V. Кривая ДСК монокристаллов (рис. 2) повторяет ход кривых ДСК поликристаллических образцов La₂Mo_{2-x}Sb_xO_{9-v} при x = 0.03 - 0.05. Это позволяет предположить, что содержание сурьмы в монокристалле составляет около 2 ат. % и соответствует механизму вхождения примеси по схеме La₂Mo_{2-x}Sb_xO_{9-v}.

Температурные зависимости электропроводности поликристаллических образцов $La_2Mo_{2-x}Sb_xO_{9-y}$ приведены на рис. 4. Поведение проводимости при изменении температуры подтверждает, что введение Sb способствует стабилизации при комнатной температуре кубической фазы β_{ms} , вследствие чего в низкотемпературной области (ниже 500°C) наблюдается заметное повышение электропроводности изученных образцов по сравнению с беспримесным LM. Аналогичное поведение проводимости наблюдалось и для других примесей, подавляющих фазовый переход [10, 21].

Электропроводность исследуемых твердых растворов в высокотемпературной области также повышается (0.1 См/см при 800°С), по-видимому, вследствие возникновения дополнительных вакансий по кислороду при введении пятивалентной сурьмы в позицию шестивалентного молибдена.

В качестве исходной модели для уточнения строения исследуемых в данной работе монокристаллов были взяты координаты атомов в изученной ранее структуре β_{ms} -фазы La₂Mo₂O_{8.43} [11]. Установлено, что аналогично структуре β_{ms} -фазы чистого La₂Mo₂O_{8.43}, в допированном сурьмой соединении наблюдается смещение атомов La1, Мо

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структуры соединения La₂Mo₂O₉, допированного Sb

Химическая формула	$La_2Mo_{1.96}Sb_{0.04}O_{8.17}$
М	601.6
Сингония, пр.гр., <i>Z</i>	кубическая, <i>Р</i> 2 ₁ 3, 2
<i>a,</i> Å	7.1603(3)
<i>V</i> , Å ³	367.11
D_x , г/см ³	5.4399
Излучение; λ, Å	Mo <i>K</i> _α ; 0.71069
μ, мм ⁻¹	14.83
<i>Т</i> , К	293
Диаметр образца, мм	0.20(1)
Дифрактометр	Xcalibur S
Тип сканирования	ω
Учет поглощения; T_{\min} , T_{\max}	Сфера; 0.881, 1.000
θ _{max} , град	44.72
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-13 \le h \le 13$ $-13 \le k \le 13$ $-13 \le l \le 13$
Число отражений: изме- ренных/независимых (N ₁)/с I > 3σ(I), R _{int} /(N ₂)	21140/649, 3.25/634
Метод уточнения	МНК по <i>F</i> ²
Весовая схема	$1/\sigma^2(F^2) + 0.000225F^2$
Число параметров	54
Учет экстинкции, коэффициент	тип 1 Gaussian, 0.002247(2)
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₁	2.10/2.68
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₂	2.05/2.66
S	1.32
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.41/0.53
Программы	CrysAlis [18], JANA2000 [19]

Таблица 2. Координаты атомов, заселенность позиций (q) и эквивалентные тепловые параметры $U_{_{3KB}}$ (Å²) в структуре метастабильной β_{ms} -фазы кристалла La₂Mo₂O₉, допированного Sb

Атом	x/a	y/b	<i>z</i> / <i>c</i>	q	$U^*_{_{\mathfrak{I}\mathfrak{K}\mathfrak{B}}}$
La1 (12b)	0.8389(4)	0.8737(3)	0.8542(6)	0.3263	0.0410(4)
La2 (4 <i>a</i>)	0.819(5)	0.819(5)	0.819(5)	0.007	0.089(16)
Mo (12 <i>b</i>)	0.1785(2)	0.1748(2)	0.1439(2)	0.3263	0.0396(5)
Sb (4 <i>a</i>)	0.191(2)	0.191(2)	0.191(2)	0.007	0.019(3)
O1 (12 <i>b</i>)	0.325(2)	0.318(2)	0.300(3)	0.32(1)	0.069(6)
O2 (12b)	0.9859(6)	0.185(1)	0.341(1)	0.73(2)	0.096(3)
O3 (12 <i>b</i>)	0.545(2)	0.927(3)	0.647(4)	0.31(2)	0.109(8)

* Тепловые поправки для атомов La2 и Sb вычислены в изотропном приближении.

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

Таблица 3. Межатомные расстояния (Å) в структуре метастабильной β_{ms} -фазы кристалла La₂Mo₂O₉, допированного Sb и Bi

Расстояния	LM [11]	LM : Sb	LM : 2%Bi [17]	LM : 3%Bi [17]	LM : 9%Bi [17]
La1-01	2.835(3) × 3	2.96(2)	2.96(2)	2.98(3)	2.95(2)
	2.615(3) × 3	2.80(1)	2.79(3)	2.82(3)	2.80(2)
	$2.541(3) \times 3$	2.77(2)	2.78(2)	2.79(4)	2.78(3)
		2.76(1)	2.73(3)	2.72(4)	2.71(2)
		2.67(2)	2.69(2)	2.72(3)	2.71(2)
		2.61(1)	2.63(3)	2.65(4)	2.64(3)
		2.57(1)	2.56(3)	2.57(4)	2.56(3)
		2.50(1)	2.52(3)	2.53(4)	2.54(3)
		2.47(1)	2.47(3)	2.46(4)	2.47(2)
Среднее	2.66	2.68	2.68	2.69	2.68
La1–O2	2.856(6)	2.859(8)	2.861(8)	2.881(9)	2.870(7)
	2.804(6)	2.782(8)	2.788(8)	2.798(9)	2.802(7)
	2.588(4)	2.590(8)	2.617(8)	2.644(8)	2.648(7)
	2.587(6)	2.589(5)	2.580(5)	2.584(5)	2.575(5)
	2.466(4)	2.452(6)	2.454(6)	2.454(7)	2.461(5)
	2.354(4)	2.364(6)	2.377(6)	2.390(7)	2.392(5)
Среднее	2.609	2.606	2.613	2.625	2.625
La1–O3	2.85(2)	2.82(2)	2.82(2)	2.82(2)	2.84(2)
	2.78(2)	2.78(2)	2.78(2)	2.80(2)	2.81(2)
	2.73(2)	2.77(2)	2.76(3)	2.75(3)	2.73(3)
	2.65(2)	2.68(2)	2.68(2)	2.67(3)	2.67(2)
	2.63(2)	2.67(2)	2.67(2)	2.67(3)	2.66(3)
	2.62(2)	2.61(2)	2.63(2)	2.65(2)	2.65(3)
Среднее	2.71	2.72	2.72	2.73	2.73
La2(Bi)*-O1		$2.73(4) \times 3$	$2.73(4) \times 3$	$2.73(4) \times 3$	$2.70(3) \times 3$
		$2.73(4) \times 3$	$2.70(4) \times 3$	$2.69(4) \times 3$	$2.65(3) \times 3$
-02		2.19(4) × 3	2.23(2) × 3	$2.25(1) \times 3$	$2.31(1) \times 3$
-03		$2.45(4) \times 3$	2.49(3) × 3	2.51(2) × 3	$2.60(2) \times 3$
Mo-O1	$1.889(3) \times 3$	1.87(1)	1.86(3)	1.86(4)	1.88(3)
		1.87(1)	1.86(3)	1.86(4)	1.88(3)
		1.85(2)	1.84(3)	1.84(3)	1.86(3)
Среднее		1.86	1.85	1.85	1.87
Mo-O2	1.951(5)	1.975(6)	1.949(6)	1.932(6)	1.931(9)
	1.816(5)	1.808(6)	1.797(6)	1.793(6)	1.783(6)
	1.631(5)	1.642(6)	1.645(6)	1.658(6)	1.653(9)
Среднее	1.799	1.808	1.797	1.794	1.789
Mo-O3	1.76(1)	1.75(2)	1.73(2)	1.74(2)	1.71(1)
	1.70(1)	1.67(2)	1.66(2)	1.67(2)	1.65(2)
	1.58(1)	1.56(2)	1.56(2)	1.58(2)	1.55(2)
Среднее	1.68	1.66	1.65	1.66	1.64
Sb(Mo2)**-O1		$1.54(2) \times 3$	$1.49(3) \times 3$	$1.48(4) \times 3$	$1.54(4) \times 3$
-O2		$1.82(1) \times 3$	$1.82(1) \times 3$	$1.82(1) \times 3$	$1.81(2) \times 3$
-03		$1.91(2) \times 3$	$1.94(2) \times 3$	$1.97(2) \times 3$	$1.90(3) \times 3$
	1	1	L	1 · · ·	1

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

Таблица 3. Окончание

Расстояния	LM [11]	LM : Sb	LM : 2%Bi [17]	LM : 3%Bi [17]	LM : 9%Bi [17]
01–02	2.730(6) × 3	2.82(2)	2.84(2)	2.87(3)	2.87(2)
	$2.564(5) \times 3$	2.78(2)	2.79(3)	2.81(4)	2.81(2)
		2.68(1)	2.69(3)	2.70(4)	2.71(3)
		2.63(1)	2.63(3)	2.64(4)	2.64(3)
		2.52(1)	2.53(3)	2.53(4)	2.54(3)
		2.47(2)	2.45(2)	2.45(3)	2.46(2)
01–03	$2.71(1) \times 3$	2.78(2)	2.82(3)	2.84(4)	2.84(3)
		2.74(2)	2.76(4)	2.77(4)	2.77(3)
		2.56(2)	2.58(3)	2.57(4)	2.59(3)
O2–O3	2.87(2)	2.84(2)	2.85(2)	2.87(2)	2.87(2)
	2.86(2)	2.82(2)	2.84(2)	2.85(2)	2.83(2)
	2.72(2)	2.77(2)	2.73(2)	2.72(2)	2.70(2)
	2.19(2)	2.24(2)	2.25(2)	2.25(2)	2.23(2)
	1.66(2)	1.62(3)	1.62(3)	1.63(3)	1.63(3)
03–03	$1.65(2) \times 2$	1.69(3)	$1.67(3) \times 2$	$1.65(3) \times 2$	$1.63(3) \times 2$
La1–La1	0.315(2)	0.306(4)	0.276(5)	0.265(6)	0.251(3)
La1-La2(Bi)		0.48(4)	0.42(2)	0.40(1)	0.30(1)
Mo-Mo	0.320(2)	0.333(2)	0.30(1)	0.27(1)	0.28(1)
Mo-Sb(Mo2)		0.37(1)	0.40(1)	0.40(1)	0.36(2)
01–01		0.23(2)	0.25(4)	0.28(4)	0.26(4)

* В соединении LM : Sb имеются в виду атомы La2, в случае LM : Bi – атомы Bi.

** В соединении LM : Sb имеются в виду атомы Sb, в случае LM : Bi – атомы Mo2.

и O1 с тройной оси, на которой находятся эти атомы в высокотемпературной кубической β -фазе [22, 23]. В результате вокруг осей третьего порядка образуется по три позиции La, Mo и O1 с заселенностями 1/3. Как в чистом, так и в допированном сурьмой соединении LM имеются две не полностью заселенные позиции атомов кислорода O2 и O3 (табл. 2). Факторы расходимости на этом этапе уточнения структуры равнялись R = 2.15% и $R_w = 2.95\%$.

Исходя из близости ионных радиусов молибдена и сурьмы ($r(Mo^{6+}) = 0.59$ Å, $r(Sb^{5+}) = 0.60$ Å) и большой разницы ионных радиусов сурьмы и лантана ($r(La^{3+}) = 1.032$ Å) [24], сделано предположение о том, что сурьма находится в позициях атомов молибдена. Однако анализ вычисленных синтезов разностной электронной плотности показал, что наиболее мощные пики остаточной электронной плотности находятся не в позициях атомов молибдена, а вблизи их (0.49 э/Å³ на расстоянии 0.53 Å от атомов Мо) – на оси третьего порядка. На основании этого сделано предположение, что часть атомов молибдена в структуре замещается атомами сурьмы, которые не вовлечены в процесс разупорядочения и располагаются на оси третьего порядка. Значение заселенности

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

позиции Sb получено методом пошагового сканирования. В результате факторы расходимости понизились до *R* = 2.07% и *R*_w = 2.84%. Анализ вычисленных далее синтезов разностной электронной плотности показал, что наиболее мощные пики остаточной электронной плотности находятся на оси третьего порядка вблизи позиций атомов лантана (0.45 э/Å³ на расстоянии 0.83 Å от атомов La), т.е. в структуре LM : Sb часть атомов лантана (атом La2) смещается в позицию на оси третьего порядка. Учет этого факта привел к дальнейшему снижению весового R_w – фактора от 2.84 до 2.74%. Заселенность позиции атома La2 была получена методом пошагового сканирования. Таким образом, структурно доказано, что внедрение атомов сурьмы в структуру LM приводит к возвращению части атомов лантана в позицию на оси третьего порядка, причем значение заселенности этой позиции атомами лантана равно значению заселенности позиции атомов сурьмы (рис. 1в, 1г, табл. 2). Следует отметить, что в структурах трех монокристаллов _{β_{ms}-фазы LM,} допированных 2, 3 и 9% висмута, часть атомов лантана замещается атомами висмута, которые аналогично атомам сурьмы не вовлечены в процесс разупорядочения, располагаются на оси тре-

Рис. 2. Кривые ДСК поликристаллических образцов $La_2Mo_{2-x}Sb_xO_{9-y}$, x = 0 (1), 0.01 (2), 0.02 (3), 0.03 (4), 0.04 (5), 0.05 (6) в режиме нагрева.

Рис. 3. Кривая ДСК измельченных монокристаллов LM : Sb в режиме нагрева.

тьего порядка и способствуют возвращению части атомов молибдена в позицию на оси третьего порядка [17]. Таким образом, любые изменения в составе лантановой позиции в структуре монокристаллов β_{ms} -фазы La₂Mo₂O₉ влекут за собой изменения в молибденовой позиции и наоборот.

Рис. 4. Температурные зависимости электропроводности поликристаллических образцов $La_2Mo_{2-x}Sb_xO_{9-y}$, x = 0 (1), 0.01 (2), 0.03 (3).

Как следует из вышеизложенного, при допировании LM сурьмой часть атомов шестивалентного молибдена замещается атомами пятивалентной сурьмы. Такое гетеровалентное замещение увеличивает в структуре количество вакансий по кислороду (табл. 2), причем следует отметить, что по сравнению со структурой β_{ms} -фазы чистого La₂Mo₂O_{8.43} [11] уменьшается значение заселенности позиций всех трех атомов кислорода O1, O2 и O3 (табл. 2). Окончательная формула исследованного в данной работе монокристалла — La₂Mo_{1.96}Sb_{0.04}O_{8.17}.

Результаты исследования строения серии монокристаллов LM, легированных сурьмой (данная работа) или висмутом [17], позволили проанализировать кислородное окружение атомов молибдена в структуре (табл. 3). Установлено, что в исследуемых структурах атомы Sb или Mo2 не вовлечены в процесс разупорядочения и располагаются на оси третьего порядка вблизи позиций атомов молибдена; их позиции смещены относительно основных позиций атомов молибдена в сторону атома О1. В результате самое большое расстояние Мо-О (расстояние Sb-O1 в LM : Sb либо Mo2-O1 в LM : Ві) уменьшается, а расстояние Sb-O3 либо Mo2-O3 увеличивается по сравнению с таковыми для атомов Мо в основной позиции. Необходимо отметить, что атомы О1 являются более стабильной частью структуры (их заселенность в сумме равна единице), в то время

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

как вероятность присутствия атома ОЗ равна всего 35%.

Таким образом, в результате структурного исследования установлено, что при введении в структуру $La_2Mo_2O_9$ атомов сурьмы, как и атомов висмута, происходит перераспределение валентных усилий в структуре LM, аналогичное тому, которое происходит при повышении температуры [16] - создается более симметричное расположение атомов кислорода вокруг атомов молибдена. Следовательно, введением в структуру LM контролируемых концентраций определенных примесей, как показано на примере Sb и Bi, можно варьировать степень порядка в расположении атомов кислорода (координационного окружения) вокруг катионов молибдена, что способствует стабилизации при комнатной температуре кубической фазы. Результаты структурных исследований хорошо согласуются с результатами исследования свойств этих кристаллов. В частности, калориметрическое (ДСК) исследование образцов твердых растворов La₂Mo_{2-x}Sb_xO_{9-v} $(0 \le x \le 0.05)$ (данная работа) и La₂Mo_{2-x}Bi_xO_{9-v} $(0 \le x < 0.05)$ [10] показало, что введение примеси Sb либо Bi способствует понижению температуры фазового перехода $\alpha \rightarrow \beta$ (от 570 до 520°C при увеличении содержания сурьмы в образце и от 568 до 491°С при увеличении содержания висмута) и заметному его подавлению. По данным ДСК, для примеси Bi с x = 0.05 основной переход $\alpha \rightarrow \beta$ полностью подавляется, и легированное соединение LM во всей области температур находится в кубической фазе. Полного подавления этого фазового перехода при легировании образцов сурьмой, как было отмечено ранее, не происходит, по-видимому, вследствие недостаточной концентрации примеси, входящей в твердый раствор.

Работа выполнена при частичной финансовой поддержке Программы фундаментальных исследований ОФН РАН и Ведущих научных школ (грант НШ-4034.2010.5).

СПИСОК ЛИТЕРАТУРЫ

1. *Lacorre P., Goutenoire F., Bohnke O. et al.* // Nature. 2000. V. 404. P. 856.

- Goutenoire F., Isnard O., Retoux R. et al. // Chem. Mater. 2000. V. 12. P. 2575.
- 3. Воронкова В.И., Яновский В.К., Харитонова Е.П. // Кристаллография. 2005. Т. 50. № 5. С. 943.
- Selmi A., Corbel G., Kojikian S. et al. // Eur. J. Inorg. Chem. 2008. P. 1813.
- Hayward S.A., Redfern S.A.T. // J. Phys.: Condens. Matter. 2004. V. 16. P. 3571.
- Goutenoire F., Isnard O., Suard E. et al. // J. Chem. Mater. 2001. V. 11. P. 119.
- 7. Marrero-Lopez D., Perez-Coll D., Ruiz-Morales J.C. et al. // Electrochim. Acta. 2007. V. 52. P. 5219.
- Li C., Wang X.P., Li D. // Mater. Res. Bull. 2007. V. 42. P. 1077.
- Marozau I.R., Shaula A.L., Kharton V.V. et al. // Mater. Res. Bull. 2005. V. 40. P. 361.
- 10. Voronkova V.I., Kharitonova E.P., Krasilnikova A.E. // Phys. Status. Solidi. A. 2009. № 11. P. 2564.
- 11. Алексеева О.А., Сорокина Н.И., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 1. С. 26.
- 12. Evans I.R., Howard J.A.K., Evans J.S.O. // Chem. Mater. 2005. V. 17. P. 4074.
- 13. Lacorre P., Selmi A., Corbel G. et al. // Inorg. Chem. 2006. V. 45. P. 627.
- 14. *Malavasi L., Kim H.J., Billinge S.J.L. et al.* // J. Am. Chem. Soc. 2007. V. 129. P. 6903.
- Hou C.J., Li Y.D., Wang P.J. et al. // Phys. Rev. B. 2007. V. 76. P. 014104.
- Tealdi C., Malavasi L., Ritter C. et al. // J. Solid State Chem. 2008. V. 181. P. 603.
- 17. Алексеева О.А., Верин И.А., Сорокина Н.И. и др. // Кристаллография. 2010. Т. 55. № 4. С. 626.
- Oxford Diffraction Ltd. Xcalibur CCD system. Crys-Alis Software system. Version 1. 2003.
- 19. *Petricek V., Dusek M.* Jana2000. The crystallographic computing system. Institute of Physics, Praha, Czech Republic, 2000.
- 20. Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129.
- 21. Воронкова В.И., Харитонова Е.П., Красильникова А.Е. // Кристаллография. 2010. Т. 55. № 2. С. 306.
- 22. *Lacorre P., Goutenoire F., Altorfer F. et al.* // Adv. Sci. Technol. 2003. V. 33. P. 737.
- 23. Georges S., Goutenoire F., Altorfer F. et al. // Solid State Ionics. 2003. V. 161. P. 231.
- 24. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.