КРИСТАЛЛОГРАФИЯ, 2011, том 56, № 3, с. 445-453

УДК 548.736

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ МОНОКРИСТАЛЛОВ КТЮРО₄, ЛЕГИРОВАННЫХ ГАФНИЕМ

© 2011 г. Н. Е. Новикова, И. А. Верин, Н. И. Сорокина, О. А. Алексеева, Е. И. Орлова*, В. И. Воронкова*

> Институт кристаллографии РАН, Москва E-mail: natnov@ns.crys.ras.ru *Московский государственный университет им. М.В. Ломоносова

Поступила в редакцию 30.09.2010 г.

При комнатной температуре проведено повторное прецизионное рентгеноструктурное исследование монокристаллов $KTi_{1-x}Hf_xOPO_4$ (x = 0.015(2), 0.035(1) и 0.128(1)). Установлено, что внедрение атомов гафния в структуру кристаллов $KTiOPO_4$ не приводит к существенным изменениям в каркасе и влияет только на размещение атомов калия в канале. Во всех трех изученных структурах выявлены смещения атомов калия относительно их основных и дополнительных положений в структуре беспримесного KTP; максимальные смещения относительно дополнительных позиций K1' и K1''наблюдаются в структуре с x = 0.035. При этой концентрации гафния уменьшается заселенность основных позиций атомов калия по сравнению с кристаллом KTP и увеличивается заселенность дополнительных позиций, что усиливает неравномерность распределения электронной плотности в окрестности калиевых позиций. Следствием этого может являться увеличение нелинейной восприимчивости кристаллов KTP с концентрацией гафния в них 3.5% по сравнению с кристаллами беспримесного KTP.

ВВЕДЕНИЕ

Кристаллы семейства титанил-фосфата калия КТі OPO_4 (КТР) имеют ряд преимуществ перед другими кристаллами, используемыми в нелинейной оптике и электрооптике, превосходя их по величине нелинейно-оптических и электрооптических коэффициентов [1–3].

К настоящему времени установлено, что по сравнению с кристаллами КТР величина сигнала генерации второй гармоники (ГВГ) возрастает в 1.6 раза в кристаллах КТіОАsO₄ (КТА), которые остаются изоструктурными КТР при полном замещении фосфора мышьяком [4], на 20% при частичном замещении титана ниобием [5], практически вдвое при частичном замещении титана цирконием [6, 7] и на 35–40% в кристаллах КТР, легированных гафнием [8].

В результате прецизионных рентгеноструктурных исследований монокристаллов $KTi_{0.96}Zr_{0.04}OPO_4$ [9] и KTA [10] экспериментально доказано, что оптическая восприимчивость кристаллов семейства КТР связана не только с наличием в структуре цепочек из TiO₆-октаэдров с чередующимися длинными и короткими связями Ti-O, но и со строением тетраэдров PO₄ и размещением щелочных катионов в каналах структуры. В частности, внедрение циркония в структуры КТР усиливает неравномерность распределения электронной плотности в окрестности позиций атомов калия, что определяет вклад щелочных катионов в нели-

нейность данного семейства кристаллов, причем значительный, поскольку при этом уменьшается нелинейность, возникающая из-за разницы между длинными и короткими связями Ti-O [9]. Авторами [8] синтезированы, изучены свойства и строение монокристаллов КТР, легированных гафнием, близким по свойствам к цирконию. Экспериментальные данные были получены при комнатной температуре на дифрактометре Xcalibur S производства фирмы Oxford Diffraction, оборудованном двумерным ССД-детектором. В процессе исследования трех монокристаллов $\text{KTi}_{1-x}\text{Hf}_x\text{OPO}_4 (x = 0.014(1), 0.035(1), 0.125(1))$ уточнены геометрические и тепловые параметры всех атомов. Ошибка в заселенности (Ti, Hf)-позиций – в третьем знаке после запятой, в заселенности К-позиций – во втором знаке [8]. Установлено, что гафний входит в обе существующие в структуре независимые позиции атомов титана и во всех трех случаях аналогично цирконию преимущественно заселяет вторую титановую позицию. При внедрении в структуру КТР атомов гафния, как и в случае циркония [9], происходит симметризация (Ti,Hf)O₆-октаэдров. Однако это структурное исследование не позволило получить данные о распределении ионов калия по позициям в каналах структуры той же степени точности, которая была достигнута при изучении структуры монокристаллов $KTi_{0.96}Zr_{0.04}OPO_4$.

Химическая формула	KTi _{0.985} Hf _{0.015} OPO ₄	KTi _{0.965} Hf _{0.035} OPO ₄	KTi _{0.872} Hf _{0.128} OPO ₄
М	199.3	201.9	214.1
Сингония, пр. гр., Z	ромбическая, <i>Pna2</i> ₁ , 8	ромбическая, <i>Pna</i> 2 ₁ , 8	ромбическая, <i>Pna2</i> 1, 8
<i>a,</i> Å	12.825 (1)	12.835(1)	12.885(1)
<i>b,</i> Å	6.406(1)	6.409(1)	6.426(1)
<i>c</i> , Å	10.594(1)	10.601(1)	10.637(1)
<i>V</i> , Å ³	870.414(1)	872.126(1)	880.737(1)
D_x , г/см ³	3.04	3.07	3.23
Излучение; λ, Å	$MoK_{\alpha}; 0.71069$	$MoK_{\alpha}; 0.71069$	$MoK_{\alpha}; 0.71069$
μ, см ⁻¹	0.352	0.385	0.593
<i>Т</i> , К	293	293	293
Диаметр образца, мм	0.184	0.170	0.231
Дифрактометр	Enraf-Nonius CAD-4F	Enraf-Nonius CAD-4F	Enraf-Nonius CAD-4F
Тип сканирования	ω/2θ	ω/2θ	ω/2θ
Учет поглощения; T_{\min} , T_{\max}	сфера; 0.627, 0.650	сфера; 0.615, 0.640	сфера; 0.372, 0.418
θ _{max} , град	76.59	76.58	59.89
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-34 \le h \le 35$ $0 \le k \le 17$ $0 \le l \le 28$	$-35 \le h \le 35$ $0 \le k \le 16$ $0 \le l \le 28$	$-31 \le h \le 31$ $0 \le k \le 15$ $0 \le l \le 25$
Число отражений: измеренных/независимых (N_1) , $R_{\rm ycp}/c \ I > 3\sigma(I) \ (N_2)$	18361/5722, 0.042/5421	18150/7833, 0.026/7264	13532/5950, 0.017/5807
Метод уточнения	МНК по <i>F</i>	МНК по <i>F</i>	МНК по <i>F</i>
Весовая схема	$1/(\sigma^2(F) + 0.000289F^2)$	$1/(\sigma^2(F) + 0.000064F^2)$	$1/(\sigma^2(F) + 0.000441F^2)$
Число параметров	177*	182**	172***
Учет экстинкции, коэф- фициент	тип 1 Lorentz изотропн. (Becker & Coppens, [11]) 3.0(2)	тип 1 Lorentz изотропн. (Becker & Coppens, [11]) 0.93(7)	тип 1 Lorentz изотропн. (Becker & Coppens, [11]) 1.2(2)
<i>R/R</i> _w по N ₁	0.0245/0.0281	0.0200/0.0209	0.0188/0.0276
<i>R/R</i> _w по N ₂	0.0237/0.0280	0.0186/0.0208	0.0176/0.0276
S	1.05	1.05	1.02
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.35/0.24	-0.43/0.31	-0.69/0.73
Программы	JANA2006[12]	JANA2000[13]	JANA2000[13]

Таблица 1. Характеристики, данные экспериментов и параметры уточнения структур КТР, легированных гафнием

* Атом К1" уточнен в изотропном приближении.

** Все атомы уточнены в анизотропном приближении.

*** Атомы К1" и К2" уточнены в изотропном приближении.

Поэтому для оценки вклада щелочных катионов в нелинейность серии кристаллов КТР, легированных гафнием, представляло особый интерес проведение дополнительных прецизионных рентгеноструктурных исследований.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование проводилось на тех же образцах, что и в [8], на четырехкружном автоматическом дифрактометре CAD-4F фирмы Enraf Nonius. Данный прибор позволяет получить наилучшее разрешение по sinθ/λ и более точно измерить интенсивности слабых отражений. Параметры элементарных ячеек определялись по 24 отражениям в области углов $\theta \sim 20^{\circ} - 23^{\circ}$. Основные экспериментальные данные и параметры уточнения структур приведены в табл. 1. Трехмерные массивы структурных амплитуд получены в 1/4 сферы обратного пространства при максимальных величинах $\sin\theta/\lambda = 1.37$, 1.37 и 1.22 Å⁻¹ (последовательность экспериментов в соответствии с табл. 1). Продолжительность экспериментов составляла 30 дней. Для контроля ориентации образцов из списка базисных отражений, по которым уточнялись парамет-

ры элементарных ячеек, были выбраны три отражения, для контроля интенсивности - три для кристалла с содержанием гафния порядка 1% и по одному для кристаллов с концентрацией гафния порядка 3 и 12%. Контроль ориентации осуществлялся через каждые 300 отражений, контроль интенсивности – через каждый час общего времени экспозиции рентгеновского излучения. Время, которое затрачивалось только на измерение отражений, суммировалось в течение всего эксперимента. За время экспериментов дрейф интенсивностей контрольных отражений не превышал 0.7%, максимальные угловые отклонения контрольных ориентационных отражений от их первоначального положения были 0.093°, 0.056° и 0.136° град, в среднем эти отклонения составляли 0.031°, 0.024° и 0.047° соответственно.

При измерении интегральных интенсивностей отражений максимальная скорость сканирования (сильные отражения) была 4.12 град/мин, минимальная скорость (слабые отражения) – 0.5 град/мин. Критерий измерения отражений – соотношение $\sigma(I)/I$, где I – интенсивность отражения. Если после предварительного сканирования соотношение $\sigma(I)/I$ было > 1, отражение отбраковывалось. Измерение фона проводилось статическим способом – в течение определенного промежутка времени слева и справа на краях интервала сканирования.

Усреднение полученных массивов экспериментальных данных привело к более низким значениям *R*-факторов усреднения (4.2, 2.6 и 1.7% (табл. 1)) по сравнению с [8] (5.4, 5.9 и 4.6%). Полученные таким образом более точные значения интенсивностей отражений позволили более точно, чем в [8], определить координаты атомов, заселенность атомами своих позиций и межатомные расстояния. Основные величины межатомных расстояний приведены в табл. 2. Точность определения заселенности атомами калия своих позиций повысилась до третьего знака после запятой. Произошли изменения межатомных расстояний в третьем знаке после запятой (ошибка – в четвертом знаке).

Информация об исследованных структурах депонирована в Банк данных неорганических структур ICSD (CSD № 422170, 422171, 422172).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В качестве исходной модели для уточнения были взяты координаты атомов в структурах, опубликованных в [8]. Уточнение количества атомов Hf в позициях Ti1 и Ti2 осуществлялось методом пошагового сканирования [14] в предположении, что каждая из них заселена совместно атомами титана и гафния на 100%. Окончательным значениям заселенностей приписывались величины, соответствующие середине доверительно-

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

го интервала, в пределах которого фактор расходимости сохранял свое минимальное значение. Ошибка уточнения определялась как половина доверительного интервала. Результаты показали, что, как и в [8], гафний во всех трех структурах входит в обе независимые позиции атомов титана, но преимущественно заселяет позицию Ti2 (рис. 1). Это обусловлено тем фактом, что атом Til образует более искаженный октаэдр по сравнению с Ti2 [15], а гафнию, как и цирконию, свойственно формирование правильных октаэдров. Внедрение атомов Hf в структуру КТР приводит к уменьшению искажения (Ti1,Hf)O₆- и (Ti2,Hf)O₆-октаэдров (табл. 2, 3) и не приводит к каким-либо существенным изменениям в строении РО₄-тетраэдров. Таким образом, как и в [9], уменьшается нелинейность, возникающая из-за разницы между длинными и короткими связями (Ti, Hf)–О. Следует напомнить, что в данной серии кристаллов величина сигнала ГВГ возрастает на 35–40% по сравнению с кристаллами КТР [8].

В результате исследования строения монокристаллов КТА [10] установлено, что основной причиной значительного увеличения сигнала ГВГ в кристаллах КТА по сравнению с кристаллами КТР является изменение геометрии тетраэдрических анионов в результате замещения атомов фосфора атомами мышьяка, которое усиливает неравномерность распределения электронной плотности в местах соединения TiO₆-октаэдров и РО₄-тетраэдров в каркасе, т.е. в цепочках Р2-О-Ti1-O-P1, P2-O-Ti2-O-P1, Ti1-O-P1-O-Ti2 и Ti1-O-P2-O-Ti2 (рис. 1). Для оценки относительных изменений в звеньях цепочек Ті-О-Р в [10] был введен параметр Δ – степень отклонения от среднего значения разности межатомных расстояний Ti-O и P-O. Для связанных между собой атомов Ті, Р и О, образующих звенья цепочек Ti–O–P, параметр Δ определялся как Δ = (1 J) A

$$=\frac{(a_{\text{Ti-O}}-a_{\text{P-O}})-\Delta_0}{\Delta_0}$$
, где $\Delta_0 = d_{(\text{Ti-O})cp}-d_{(\text{P-O})cp}$.

Значения этого параметра для разных звеньев цепочек Ti-O-P структур KTP, KTi $_{1-x}$ Hf $_xOPO_4$ (x = 0.015(2), 0.035(1), 0.128(1)) и KTi_{0.96}Zr_{0.04}OPO₄ [9] приведены в табл. 4. В структуре КТР существуют звенья Ti2-O5-P1, Ti1-O3-P1 и Ti1-O7-Р2 (рис. 1), в которых величина Δ максимальна — ~16.44 и 18%. Эта разница в межатомных расстояниях Ті–О и Р–О аналогично разнице между чередующимися короткими и длинными связями Ti–O в цепочках октаэдров приводит к неравномерному распределению электронной плотности в этих местах каркаса. При легировании кристаллов КТР гафнием, как было отмечено ранее, наблюдаются изменения длин связей в (Ti1, Hf)O₆и (Ti2, Hf) O_6 -октаэдрах, однако существенных относительных изменений в звеньях цепочек Ті-O-P не происходит – параметр Δ существенно не

НОВИКОВА и др.

Таблица 2. Межатомные расстояния в структурах монокристаллов $KTiOPO_4$ и $KTi_{1-x}Hf_xOPO_4$ (x = 0.015(2), 0.035(1) и 0.128(1))

Расстояния, Å	KTiOPO ₄	KTi _{0.985} Hf _{0.015} OPO ₄	KTi _{0.965} Hf _{0.035} OPO ₄	KTi _{0.872} Hf _{0.128} OPO ₄
Ti1–O1	1.7213(4)	1.7264(8)	1.7323(6)	1.7536(9)
-02	1.9776(4)	1.9740(8)	1.9739(6)	1.9540(9)
-03	2.1485(4)	2.1484(8)	2.1460(6)	2.1422(8)
-04	1.9596(4)	1.9647(8)	1.9678(6)	1.9842(8)
-07	2.0493(6)	2.0453(7)	2.0483(6)	2.0553(7)
-08	1.9884(4)	1.9892(7)	1.9911(6)	1.9947(8)
Среднее значение	1.974	1.975	1.977	1.981
$\Delta_{dmax-dmin}$	0.427	0.422	0.414	0.389
Ti2–O1	2.0911(4)	2.0828(8)	2.0792(6)	2.0604(9)
-02	1.7432(4)	1.7565(8)	1.7614(6)	1.8084(9)
-05	2.0412(3)	2.0429(6)	2.0456(5)	2.0577(7)
-06	1.9800(3)	1.9797(6)	1.9826(5)	1.9923(7)
-09	1.9701(4)	1.9745(8)	1.9751(6)	1.9869(9)
-010	1.9907(4)	1.9892(9)	1.9948(6)	2.0057(9)
Срелнее значение	1.969	1.971	1.973	1.985
	0.348	0.326	0.318	0.252
P1-O3	1 5187(5)	1 5220(9)	1 5206(7)	1 5214(9)
-04	1.5497(5)	1.5220(9)	1.5200(7) 1 5472(7)	1.5455(9)
-05	1.5430(4)	1.5448(7)	1.5426(5)	1.5443(7)
-06	1.5412(4)	1.5474(7)	1.5415(6)	1.5437(8)
Среднее значение	1.538	1.5.12 1(7)	1.538	1.539
	0.031	0.025	0.027	0.024
$\mathbf{P}_{ dmax-dmin }$	1.5342(4)	1.5374(7)	1 5347(6)	1 5349(8)
-08	1.53 (2(1))	1.5391(8)	1.5283(6)	1.53 (0)
-09	1.5271(4)	1.5271(0) 1 5475(9)	1.5283(6)	1.5287(9)
-010	1.5475(5)	1.5475(9) 1 5378(9)	1.5355(7)	1.5395(9)
Среднее значение	1.5300(5)	1.538	1.5355(7)	1.5375(7)
	0.018	0.018	0.020	0.022
$\frac{\Delta amax - amin}{K1 - O1}$	2 7151(7)	2 7219(9)	2 7181(10)	2 7245(10)
-02	2.9656(6)	2.9673(10)	2.9639(10)	2.9805(10)
-03	2.9050(0)	2.9073(10) 2.8783(10)	2.9039(10)	2.9005(10)
-04	2.0019(0)	2.0703(10)	2.0022(10) 2.7598(10)	2.0020(10)
-05	2.7300(7) 2.7251(7)	2.7310(9) 2.7227(8)	2.7390(10)	2.7666(10)
-07	2.7251(7)	2.7227(0) 2.8524(10)	2.7237(10)	2.7410(10)
-09	3.0379(6)	3.0355(10)	3.0324(10)	3.0389(10)
-010	2 7492(7)	2 7617(10)	2 7566(10)	2 7619(10)
Среднее значение	2.835	2.7017(10)	2.7300(10)	2.7017(10)
	0.323	0.314	0.314	0.314
$K_{2-\Omega_{1}}$	3.0455(7)	3.0430(10)	3.0443(10)	3.0551(10)
-02	2 7662(7)	2 7663(10)	2 7692(10)	2 7708(10)
-03	2.7002(7) 2.6754(7)	2.7003(10) 2.6807(10)	2.7692(10)	2.6841(10)
-04	2.0751(7) 2.9640(7)	2.9593(10)	2.0709(10)	2.0011(10)
-05	3 0298(6)	3 0188(10)	3 0259(10)	3 0280(10)
-06	3 1425(7)	3 1468(10)	3 1576(10)	3 1806(10)
-07	2.8144(7)	2 8104(10)	2 8185(10)	2 8210(10)
-09	2.8945(7)	2.9031(10)	2.8932(10)	2.0210(10)
-010	3 0175(7)	3 0197(10)	3 0183(10)	3 0392(10)
Среднее значение	2 928	2 928	2 930	2 938
А.	0.467	0.466	0.481	0.497
dmax-dmin	0.407	0.400	0.401	0.497

448

Таблица 2. Окончание

Расстояния, Å	KTiOPO ₄	KTi _{0.985} Hf _{0.015} OPO ₄	KTi _{0.965} Hf _{0.035} OPO ₄	KTi _{0.872} Hf _{0.128} OPO ₄
K1'-O1	2.692(4)	2.655(2)	2.778(9)	2.699(9)
-O2	3.188(4)	3.124(4)	3.253(10)	3.237(7)
-03	3.028(4)	3.026(4)	2.977(10)	3.045(7)
-O4	2.653(4)	2.702(2)	2.621(10)	2.665(8)
-05	2.734(4)	2.743(3)	2.684(10)	2.741(7)
-O7	3.118(3)	3.082(6)	3.086(10)	3.172(5)
-08	3.341(4)	3.428(3)	3.251(9)	3.336(9)
-09	3.246(4)	3.184(4)	3.275(10)	3.269(7)
-O10	2.743(4)	2.707(2)	2.868(9)	2.769(8)
Среднее значение	2.971	2.961	2.977	2.993
$\Delta_{ dmax-dmin }$	0.688	0.773	0.654	0.671
K1'–K1	0.284(3)	0.233(6)	0.330(10)	0.317(6)
K2'-O1	3.260(5)	3.198(9)	3.239(7)	3.232(10)
-O2	2.696(6)	2.701(9)	2.703(9)	2.678(10)
-03	2.600(6)	2.602(9)	2.610(10)	2.645(10)
-04	3.185(5)	3.124(9)	3.164(8)	3.191(10)
-05	3.344(3)	3.268(5)	3.311(4)	3.315(8)
-06	2.926(6)	3.018(9)	2.950(10)	2.951(10)
-07	2.821(5)	2.854(9)	2.815(8)	2.833(10)
-09	2.900(6)	2.839(9)	2.910(10)	2.923(10)
-O10	3.258(5)	3.157(9)	3.246(8)	3.272(10)
Среднее значение	2.999	2.973	2.994	3.004
$\Delta_{ dmax-dmin }$	0.744	0.666	0.701	0.670
K2'–K2	0.321(3)	0.249(5)	0.294(5)	0.300(8)
K1"-O1	2.809(6)	2.787(10)	2.778(9)	2.868(9)
-02	3.190(5)	3.254(10)	3.253(10)	3.232(10)
-03	2.891(5)	2.963(10)	2.977(10)	2.866(10)
-04	2.692(6)	2.631(10)	2.621(10)	2.657(9)
-05	2.590(6)	2.653(10)	2.684(10)	2.627(9)
-07	2.896(1)	3.054(10)	3.086(10)	2.944(10)
-08	3.319(5)	3.246(10)	3.251(9)	3.285(10)
-09	3.142(5)	3.254(10)	3.275(10)	3.199(10)
-O10	2.971(6)	2.902(10)	2.868(9)	3.009(9)
Среднее значение	2.944	2.972	2.977	2.965
$\Delta_{ dmax-dmin }$	0.729	0.623	0.654	0.658
K1"–K1	0.277(6)	0.320(10)	0.227(6)	0.324(9)
K1"-K1'	0.286(5)	0.234(8)	0.170(10)	0.310(10)
K2"-O1	3.020(4)	3.020(10)	3.013(9)	3.003(10)
-02	2.757(5)	2.802(10)	2.758(8)	2.734(9)
-03	2.805(4)	2.795(10)	2.811(8)	2.842(9)
-04	3.008(3)	2.955(10)	3.005(9)	3.030(9)
-05	2.978(1)	2.930(20)	2.968(9)	2.973(10)
-06	3.004(3)	3.049(10)	3.020(9)	3.028(9)
-07	2.710(5)	2.677(10)	2.716(8)	2.739(10)
-09	3.133(4)	3.152(10)	3.134(8)	3.138(9)
-O10	3.170(4)	3.156(10)	3.168(9)	3.188(9)
Среднее значение	2.954	2.993	2.955	2.964
$\Delta_{ dmax-dmin }$	0.460	0.479	0.452	0.454
K2"-K2	0.246(4)	0.250(10)	0.249(7)	0.257(8)
K2''-K2'	0.414(4)	0.430(20)	0.390(10)	0.390(10)

Рис. 1. Структура монокристаллов КТіОРО₄ (эллипсоиды тепловых колебаний атомов изображены с вероятностью 99%): черными линиями выделены цепочки Ti1–O1–Ti2–O2–Ti1; серыми – P2–O–Ti1– O–P1 и Ti1–O–P2–O–Ti2 (толщина линий зависит от величины параметра Δ).

меняется и даже уменьшается, т.е. уменьшается неравномерность распределения электронной плотности в этих местах каркаса. Таким образом, уменьшается нелинейность, возникающая из-за разницы в межатомных расстояниях(Ti, Hf)–O и P–O. Отсутствие существенных изменений в каркасе структуры КТР при легировании кристалла гафнием подтверждается и анализом углов P–O–Ti, Ti–O–Ti и O–Ti–O – эти углы меняются незначительно, в среднем на 0.2° –0.7°.

В результате исследования строения монокристаллов КТР, легированных цирконием, экспериментально доказано, что оптическая восприимчивость данной серии кристаллов связана также с размещением щелочных катионов в каналах структуры [9]. Настоящее исследование показало, что с ростом концентрации гафния атомы К1 и К2 смещаются в направлении -c (табл. 5). Анализ разностного распределения электронной плотности вблизи позиций атомов калия, как и в [9, 10], выявил по два пика остаточной электронной плотности вблизи позиций атомов К1 и К2, в соответствии с которыми были локализованы дополнительные позиции. Следует отметить, что в ходе предыдущего исследования [8] этого

Таблица 3. Степень отклонения от среднего значения межатомных расстояний Ti–O и P–O в структурах монокристаллов KTiOPO₄, $KTi_{1-x}Hf_xOPO_4$ (x = 0.015(2), 0.035(1) и 0.128(1)) и $KTi_{0.96}Zr_{0.04}OPO_4$ [9]

Связь	KTiOPO ₄	KTi _{0.985} Hf _{0.015} OPO ₄	KTi _{0.965} Hf _{0.035} OPO ₄	KTi _{0.872} Hf _{0.128} OPO ₄	KTi _{0.96} Zr _{0.04} OPO ₄
Ti1–O1	-0.1280	-0.1259	-0.1234	0.1148	-0.1252
-O2	0.0018	-0.0005	-0.0016	-0.0137	-0.0015
-03	0.0884	0.0878	0.0855	0.0814	0.0878
-O4	-0.0073	-0.0052	-0.0046	0.0016	-0.0040
-O7	0.0381	0.0356	0.0361	0.0375	0.0367
-08	0.0073	0.0072	0.0071	0.0069	0.0076
Ti2–O1	0.0620	0.0567	0.0538	0.0380	0.0570
-O2	-0.1147	-0.1088	-0.1072	-0.0890	-0.1108
-05	0.0367	0.0365	0.0368	0.0366	0.0373
-06	0.0056	0.0044	0.0049	0.0037	0.0055
-09	0.0006	0.0018	0.0011	0.0009	0.0003
-O10	0.0110	0.0092	0.0110	0.0104	0.0111
P1-O3	-0.0125	-0.0110	-0.0113	-0.0114	-0.0116
-O4	0.0076	0.0055	0.0060	0.0042	0.0063
-O5	0.0033	0.0038	0.0030	0.0034	0.0040
-06	0.0021	0.0022	0.0023	0.0030	0.0023
P2-O7	-0.0018	-0.0004	-0.0015	-0.0014	-0.0013
-O8	-0.0054	-0.0058	-0.0057	-0.0067	-0.0049
-09	0.0068	0.0062	0.0073	0.0075	0.0066
-O10	-0.0001	-0.0001	-0.0009	0.0016	0.0000
$\Delta_{\text{Ti1-O2}-\text{Ti1-O1}}$	0.2563	0.2476 (-3.4%)	0.2416 (-5.7%)	0.2004 (-21.8%)	0.2445 (-4.6%)
$\Delta_{\text{Ti2-O1}-\text{Ti2-O2}}$	0.3479	0.3263 (-6.2%)	0.3178 (-8.7%)	0.2520 (-27.6%)	0.3313 (-4.8%)

Рис. 2. Карты разностного распределения электронной плотности вблизи позиции атома K1 для модели структуры со статистическим распределением атомов калия в монокристаллах: беспримесного KTP [15] (a); $KTi_{0.985}Hf_{0.015}OPO_4$ (b); $KTi_{0.985}Hf_{0.015}OPO_4$ (c) $KTi_{0.965}If_{0.035}OPO_4$ (b); $KTi_{0.872}Hf_{0.128}OPO_4$ (c) $KTi_{0.96}Zr_{0.04}OPO_4$ [9] (д). Шаг изолиний – 0.1 эÅ⁻³. Кружками обозначены атомы К.

сделать не удалось — было локализовано только по одной дополнительной позиции. Заселенность основных и дополнительных калиевых позиций уточнялась методом пошагового сканирования [14]. Выявлено также смещение атомов калия относительно своих дополнительных положений в структуре КТР (рис. 2, табл. 5). Смещения атомов калия относительно основных и дополнительных положений в структуре КТР приводят к перераспределению электронной плотности в канале структуры.

Наибольшие смещения атомов К1' и К1" наблюдаются в кристалле KTi_{0.965}Hf_{0.035}OPO₄, в котором

Связи	KTiOPO ₄	KTi _{0.985} Hf _{0.015} OPO ₄	KTi _{0.965} Hf _{0.035} OPO ₄	KTi _{0.872} Hf _{0.128} OPO ₄	KTi _{0.96} Zr _{0.04} OPO ₄
Ti2-O6-P1	0.0181	0.0123	0.0140	0.0058	0.0123
Ti2-O5-P1	0.1559	0.1530	0.1563	0.1511	0.1490
Ti1-O4-P1	-0.0599	-0.0429	-0.0419	-0.0075	-0.0402
Ti1-O3-P1	0.4445	0.4367	0.4275	0.4045	0.4370
Ti1-07-P2	0.1787	0.1622	0.1673	0.1721	0.1753
Ti1-O8-P2	0.0510	0.0529	0.0518	0.0541	0.0563
Ti2-09-P2	-0.0218	-0.0139	-0.0211	-0.0216	-0.0217
Ti2-O10-P2	0.0507	0.0425	0.0647	0.0406	0.0500

Таблица 4. Степень отклонения Δ от среднего значения разности межатомных расстояний Ti–O и P–O в структурах монокристаллов KTiOPO₄, KTi_{1-x}Hf_xOPO₄ (x = 0.015(2), 0.035(1) и 0.128(1)) и KTi_{0.96}Zr_{0.04}OPO₄ [9]

НОВИКОВА и др.

Направления смещений	x/a	y/b	z/c	x/a	y/b	z/c	
Атомы		K1		K2			
Величины	0.0005(1)	0.0005(1)	-0.0010(1)	-0.0003(3)	-0.0008(2)	-0.0014(2)	
смещений	-0.0003(1)	0.0004(1)	-0.0017(1)	0.0002(3)	0.0009(2)	-0.0015(2)	
	0.0000(1)	0.0007(1)	-0.0028(1)	0.0002(3)	0.0021(2)	-0.0036(2)	
	-0.0007(1)	0.0007(1)	0.0008(1)	0.0005(3)	0.0034(1)	-0.0017(3)	
Атомы	K1'			K2'			
Величины	0.0057(4)	-0.0017(9)	-0.0044(4)	0.0037(6)	0.0008(20)	-0.0077(4)	
смещений	0.0101(5)	0.0063(9)	-0.0039(6)	-0.0001(5)	-0.0010(20)	-0.0044(4)	
	0.0012(5)	0.0023(9)	-0.0002(3)	0.0011(6)	-0.0030(20)	-0.0064(5)	
	0.0041(4)	0.0074(8)	-0.0052(4)	-0.0012(4)	-0.0090(20)	-0.0105(4)	
Атомы		K1''			K2''		
Величины	-0.0004(6)	-0.0060(10)	0.0140(20)	-0.0021(7)	0.0028(10)	-0.0050(20)	
смещений	-0.0153(6)	-0.0160(10)	0.0145(20)	0.0004(5)	0.0008(8)	-0.0020(10)	
	0.0043(6)	-0.0020(10)	-0.0010(20)	0.0021(5)	-0.0012(8)	-0.0040(10)	
	-0.0116(5)	-0.0253(10)	-0.0171(20)	0.0031(5)	0.0115(8)	-0.0013(8)	

Таблица 5. Смещения атомов калия δ в структурах монокристаллов $\text{KTi}_{1-x}\text{Hf}_x\text{OPO}_4$ (x = 0.015(2), 0.035(1) и 0.128(1)) и $\text{KTi}_{0.96}\text{Zr}_{0.04}\text{OPO}_4$ [9] (строки 1–4 соответственно) относительно их положений в KTiOPO_4

Таблица 6. Заселенность позиций атомов калия и расстояния между этими позициями в структурах монокристаллов KTiOPO₄, KTi_{1-x}Hf_xOPO₄ (x = 0.015(2), 0.035(1) и 0.128(1)) и KTi_{0.96}Zr_{0.04}OPO₄ [9]

Заселенность позиций атомов калия							
Позиция	K1	K1'	K1"	K2	K2'	K2"	
KTiOPO ₄	0.838(1)	0.092(1)	0.058(1)	0.843(2)	0.061(2)	0.090(2)	
KTi _{0.985} Hf _{0.015} OPO ₄	0.863(7)	0.080(7)	0.050(7)	0.851(9)	0.080(9)	0.060(8)	
KTi _{0.965} Hf _{0.035} OPO ₄	0.823(3)	0.099(3)	0.080(3)	0.817(2)	0.090(2)	0.087(2)	
KTi _{0.872} Hf _{0.128} OPO ₄	0.869(2)	0.078(2)	0.040(2)	0.845(2)	0.080(2)	0.059(2)	
KTi _{0.96} Zr _{0.04} OPO ₄	0.770(4)	0.135(6)	0.091(6)	0.722(6)	0.146(6)	0.126(7)	
		Pace	стояния, Å				
Позиции	K1–K1'	K1-K1"	K2–K2'	K2–K2"	K1'-K1"	K2'-K2"	
KTiOPO ₄	0.284(3)	0.277(6)	0.321(3)	0.246(4)	0.286(5)	0.414(4)	
KTi _{0.985} Hf _{0.015} OPO ₄	0.233(6)	0.320(10)	0.234(8)	0.249(5)	0.250(10)	0.430(20)	
KTi _{0.965} Hf _{0.035} OPO ₄	0.330(10)	0.227(6)	0.294(5)	0.249(7)	0.170(10)	0.390(10)	
KTi _{0.872} Hf _{0.128} OPO ₄	0.317(6)	0.324(9)	0.300(8)	0.257(8)	0.310(10)	0.390(10)	
KTi _{0.96} Zr _{0.04} OPO ₄	0.263(6)	0.180(6)	0.275(6)	0.186(7)	0.371(8)	0.278(9)	

зарегистрирован максимум сигнала ГВГ [8]. Аналогичная ситуация реализуется и в $KTi_{0.96}Zr_{0.04}OPO_4$ (табл. 5), в котором также зафиксирована максимальная величина сигнала ГВГ. Кроме того, в этих двух соединениях существенно уменьшается заселенность основных позиций атомов калия по сравнению с кристаллом КТР и увеличивается заселенность дополнительных позиций (табл. 6), что также приводит к перераспределению электронной плотности в каналах структуры — возрастанию ее концентрации в области дополнительных позиций атомов калия.

ЗАКЛЮЧЕНИЕ

В результате дополнительных прецизионных рентгеноструктурных исследований монокристаллов КТР, легированных гафнием, при ком-

натной температуре установлено, что при внедрении гафния в структуру КТР каркас структуры меняется незначительно. Происходит его симметризация сокращается разница между длинными и короткими связями (Ti, Hf)–O в (Ti, Hf)O₆-октаэдрах и уменьшается степень отклонения от среднего значения разности межатомных расстояний (Ti, Hf)–O и P–O в звеньях цепочек (Ti, Hf)–O–P. Таким образом, уменьшается неравномерность распределения электронной плотности в каркасе и уменьшается нелинейность, возникающая изза разницы между длинными и короткими связями (Ti,Hf)–O и разницы в межатомных расстояниях (Ti, Hf)–O и Р–O.

Одновременно наблюдаются смещения атомов калия относительно их положений в структуре КТР, что приводит к перераспределению электронной плотности в каналах структуры. Максимальные смещения сопровождаются возрастанием концентрации электронной плотности в области дополнительных позиций атомов калия и усилением неравномерности распределения электронной плотности в канале. Следствием этого может быть увеличение нелинейной восприимчивости этих кристаллов и возрастание сигнала ГВГ.

Работа выполнена при частичной финансовой поддержке Ведущих научных школ (грант № НШ-4034.2010.5) и Российского фонда фундаментальных исследований (грант № 09-02-00577-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Zumsteg F.G., Bierlein J.D., Gier T.E. // J. Appl. Phys. 1976. V. 47. P. 4980.
- Stucky G.D., Phillips M.L.F., Gier T.E. // Chem. Mater. 1989. V. 1. P. 492.
- 3. *Hagerman M.E., Poeppelmer K.R.* // Chem. Mater. 1995. V. 7. P. 602.
- Bierlein J.D., Vanherzeele H., Ballman A.A. // Appl. Phys. Lett. 1989. V. 54. P. 783.
- Tomas P.A., Watts B.E. // Solid State Commun. 1990. V. 73. № 2. P. 97.
- 6. *Chani V.I., Shimamura K., Fukuda T. //* Jpn. J. Appl. Phys. Part 1. 1995. V. 34. № 3. P. 1615.
- 7. Воронкова В.И., Яновский В.К., Леонтьева И.Н. и др. // Неорган. материалы. 2004. Т. 40. № 12. С. 1505.
- 8. *Орлова Е.И., Харитонова Е.П., Новикова Н.Е. и др. //* Кристаллография. 2010. Т. 55. № 3. С. 440.
- 9. Новикова Н.Е., Верин И.А., Сорокина Н.И. и др. // Кристаллография. 2009. Т. 54. № 2. С. 247.
- 10. *Новикова Н.Е., Верин И.А., Сорокина Н.И. и др.//* Кристаллография. 2010. Т. 55. № 3. С. 448.
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129.
- 12. *Petricek V., Dusek M., Palatinus L.* Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic. 2006.
- 13. *Petricek V., Dusek M., Palatinus L.* Jana2000. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic, 2000.
- 14. *Мурадян Л.А., Радаев С.Ф., Симонов В.И. //* Методы структурного анализа. М.: Наука, 1989. С. 5.
- 15. *Новикова Н.Е., Верин И.А., Сорокина Н.И. и др. //* Кристаллография. 2008. Т. 53. № 6. С. 999.