КРИСТАЛЛОГРАФИЯ, 2011, том 56, № 3, с. 441-444

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ВОДОРОДСОДЕРЖАЩЕГО ВУОННЕМИТА ИЗ ЛОВОЗЕРСКОГО ЩЕЛОЧНОГО МАССИВА

© 2011 г. Р. К. Расцветаева, С. М. Аксёнов, И. А. Верин, И. С. Лыкова*

Институт кристаллографии РАН, Москва E-mail: rast@ns.crys.ras.ru * Московский государственный университет им. М.В. Ломоносова Поступила в редакцию 14.10.2010 г.

Методом монокристального рентгеноструктурного анализа изучен образец водородсодержащего вуоннемита из ультраагпаитового пегматита Шкатулка (Ловозерский щелочной массив, Кольский п-ов). Параметры триклинной ячейки: a = 5.4712(1), b = 7.1626(1), c = 14.3702(3) Å, $\alpha = 92.623(2)^{\circ}, \beta = 95.135(1)^{\circ}, \gamma = 90.440(1)^{\circ};$ пр. гр. *P*1, R = 3.4%. Установлено упорядочение катионов Na⁺ и молекул H₂O в межпакетных позициях. Молекулы воды связаны с тетраэдрами PO₄ водородными связями.

Минерал вуоннемит впервые описан в Хибинских и Ловозерских щелочных массивах на Кольском полуострове как триклинный безводный (Nb, Ti)-силикат с идеализированной формулой Na₄TiNb₂(Si₂O₇)₂ · 2Na₃(PO₄), представитель группы ломоносовита [1]. В [2, 3] была уточнена формула минерала с учетом вхождения в структуру атомов фтора: Na₁₁Nb₂TiSi₄P₂O₂₅F, а затем на образце из массива Илимаусак (Гренландия) [4] установлена возможность вхождения в минерал и фтора, и атомов кислорода. На двух образцах близкого состава из Илимаусака и Ловозера предложена идеализированная формула вуоннемита Na₁₁Ti⁴⁺Nb₂(Si₂O₇)₂(PO₄)₂O₃(F, OH), пр. гр. $P\overline{1}$ [5].

Вуоннемит – фосфатсодержащий гетерофиллосиликат мероплезиотипного ряда бафертисита [6], гетерополиэдрические слои которого, перпендикулярные [001], топологически идентичны слоям других представителей этого ряда, но при этом характеризуются упорядочением Ті и Nb. В настоящей работе изучен образец водородсодержащего вуоннемита из ультраагпаитового пегматита Шкатулка на горе Аллуайв в Ловозерском щелочном массиве [7], характеризующийся особенностями химического состава, сильными сдвигами и уширением полос ИК-спектра, а также присутствием в спектре дополнительных полос, отвечающих колебаниям молекул H₂O (3330 и 1637 см⁻¹) и, предположительно, изолированного протона — катиона H⁺ (1367 см⁻¹).

По данным электроннозондовых анализов, эмпирическая формула минерала имеет вид: $H_xNa_{6.8}Ca_{0.1}Mn_{0.2}Nb_{1.6}Ti_{1.3}(Si_2O_7)_2(PO_4)_{1.8}O_vF \cdot nH_2O.$

Характеристика кристалла и данные рентгеновского дифракционного эксперимента приведены в табл. 1.

Таблица 1. Кристаллоструктурные данные, характеристики эксперимента и уточнения структуры $(H_2O, Na)_8(Na, Ti)_4Nb_2[Si_2O_7]_2[PO_4]_2H_4^+O_3F$

Сингония, пр. гр., Z	триклинная, <i>Р</i> 1, 1
a, Å	5.4712(1)
b, Å	7.1626(1)
<i>c</i> , Å	14.3702(3)
α, град	92.623(2)
β, град	95.135(1)
ү, град	90.440(1)
$V, Å^3$	560.25(2)
D_x , г/см ³	3.152
Излучение, λ, Å	$MoK_{\alpha}; 0.71073$
μ, см ⁻¹	19.886
Размеры кристалла, мм	0.15 imes 0.2 imes 0.2
Дифрактометр	Xcalibur Oxford Diffraction, CCD-детектор
Тип сканирования	ω-сканирование
θ _{max} , град	55
Пределы <i>h</i> , <i>k</i> , <i>l</i>	-12 < h < 10, -14 < k < 15, -32 < l < 32
Число отражений: измеренных/независимых/ <i>R_{int}/</i> c <i>F</i> > 3σ(<i>F</i>)	14320/5849/0.018
Метод уточнения	МНК по F
Число уточняемых пара- метров	460
Фактор недостоверности: $R_{\rm анизо}$	0.034
Программы:	AREN [8,9], DIFABS [10]

Атом	x/a	y/b	z/c	$B_{_{ m ЭKB}}, Å^2$	Атом	x/a	y/b	z/c	$B_{_{\rm 3KB}}, {\rm \AA}^2$
Nb1	0.1757(1)	0.3751(1)	0.2250(1)	0.98(1)	08	0.2007(5)	0.3929(4)	0.3482(2)	1.3(2)
Nb2	0.5686(1)	0.3984(1)	0.6564(1)	1.21(1)	09	0.074(1)	0.8962(5)	0.6757(2)	1.6(2)
Ti	0.8987(1)	0.8862(1)	0.4327(1)	0.64(2)	O10	0.8966(5)	0.1987(4)	0.2100(2)	1.4(2)
Na1	0.3659(2)	0.1334(2)	0.4363(1)	1.55(2)	O 11	0.0374(6)	0.6909(4)	0.5171(2)	1.4(2)
Na2	0.869(1)	0.3823(6)	0.4411(3)	1.40(5)	O12	0.4387(6)	0.5577(5)	0.2002(2)	1.5(2)
Na3	0.3707(2)	0.6480(2)	0.4337(1)	0.87(6)	O13	0.105(1)	0.9595(6)	0.0466(3)	2.4(2)
Na4	0.1696(5)	0.8711(4)	0.1978(2)	1.76(5)	O14	0.1410(5)	0.889(4)	0.3623(2)	1.1(2)
Na5	0.6728(5)	0.3736(3)	0.0747(1)	1.75(6)	O15	0.828(1)	0.200(7)	0.6833(3)	2.1(2)
Na6	0.5780(4)	0.8743(3)	0.6762(1)	1.50(6)	O16	0.5491(5)	0.3745(6)	0.5333(2)	1.5(2)
Na7	0.0518(4)	0.8675(3)	0.8394(1)	1.47(6)	O 17	0.1318(6)	0.3150(4)	0.0676(2)	1.2(2)
Si1	0.6894(1)	0.6657(1)	0.2442(1)	0.45(4)	O18	0.3259(6)	0.5988(6)	0.6641(2)	1.7(2)
Si2	0.6788(1)	0.0869(1)	0.2518(1)	0.48(4)	O19	0.472(1)	0.133(1)	-0.0024(5)	3.5(2)
Si3	0.0686(2)	0.6806(1)	0.6265(1)	0.82(4)	O20	0.060(2)	0.150(1)	0.9070(3)	3.4(2)
Si4	0.0585(1)	0.1105(1)	0.6385(1)	0.74(4)	O21	0.700(1)	0.607(1)	0.9731(3)	2.4(2)
P1	0.5570(2)	0.6215(1)	0.8759(1)	1.48(4)	O22	0.608(1)	0.443(1)	0.8140(3)	2.2(1)
P2	0.1909(2)	0.1345(1)	0.0044(1)	1.44(4)	O23	0.845(1)	0.5799(6)	0.6702(2)	1.9(1)
01	0.9280(4)	0.5777(3)	0.1963(1)	0.8(2)	O24	0.636(1)	0.8146(6)	0.8335(3)	2.3(1)
O2	0.6723(5)	0.8769(2)	0.2033(1)	0.7(2)	O25	0.288(1)	0.628(1)	0.8853(4)	2.5(1)
O3	0.7106(4)	0.6785(3)	0.3556(1)	0.8(2)	F	0.5966(5)	0.8898(4)	0.5148(2)	1.2(2)
O4	0.4151(5)	0.1745(3)	0.2191(2)	1.2(2)	W1	0.131(1)	0.6301(5)	0.0259(2)	1.7(1)
O5	0.0298(5)	0.0960(4)	0.5237(2)	1.1(2)	W2	0.063(1)	0.3959(6)	0.8037(2)	1.8(2)
O6	0.7160(4)	0.0840(3)	0.3651(1)	0.7(1)	W3	0.622(1)	0.1509(5)	0.8589(2)	2.0(1)
O 7	0.3106(5)	0.2112(4)	0.6816(2)	1.1(2)	W4	0.710(2)	0.9063(1)	0.052(1)	4.9(1)

Таблица 2. Координаты атомов и эквивалентные параметры атомных смещений $(B_{_{3KB}})$

Таблица 3. Характеристика координационных полиэдров

Позиция	Coorran	КП	Расстояния катион-анион, Å					
	Состав	КЛ	Минимальное	Максимальное	Среднее			
Nb1	Nb	6	1.762(3)	2.273(3)	1.997			
Nb2	0.8Nb + 0.2Ti	6	1.762(3)	2.263(4)	2.003			
Ti	Ti	6	1.738(3)	2.115(3)	1.982			
Na1	0.7Na + 0.3Mn	6	2.273(2)	2.431(3)	2.348			
Na2	Na	6	2.288(5)	2.614(5)	2.467			
Na3	Na	6	2.270(3)	2.621(4)	2.360			
Na4	0.74Na	9	2.287(6)	2.938(5)	2.620			
Na5	Na	8	2.229(7)	3.015(4)	2.600			
Na6	Na	8	2.314(5)	2.833(3)	2.577			
Na7	Na	4	2.202(6)	2.383(4)	2.281			
Si1	Si	4	1.592(2)	1.647(2)	1.629			
Si2	Si	4	1.606(3)	1.626(2)	1.618			
Si3	Si	4	1.571(3)	1.667(3)	1.607			
Si4	Si	4	1.593(4)	1.648(4)	1.623			
P1	Р	4	1.493(5)	1.607(5)	1.552			
P2	Р	4	1.507(5)	1.597(3)	1.544			

КРИСТАЛЛОГРАФИЯ том 56 № 3 2011

Модель структуры вуоннемита получена прямым методом с последующей процедурой "коррекции фаз" [9]. В соответствии с данными [5] структура уточнялась сначала в рамках центросимметричной группы $P\overline{1}$, однако высокое значение *R*-фактора 6.13% в анизотропном приближении, а также сложность в распределении примесей по позициям вынудили понизить симметрию до Р1. Уточнение МНК с учетом в ряде позиций смешанных кривых атомного рассеяния привели к R = 7.4% в изотропном приближении, а после учета поглощения по программе DIFABS [10] *R*-фактор снизился до 3.4% в анизотропном приближении. Окончательные координаты и тепловые параметры атомов приведены в табл. 2, характеристика полиэдров – в табл. 3.

Основой структуры минерала, как и других представителей семейства гетерофиллосиликатов, являются трехслойные пакеты, параллельные (001). Основные особенности состава и структуры минерала отражены в его кристаллохимической формуле: [(H₂O)₄Na_{3,7}]_{Σ7,7}[Na_{2,7}Ti₁Mn_{0,3}]_{Σ4} [(Nb, $Ti_{2}(Si_{2}O_{7})_{2}[PO_{4}]_{2}H_{4}^{+}O_{3}F$, где квадратными скобками выделены межпакетные атомы Na и молекулы H₂O, октаэдрический слой, сетка из (Nb, Ti)октаэдров и Si-диортогрупп, а также P-тетраэдры (рисунок). Атом фтора найден расчетом локального баланса валентностей по Брезе и О'Кифу [11] (табл. 4). Нелокализованные Н⁺ атомы, присутствующие в межпакетном пространстве и не образующие прочных ковалентных связей с кислородом, включены в формулу по данным ИКспектра.

Катионный слой состоит из реберносвязанных октаэдров Na и Ti с небольшой примесью Mn. Атом Ti занимает собственную позицию (рисунок), в то время как Mn дополняет одну из трех независимых позиций Na до единицы.

Общий вид структуры водородсодержащего вуоннемита в проекции на (100). Малыми шарами показаны атомы Na и F, крупными – молекулы H₂O.

Внешние слои пакетов являются анионными сетками, состоящими из (Nb,Ti)O₆-октаэдров и групп Si₂O₇. Избыток Тi локализуется в одном из двух Nb-октаэдров, что наряду с упорядочением примеси Mn является одной из причин понижения симметрии от центросимметричной пр. гр. $P\overline{1}$ структуры вуоннемита [5] до P1.

В направлении оси *с* трехслойные пакеты переложены тетраэдрами $[PO_4]^{3-}$ и полиэдрами Na. Однако в данном образце большая часть Na замещена на молекулы воды, распределение которых также не согласуется с центросимметричностью структуры. По данным ИК-спектра, в изученном

Атом	Nb1	Nb2	Si1	Si2	Si3	Si4	Ti	Na1	Na2	Na3	Na4	Na6	Σ_{aH}
O3			1.09				0.56		0.11	0.28			2.04
05						0.96	0.56	0.24	0.14				1.90
O6				1.00			0.64	0.28	0.17				2.09
08	1.50							0.18	0.23	0.26			2.17
011					1.15		0.60		0.13	0.27			2.15
014							1.23	0.27		0.22	0.21		1.93
016		1.50						0.24	0.27	0.11			2.12
F							0.44	0.19		0.24		0.24	1.11
$\Sigma_{\rm kat}$							4.03	1.40	1.05	1.30			

Таблица 4. Расчет локального баланса валентных усилий на атомах кислорода октаэдров (по Брезе [11])

образце вуоннемита есть вода и фосфатные группы, причем последние находятся в диссоциированном состоянии с образованием катионов H⁺, которым соответствует полоса при 1367 см⁻¹. Отсутствие полос в диапазоне 1900–2600 см⁻¹ говорит об отсутствии в минерале групп [PO₃OH]^{2–} с ковалентной связью O-H. Это подтверждается и рентгеноструктурным анализом, так как различия длин связей в P-тетраэдрах невелики: 1.493(5), 1.546(5), 1.563(5), 1.607(5) и 1.507(5), 1.522(5), 1.551(5), 1.597(3) Å для P1–O и P2–O соответственно. Для сравнения можно указать, что в [5] приводятся расстояния P–O = 1.527–1.569 и 1.529–1.571 Å для образцов из Илимаусака и Ловозера соответственно.

Чередующиеся тетраэдры РО4 и молекулы Н₂О, объединенные водородными связями, группируются вдоль оси у в "ленты", которые участвуют в объединении пакетов в трехмерную постройку. В системе Н-связей кроме протонов, принадлежащих молекулам воды, участвуют и атомы водорода, не образующие ковалентных связей с кислородными вершинами Р-тетраэдров. Анализ расстояний между "донором" и "акцептором" позволил сделать вывод, что эти расстояния укорочены (2.22–2.42 Å) и потому водородные связи, скорее всего, являются симметричными. Наблюдаемые меньше 2.4 Å расстояния, по-видимому, являются следствием неточной локализации атомов кислорода, принадлежащих молекулам воды, из-за подвижности последних (особенно W4). Симметричные связи известны в структурах минералов. В частности, в калиборите [12] установлена водородная связь между двумя ОН-группами, расположенными на расстоянии 2.421(4) Å друг от друга. В структуре пектолита $Ca_2NaHSi_3O_9$ [13] также найдена позиция Н-атома между двумя атомами О, расстояние между которыми 2.482 Å. Более детальное заключение о системе Н-связей в данной структуре можно сделать лишь на основе локализации атомов водорода.

Таким образом, отличительной особенностью изученного в настоящей работе образца является высокая степень его гидратированности, упорядоченности межслоевых ионов и молекул воды и наличие ионов Н⁺, участвующих в симметричных водородных связях.

Авторы выражают благодарность И.В. Пекову за предоставленный образец, Н.В. Чуканову за интерпретацию ИК-спектра и Н.Г. Фурмановой за обсуждение результатов и полезные замечания.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 10-05-00092а) и НШ-3848.2010.5.

СПИСОК ЛИТЕРАТУРЫ

- Буссен И.В., Денисов А.П., Забавникова Н.И. и др. // Зап. Всесоюз. минерал. о-ва. 1973. Ч. 102. Вып. 4. С. 423.
- 2. *Хомяков А.П.* // Конституция и свойства минералов. Киев: Наук. думка. 1976. Вып. 10. С. 96.
- 3. Дроздов Ю.Н., Баталиева Н.Г., Воронков А.А., Кузьмин Э.А. // Докл. АН СССР. 1974. Т. 216. № 1. С. 78.
- Ronsbo J.G., Leonardsen E.S., Petersen O.V., Johnsen O. // Neues Jahrb. Mineral. Monatsh. 1983. S. 451.
- Ercit T.S., Cooper M.A., Hawtorne F.C. // Can. Mineral. 1998. V. 36. P. 1311.
- Ferraris G., Gula A. // Rev. Mineral. Geochem. 2005. V. 57. P. 69.
- 7. *Пеков И.В.* Ловозерский массив: история исследования, пегматиты, минералы. М.: Земля, 2001. 432 с.
- 8. *Андрианов В.И.* // Кристаллография. 1987. Т. 32. № 1. С. 228.
- 9. *Андрианов В.И.* // Кристаллография. 1989. Т. 34. № 3. С. 592.
- 10. Walker N., Stuart D. // Acta Cryst. A. 1983. V. 39. № 2. P. 158.
- Brese N.E., O'Keefe M. // Acta Cryst. B. 1991. V. 47. P. 192.
- 12. Burns P.C., Hawthorne F.C. // Can. Mineral. 1994. V. 32. P. 885.
- 13. Prewitt C.T. // Z. Kristallogr. 1967. B. 125. S. 298.