УДК 548.736

СТРОЕНИЕ ФАЗ СЕМЕЙСТВА СИЛЛЕНИТА В СИСТЕМЕ Bi2O3-V2O5

© 2011 г. Т. И. Мельникова, Г. М. Кузьмичева, В. Б. Рыбаков*, Н. Б. Болотина**, А. Б. Дубовский***

Московская государственная академия тонкой химической технологии E-mail: melti@list.ru

*Московский государственный университет им. М.В. Ломоносова

** Институт кристаллографии РАН, Москва

***Всероссийский научно-исследовательский институт синтеза минерального сырья, Александров

Поступила в редакцию 23.08.2010 г.

Выполнено рентгеноструктурное исследование монокристаллов силленита $Bi_{24}V_2O_{40}$, выращенных гидротермальным методом, как в виде отдельного кристалла, так и измельченных в порошок кристаллов. Обнаружено, что их состав может быть описан общей формулой $(Bi_{24-x}\Box_x)[Bi_y^{3+}V_{1-y}^{5+}]_2O_{40}$, но с разным содержанием вакансий в позиции висмута (выявлено впервые), отсутствием кислородных вакансий и разным соотношением Bi и V в тетраэдрической позиции. Рассмотрены все известные в литературе модели строения ванадийсодержащих силленитов и установлена принципиальная возможность нахождения атомов Bi в центре тетраэдра BiO₄.

ВВЕДЕНИЕ

Соединения $\text{Bi}_{24}M_2\text{O}_{40}$ и твердые растворы $\text{Bi}_{24}(M,M'')_2\text{O}_{40}$ ($M, M, M'' - M^{2+}, M^{3+}, M^{4+}, M^{5+}$) [1] кристаллизуются в структуре силленита (γ -Bi₂O₃ c Z = 13, или Bi₂₄Bi₂O_{40 - δ} c Z = 1, пр. гр. I23), синтез и структурное исследование которого впервые выполнил Л.Г. Силлен в 1937 г. [2]. В настоящее время все многообразие соединений и твердых растворов с данным структурным типом относят к семейству силленита.

По данным [3–5] в структуре фазы $Bi_{24}Bi_2O_{40-\delta}$ с левой энантиоморфной формой, которая чаще всего выявляется, атомы Bil находятся в позиции 24*f* с координатами *x*, *y*, *z* (*x* ~ 0.17, *y* ~ 0.32, *z* ~ 0.01), атомы Bi2 (*M* или (*M'*, *M''*)) – в позиции 2*a* с координатами 0, 0, 0, а атомы кислорода занимают три разные правильные системы точек: O1 (позиция 24*f*) с координатами *x* ~ 0.13, *y* ~ 0.25, *z* ~ 0.49, O2 и O3 (позиция 8*c*) с координатами *x*, *x*, *x* соответственно с *x* ~ 0.2 и *x* ~ 0.9.

Каркас структуры соединений и твердых растворов семейства силлента образуют два димера из Bi1O₅ (искаженный полуоктаэдр), которые соединяются с помощью правильных тетраэдров MO_4 или (M', M')O₄, либо тетраэдров Bi2O₄ в случае Bi₂₄(Bi³⁺Bi⁵⁺)O₄₀ [3] или зонтичных групп [Bi2O₃*E*] (E – неподеленная электронная пара катиона Bi³⁺) для Bi₂₄(Bi³⁺_{1.60} $\square_{0.40}$)(O_{38.40} $\square_{1.60}$) по данным [4], образуя замкнутую группировку (рис. 1). Атомы кислорода O1 и O2 имеют KЧ = 3 и КП – телесный угол – O1Bi1₃ и O2Bi1₃ (КЧ и КП соответственно координационное число и координационный полиэдр), атомы O3 – KЧ = 4 и КП – тригональная пирамида – O3Bi1₄.

Позицию M с координатами 0, 0, 0 (позиция 2*a*) в структуре $\operatorname{Bi}_{24}M_2^{4+}O_{40}$ занимают ионы, тетраэдрическая координация которых обусловлена их кристаллохимическими свойствами: Si⁴⁺ (r = 0.26 Å, $d_{\operatorname{Si}-O} = 1.647$ Å; r -радиус по [6], d -межатомное расстояние) [5] и Ge⁴⁺ (r = 0.39 Å, $d_{\operatorname{Ge}-O} = 1.764$ Å) [4]. По данным [4] радиус иона Ge⁴⁺ является оптимальным для структуры силленита, а фазы с $M^{4+} = \operatorname{Si}$, Ge – называют "идеальными силленитами". Строение Bi₂₄ $M_2^{4+}O_{40}$ описывается моделью 1, представленной на рис. 1. Это же строение имеет фаза с $M^{4+} = \operatorname{Ti} (r = 0.42$ Å, $d_{\operatorname{Ti}-O} = 1.762$ (17) Å [7], для которой тетраэдрическая координация в оксидных системах не характерна.

Для соединений $\operatorname{Bi}_{24}M_2^{4+}O_{40}$ сохранение электронейтральности не требует образования точечных дефектов в отличие от фаз номинального состава $\operatorname{Bi}_{24}M_2^{5+}O_{40}$, в частности, с ионом $M^{5+} = V$, для которого размер ($r_V^{5+} \sim 0.36$ Å) весьма оптимален для данной структуры. В литературе описаны ванадийсодержащие силлениты, которые имеют одинаковый исходный шихтовой состав $\operatorname{Bi}_{24}M_2^{5+}O_{40}$, но отличаются параметрами элементарной ячейки, уточненными составами полученных фаз и строением.

Согласно [8], в правой энантиоморфной форме структуры монокристаллов $Bi_{24}V_2O_{40}$ с a = 10.222(4) Å, полученных взаимодействием V_2O_5 и Bi_2O_3 из гидротермальных щелочных растворов

Рис. 1. Строение соединений общего исходного состава ${\rm Bi}_{24}M_2^{4+}{\rm O}_{40}-$ модель 1.

при температуре 300°С и давлении 505 × 10⁵ Па с последующей перекристаллизацией кристаллов спонтанного зарождения на затравку методом прямого температурного перепада, наблюдается расщепление кристаллографической позиции ОЗ (позиция 8*c*) на две (O¹3 с координатами *x* = 0.098 и O^{II}3 с *x* = 0.121), а атомы V и Ві совместно занимают позицию 2*a* с тетраэдрической координацией. Таким образом, по данным рентгеноструктурного исследования в структуре фазы уточненного состава Bi₂₄³⁺[(V⁵⁺O₄)(Bi³⁺O₄)]O₃₂ статистически чередуются "мелкие" [V⁵⁺O₄] (*d*_{V-O} = 1.735(36) Å) и "крупные" [Bi³⁺O₄] (*d*_{Bi-O} = 2.142(18) Å) тетраэдры (рис. 2а, модель 2).

Смешением в присутствии этилового спирта исходных компонентов Bi_2O_3 и V_2O_5 с последующей сушкой и нагреванием до 800°С был получен поликристаллический образец желтого цвета с a = 10.255(1) Å, который имеет состав $Bi_{24}[Bi_{1.50}^{5+}[V_{0.10}^{5+}\Box_{0.40}]O_{40}$ [9]. Данный состав был предложен в [9] с целью приближения к составу γ - $Bi_2O_3 \equiv Bi_{24}^{3+}[Bi_{1.60}^{5+}\Box_{0.40}]O_{40}$, исходя из предположения окисления $Bi^{3+} \longrightarrow Bi^{5+}$ в присутствии дополнительных ионов V^{5+} , и подтвержден нейтронодифракционным исследованием (рис. 26, модель 3).

Рис. 2. Модели строения твердых растворов семейства силленита в системе $Bi_2O_3-V_2O_5$: $Bi_{24}[(V^{5+}O_4)(Bi^{3+}O_4)]O_{32}$ — модель 2 [7] (а), $[Bi_{1.50}^{5+}V_{0.10}^{5+}\Box_{0.40}]O_{40}$ — модель 3 [8] (б), $Bi_{24}(V_{1.78}^{5+}Bi_{0.06}^{3+}\Box_{0.16})O_{40}O_{i(0.54)}$ — модель 4 [3] (в), $(Bi_{24-x}\Box_x)[Bi_y^{3+}V_{1-y}^{5+}]_2O_{40}$ — модель 5 (г).

КРИСТАЛЛОГРАФИЯ том 56 № 2 2011

Наименование и вид образца	Уточненный состав; <i>R</i> , %; <i>D</i> , %	Пр. гр.	Параметр ячейки a, Å
Образец №1 Монокристалл	$(\text{Bi}_{23.4(1)}\square_{0.6})[\text{Bi}_{0.02(1)}^{3+}\text{V}_{0.98}^{5+}]_2\text{O}_{40};(\text{JANA 2000})$ $R_I = 4.67, wR_2 = 6.28; D = 6.4;$ $(\text{Bi}_{23.3(1)}\square_{0.7})[\text{Bi}_{0.011(2)}^{3+}\text{V}_{0.989}^{5+}]_2\text{O}_{40}$ $(\text{SHELXL97}) R_I = 4.30, wR_2 = 8.91; D = 6.3;$	<i>I</i> 23	10.19430(6)
Образец №2 Измельченные в порошок монокристаллы	$(\text{Bi}_{23.9(1)}\square_{0.1})[\text{Bi}_{0.41(1)}^{3+}\text{V}_{0.59}^{5+}]_2\text{O}_{40};$ $R_p = 13.78, R_{wp} = 17.21; D = 3.2;$ $(\text{Bi}_{23.9(1)}\square_{0.1})[(\text{Bi}_{0.82(2)}^{3+}\text{O}_4)(\text{V}_{1.18}^{5+}\text{O}_4)]\text{O}_{32};$ $R_p = 13.69, R_{wp} = 17.10; D = 2.0$		10.2144(2)

Таблица 1. Состав и некоторые кристаллохимические характеристики исследованных образцов

Монокристаллы исходного состава $Bi_{24}V_2O_{40}c$ a = 10.247(8) Å, выращенные методом Чохральского, были исследованы с применением нейтронного излучения [4]. При уточнении кристаллической структуры без учета катионов в тетраэдрической позиции 2а оказалось, что высота пика остаточной ядерной плотности в позиции 2а на разностном синтезе Фурье незначительно превышала уровень фона. Авторы предположили, что в данную позицию входят как атомы Ві с положительной рассеивающей способностью, так и рассеивающие в противофазе атомы V в соотношении V:Bi = 0.945:0.055, обеспечивающем приблизительно нулевое эффективное рассеяние нейтронов. Кроме того, на разностном синтезе был обнаружен компактный пик с координатами 1/2, 0, 0 (позиция 6b), что позволило также предположить возможность статистического заселения данной позиции атомами кислорода - О4 с коэффициентом заселенности $\mu = 0.09(1)$. На основании межатомного расстояния $d_{(M-O)} = 1.725$ Å, полученного из структурного анализа, авторами [4] было установлено зарядовое состояние ионов V⁵⁺ и вместе с очередным предположением о нахождении в тетраэдрической позиции ионов Bi³⁺ записана химическая формула исследуемого силленита в виде Bi₂₄(V⁵⁺_{1.78}Bi³⁺_{0.06}□_{0.16})O_{40.54} или Ві₂₄($V_{1.78}^{5+}$ Bi³⁺_{0.06} $\square_{0.16}$)O₄₀O_{i(0.54)} ($d_{(Bi-O)cp} = 2.3673(9)$ Å, $d_{(V, Bi, \square)-O} = 1.725$ Å) (рис. 2в, модель 4).

Итак, на основании имеющихся на сегодняшний день структурных данных можно заключить, что из шихты $Bi_{24}V_2^{5+}O_{40}$ получены фазы разных составов (с присутствием ионов висмута в тетраэдрической позиции, согласно всем литературным данным, с вакансиями или без вакансий в той же позиции, с внедренными атомами кислорода или без дополнительных атомов), структуры которых описываются тремя разными моделями.

Было выполнено рентгеноструктурное изучение ванадийсодержащего силленита, анализ результатов которого и является целью настоящей работы.

МЕТОДИКА ЭКСПЕРИМЕНТА

Гидротермальный синтез оранжевых кубических монокристаллов $Bi_{24}V_2O_{40}$ спонтанного зарождения с размерами до 1 мм (исходная шихта – смесь NaBiO₃ с BiVO₄, растворитель – водный раствор NaOH концентрации до 30 мас. %) проводился методом температурного перепада в автоклавах, футерованных контактными вкладышами из фторопласта-4, емкостью 300 см³ при температуре 310°C, температурном перепаде в 40°C и давлении 500 кг/см² (табл. 1).

Рентгеноструктурное исследование было выполнено на сферическом образце (образец 1) оранжевого цвета диаметром ~0.2 мм, полученном путем обкатки кубического монокристалла номинального состава $Bi_{24}V_2O_{40}$.

Съемка образца была выполнена на рентгеновском дифрактометре Xcalibur S фирмы Oxford Diffraction с двумерным CCD детектором при комнатной температуре (Мо K_{α} -излучение). Кристаллическая структура уточнена полноматричным МНК в анизотропном приближении для всех атомов с использованием комплекса программ JANA2000 [10] и SHELXL97 [11] (табл. 2).

Образец, представляющий собой измельченные в порошок синтезированные оранжевые монокристаллы того же номинального состава $Bi_{24}V_2O_{40}$ (образец 2), снят на рентгеновском дифрактометре HZG-4 (Си K_{α} , Ni-фильтр) с вращением в пошаговом режиме (сканирование с шагом 0.02°, время набора импульсов 15 с, интервал углов 20: 10°–100°). Для идентификации образовавшихся фаз проводился рентгенофазовый анализ с использованием автоматизированной базы данных PCPDFWIN PDF2. Примесей и дифракционных отражений, не относящихся к другим фазам, а также к силленитам с пр. гр. *I*23, обнаружено не было. Параметры элементарной ячейки

КРИСТАЛЛОГРАФИЯ том 56 № 2 2011

Таблица 2. Кристаллографические характеристики исследованных монокристаллов и данные эксперимента

Характеристика	Образец №1			
Метод исследования	Рентгенография			
<i>a</i> , Å	10.19430(6)			
$V, Å^3$	1059.430(11)			
Пр. гр., Z	<i>I</i> 23, 1			
D_x , г/см ³	9.021			
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-18 \le h \le 22, -22 \le k \le 21, -22 \le l \le 21$			
2θ _{max} , град	102.14			
Учет поглощения	Сфера			
Коэффициент поглощения, µ, мм ⁻¹	97.42			
Число отражений	81414			
Рефлексы, не удовлетворяющие законам погасания пр. гр. <i>1</i> 23	HET			
Программы	JANA2000	SHELXL97		
Количество рефлексов в МНК/всех рефлексов	1056/1073	1916/1952		
Число уточняемых параметров	27	29		
Весовая схема	$1/\sigma + (0.02F)^2$	$1/[\sigma^2(F_0^2) + (0.0352P)^2]$		
		$P = (Max(F_{\rm H}^2, 0) + 2F_p^2)/3$		
Уточненный состав	$(\mathrm{Bi}_{23.4(1)}\Box_{0.6})[\mathrm{Bi}_{0.02(1)}^{3+}\mathrm{V}_{0.98}^{5+}]_{2}\mathrm{O}_{40}$	$(\mathrm{Bi}_{23.3(1)}\square_{0.7})[\mathrm{Bi}_{0.011(2)}^{3+}V_{0.989}^{5+}]_2\mathrm{O}_{40}$		
$R_1/wR_2, \%$	4.67/6.28	4.30/8.91		
S	1.225	1.411		

уточнены с помощью программы DICVOL04 [11] (табл. 1).

Все расчеты по уточнению состава и структуры измельченного в порошок образца проводились полнопрофильным методом Ритвельда с применением пакета программ DBWS-9411 [13] и Full-Prof Suite [14]. Для описания формы пика выбрана функция псевдоВойта при 8.0 FWHM, где FWHМ – полуширина пика. После уточнения коэффициента приведения к абсолютной шкале, фона, нуля счетчика, смещения образца, следовал этап уточнения профильных и структурных параметров при уточняемом фоне. Структурные параметры уточнялись следующими этапами: сначала только координаты атомов, затем тепловые параметры в изотропном приближении, а потом и в анизотропном при фиксированных позиционных параметров и заселенности позиций. В заключение уточнялись заселенности каждой позиции при фиксированных позиционных и тепловых параметрах, а потом и совместно тепловые параметры и заселенность отдельной позинии.

Критериями правильности уточнения структур и определения состава служили минимальные значения *R*-факторов, корректные значения тепловых параметров и межатомных расстояний. По методу Ю.А. Пятенко для оценки правильно

КРИСТАЛЛОГРАФИЯ том 56 № 2 2011

определенных кристаллических структур рассчитывалась величина D ($D = \sum_{i=1}^{n} |\Delta|$, $|\Delta| = |\sum_{v_i} - v_a|$, где v_i – валентное усилие, v_a – формальный заряд аниона), которая должна быть <5% по данным [15].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 1—4 представлены характеристики эксперимента и результаты структурного анализа образцов номинального состава $Bi_{24}V_2O_{40}$. При уточнении структуры и состава образца 1 с параметром ячейки a = 10.19430(6) Å по программе JANA2000 получены следующие результаты.

Заселенность позиции Bi1 уменьшается от $\mu = 1$ до $\mu = 0.97(5)$ при весьма незначительном уменьшении *R*-фактора от 4.69 до 4.67% (табл. 3).

Заселенности кислородных позиций оставались равной единице (с учетом погрешности определения) (табл. 3).

Уточнение заселенности позиции M с разными исходными составами (V, Bi, Bi > V, Bi < V, Bi = V) при фиксированных тепловых параметрах данной позиции, а также совместное уточнение тепловых параметров и заселенности этой позиции привело к значению изотропного теплового пара-

Пара- метр*		Образ	05 No 2	
		JANA2000	SHELXL97	Ооразец №2
Bi1	x	0.17761(4)	0.82241(1)	0.1775(2)
	у	0.32200(4)	0.67790(1)	0.3222(1)
	z	0.02314(4)	0.97679(1)	0.0224(1)
	μ	0.98(5)	0.97(5)	0.996(3)
	$U_{_{ m ЭKB}}$	1.104(7)	1.114(1)	0.50(3)
Bi2	μ	0.017(12)	0.011(2)	0.41(1)
V	μ	0.983(12)	0.989(2)	0.59(1)
	$U_{_{ m ЭKB}}$	0.64(3)	0.64(2)	0.8(3)
01	x	0.1332(8)	0.8665(2)	0.1335(13)
	у	0.2480(8)	0.7522(2)	0.2475(13)
	z.	0.4898(7)	0.5093(2)	0.4915(20)
	μ	1.0	1.0	1.0
	$U_{_{ m ЭKB}}$	1.23(14)	1.20(3)	1.0(3)
O2	x	0.1983(8)	0.8010(2)	0.196(2)
	μ	1.0	1.0	1.0
	$U_{_{ m ЭKB}}$	1.11(10)	1.15(5)	0.8(4)
O3	x	0.9048(12)	0.0961(3)	
O ^I 3	x			0.904(2)
O ^{II} 3	x			0.878(2)
O3	μ	1.0	1.0	
O ^I 3	μ			0.59**
O ^{II} 3	μ			0.41**
O3	$U_{_{\Im KB}}$	2.14(17)	1.81(7)	
O ^I 3	$U_{_{\Im KB}}$			0.7(3)
$O^{II}3$	$U_{_{\Im KB}}$			0.8(3)

Таблица 3. Координаты атомов, эквивалентные изотропные тепловые параметры $U_{3KB} \times 10^2$ (Å²) и заселенность позиций µ в структурах исследованных образцов

* Ві1 – позиция 24*f*: *x*, *y*, *z*; Ві2, Si и V – позиция 2*a*: 0, 0, 0; O1 – позиция 24*f*: *x*, *y*, *z*; O2 и O3 – позиция 8*c*: *x*, *x*, *x*. ** Параметр не уточнялся.

метра ($U_{_{3KB}} \times 10^2 = 0.64(3)$ Å²), характерному для силленита с $M = \text{Bi} + \text{V} (U_{_{3KB}} \times 10^2 = 0.6\text{Å}^2)$ [4], и минимальному значению R-фактора ($R_1 = 4.67\%$, $wR_2 = 6.28\%$) при составе позиции M = $= (\text{Bi}_{0.02(1)}^{3+} \text{V}_{0.98}^{5+}) (d_{M-O} = 1.681(12)$ Å) (табл. 2, 3).

Анализ остаточной электронной плотности свидетельствует об отсутствии пиков >0.19 э/Å³ с координатами:

-1/2, 0, 0, которые были найдены в структуре Bi₂₄(V⁵⁺_{1.78}Bi³⁺_{0.06} $\Box_{0.16}$)O_{40.54} для внедренного добавочного кислорода O4 [4] (модель 4),

- x, x, x с x ~ 0.88 и с x ~ 0.91 для расщепленных атомов кислорода в левой энантиоморфной

Таблица 4. Основные межатомные расстояния d (Å) в структурах исследованных образцов

Свал	Образец №1		Οδηγραι Νο2	
СБАЗБ	JANA2000	SHELXL97	_97	
Bi1–×O1	2.084(8)	2.080(2)		2.082(3)
$-\times O1$	2.168(8)	2.175(2)		2.188(4)
$-\times O1$	2.595(8)	2.590(2)		2.582(3)
$-\times O2$	2.196(8)	2.1987(8)		2.201(3)
-×O3	2.740(12)	2.735(2)		
			$\times O^{I}3$	2.736(6)
			$\times O^{II}3$	2.584(6)
[Bi–O] _{cp}	2.356(5)	2.356(2)		2.345(4)
$M-4 \times O3$	1.681(12)	1.696(5)	$-4 \times O^{I}3$	1.698(1)
			$-4 \times O^{II}3$	2.158(1)

форме, которые обнаружены в структуре $Bi_{24}^{3+}[(V^{5+}O_4)(Bi^{3+}O_4)]O_{32}[8]$ (модель 2).

Найденные вакансии в позиции Bi1 – $V_{Bi}^{''}$ и отсутствие кислородных вакансий, выявленные антиструктурные дефекты – Bi $_{V}^{''}$ (придерживаемся гипотезы о зарядовом состоянии ионов Bi³⁺ в позиции M [4]), минимальное значение R-фактора (табл. 2), оранжевый цвет образца, обязанный присутствием ионов V⁵⁺, корректные величины D(табл. 1) и выполнение условия электронейтральности позволили записать состав образца 1 в виде (Bi_{23.4(1)} $\Box_{0.6}$)[Bi³⁺_{0.02(1)}V⁵⁺_{0.98}]₂O₄₀ (рис. 2г, модель 5). Параметр элементарной ячейки данной фазы и "средневзвешенное" межатомное расстояние M–O в изученной структуре логично меньше аналогичных характеристик известных фаз со структурой силленита в системе Bi₂O₃–V₂O₃ [4, 8, 9], что косвенно подтверждает правильность определенного нами состава.

Проведение аналогичных этапов уточнения структуры монокристаллического образца 1 по программе SHELXL97 привело к составу $(Bi_{23.3(1)}\Box_{0.7})[Bi_{0.011(2)}^{5+}V_{0.989}^{5+}]_2O_{40}$, который отличается от рассчитанного по программе JANA2000 $((Bi_{23.4(1)}\Box_{0.6})[Bi_{0.02(1)}^{3+}V_{0.98}^{5+}]_2O_{40})$ в пределах погрешности. Данный факт подтверждает правильность предложенной структурной модели.

В составе измельченных кристаллов оранжевого цвета номинального состава $\text{Bi}_{24}\text{V}_2\text{O}_4$ (образец 2) с бо́льшим параметром элементарной ячейки (a = 10.2144(2) Å), чем у образца 1, должно быть и бо́льшее в нем содержание ионов Bi ($r_{\text{Bi}}^{3+} > r_V^{5+}$). Действительно, согласно результатам полнопрофильного уточнения структуры (рис. 2г, модель 5), эта фаза имеет состав

КРИСТАЛЛОГРАФИЯ том 56 № 2 2011

 $(\text{Bi}_{23,9(1)}\Box_{0,1})[\text{Bi}_{0,41(1)}^{3+}\text{V}_{0,59}^{5+}]_2\text{O}_{40} \ (d_{M-O} = 1.769(2) \text{ Å}).$ Уточнение структуры образца 2 в рамках модели 2 (рис. 2а) не исключает расщепление позиции атома кислорода ОЗ на две – О^IЗ и О^{II}З – с координатами соответственно x ~ 0.878(2) и x ~ 0.904(2) (левая энантиоморфная форма) и образованием двух тетраэдров разных размеров $d_{V-O} = 1.698(1)$ Å и $d_{\rm Bi-O} = 2.158(1)$ Å, как это было найдено для структуры Ві₂₄³⁺[(V⁵⁺O₄)(Ві³⁺O₄)]О₃₂ [8]. При переходе от строения $(Bi_{23..9(1)} \square_{0.1}) [Bi_{0.41(1)}^{3+} V_{0.59}^{5+}]_2 O_{40}$ к строению $(Bi_{23.9(1)}\Box_{0.1})[(Bi_{0.82(2)}^{3+}O_4)(V_{1.18}^{5+}O_4)]_2O_{32}$ несколько уменьшились как значения *R*-факторов (с $R_p = 13.78\%$ до $R_p = 13.69\%$), так и величина D (от 3.2 до 2.0%), характеризующая правильность определения кристаллической структуры по результатам расчета локального баланса валентностей. Несмотря на то что нет явного преимущества выбора одной из двух моделей (($Bi_{23.9(1)}\Box_{0.1}$)[$Bi_{0.41(1)}^{3+}V_{0.59}^{5+}$] $_2O_{40}$ или $(Bi_{23.9(1)}\Box_{0.1})[(Bi_{0.82(2)}^{3+}O_4)(V_{1.18}^{5+}O_4)]_2O_{32})$, описывающей строение образца 2, ясно одно, что ионы Ві³⁺ находятся в центре правильного тетраэдра BiO₄.

Таким образом, на основании полученных результатов прецизионного структурного анализа фаз номинального состава $Bi_{24}V_2O_{40}$ можно заключить о возможности образования в них разной концентрации антиструктурных дефектов —

Вії, в позиции M и вакансий в позиции Ві1 — V_{Bi}, которые в данной системе обнаружены впервые (рис. 2г, модель 5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Каргин Ю.Ф., Бурков В.И., Марьин А.А.и др. Кристаллы $Bi_{12}M_xO_{20\pm\delta}$ со структурой силленита. Синтез, строение, свойства. М.: ИОНХ РАН, 2004. 312 с.
- Sillen L.G. // Arkiv Kemi. Miner. Geologi. A. 1937. V. 12. № 18. P. 1.
- Craig D.C., Stephenson N.C. // J. Solid State Chem. 1975. V. 15. P. 1.
- 4. *Радаев С.Ф., Симонов В.И. //* Кристаллография. 1992. Т. 37. С. 914.
- Abrahams S.C., Bernstein J.L., Svensson C. // J. Chem. Phys. 1979. V. 71(2). P. 788.
- 6. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 6. P. 751.
- 8. Юдин А.Н., Победимская Е.А., Терентьева Л.Е. и др. // Неорган. материалы. 1989. Т. 25. № 10. С. 1715.
- Soubeyroux J.L., Devalette M., Khachani N. et al. // J. Solide State Chem. 1990. V. 86. P. 59.
- Dusek M., Petricek V., Wunschel M. et al. // J. Appl. Cryst. 2001. V. 34. P. 398.
- 11. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 12. Boultif A., Louër D. // J. Appl. Cryst. 2004. 37. P. 724.
- 13. Young R.A., Sakthivel A., Moss T.S. et al. User's guide to program DBWS-9411. 30 March 1995.
- Juan Rodriguez-Carvajal. An introduction to the program FullProf 2000. July 2001.
- 15. *Пятенко Ю.А.* // Кристаллография. 1972. Т. 17. Вып. 4. С. 773.