КРИСТАЛЛОГРАФИЯ, 2011, том 56, № 2, с. 235-245

₌ СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ЛАРНИТА β-Са₂SiO₄ И ОСОБЕННОСТИ ПОЛИМОРФНЫХ ПЕРЕХОДОВ ДВУХКАЛЬЦИЕВОГО ОРТОСИЛИКАТА

© 2011 г. Н. А. Ямнова, Н. В. Зубкова, Н. Н. Еремин, А. Е. Задов*, В. М. Газеев**

Московский государственный университет им. М.В. Ломоносова

E-mail: natalia-yamnova@yandex.ru

*ООО "НПП Теплохим", Москва

** Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва Поступила в редакцию 22.03.2009 г.

Определена кристаллическая структура ларнита – природного аналога синтетической β -модификации Ca₂SiO₄: a = 5.5051(3), b = 6.7551(3), c = 9.3108(5) Å, $\beta = 94.513(4)^{\circ}$, пр. гр. $P2_1/n$, Z = 4; $R_1 = 0.0532$ для 1071 рефлекса с $I > 2\sigma$ (I). Ларнит обнаружен в скарнированных ксенолитах (Лакарги, Кабардино-Балкария, РФ). Основу структуры минерала составляет гетерополиэдрический глазеритоподобный каркас из связанных друг с другом Ca-полиэдров и изолированных [SiO₄]-тетраэдров. На основе анализа послойной укладки атомов в структурах ларнита и других полиморфов Ca₂SiO₄ рассмотрены особенности строения и механизмы переходов от высокотемпературных (α , α'_L , α'_H) к низкотемпературным (β , γ) модификациям Ca₂SiO₄, а также их взаимосвязь с природными глазеритоподобными ортосиликатами мервинитом Ca₃Mg[SiO₄]₂ и бредигитом Ca₇Mg[SiO₄]₄. Методом атомистических потенциалов рассчитана наиболее вероятная геометрия расположения атомов в гипотетических моделях Ca₂SiO₄.

введение

Ларнит — природный аналог синтетической β модификации Ca₂SiO₄, важной составляющей портландцемента. Данное соединение относится к ряду полиморфных модификаций Ca₂SiO₄ ($\alpha, \alpha'_L, \alpha'_H, \beta, \gamma$) (табл. 1), построенному в порядке уменьшения температур стабильности фаз. Первые четыре модификации связаны обратимыми фазовыми переходами, что объясняется их близостью к структурным типам K,Na-сульфата глазерита (афтиталита) K₃Na[SO₄]₂ (α -фаза) и производного от него арканита β -K₂[SO₄] (α'_L -, α'_H -, β -фазы). Низкотемпературная синтетическая γ модификация [1, 2] и её природный аналог кальциооливин γ -Ca₂SiO₄ [3, 4] относятся к структурному типу оливина.

Структура β-Ca₂SiO₄, впервые изученная Мидгли [5] для синтетического кристалла, неоднократно уточнялась также для синтетических как монокристальных [6, 7], так и порошкового [2] образцов. Природный ларнит, образующийся в известковых скарнах в условиях ларнит-мервинитовой фации Коржинского при низком парциальном давлении CO₂, до сих пор оставался структурно неизученным, что возможно связано с единичными, как правило, проявлениями минерала и обычно тонкодисперсными и незначительными его выделениями.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Существенно ларнитовые скарнированные карбонатные ксенолиты обнаружены В.М. Газеевым в игнибритах вблизи горы Лакарги в районе верхнечегемской вулканической структуры (горная часть Кабардино-Балкарии, РФ). Ларнит содержится в приконтактовых зонах скарна, где образует бесцветные со стеклянным блеском всегда сдвойникованные кристаллы размером до 1 мм, редко до 3 мм. Минеральный состав скарнов очень сложный, из высокотемпературных минералов наиболее распространены: ларнит, спуррит, кальциевые аналоги гумита и хондродита, рондорфит, вадалит и куспидин. Иногда почти мономинеральная мелкокристаллическая ларнитовая порода имеет светло-голубой цвет. Химический состав образцов природного ларнита, определенный на сканирующем электронном микроскопе JSM-5300 со спектрометром Link ISIS (аналитик А.В. Мохов, ИГЕМ РАН): Na₂O 0.06, MgO 0.02, Al₂O₃0.16, SiO₂ 34.63, CaO 64.55, P₂O₅0.01, сумма 99.42 (мас. %, среднее по восьми анализам), практически отвечает теоретической формуле Са₂SiO₄. Физические свойства исследованного ларнита близки к описанным ранее, небольшие отличия существуют для оптических характеристик минерала: отмечено увеличение значения угла $+2V = 84^{\circ} - 87^{\circ}$ по сравнению с литературными данными ($+2V = 62^{\circ} - 74^{\circ}$) для ларнита.

Соединение, формула	Простран- ственная группа	Ζ	Параметры элемен- тарной ячейки (<i>a</i> , <i>b</i> , <i>c</i> , Å) (α, β, γ, град)	V(Å ³)	р _{выч} (г/см ³)	Литература
α -Ca ₂ SiO ₄ (1545°C)	<i>P</i> 6 ₃ / <i>mmc</i>	2	5.532 7.327	256.5	2.23	18
	$P\overline{3}m1$	2				
α'_H -Ca ₂ SiO ₄ (1250°C)	Pnma	4	6.871 5.601 9.556	367.8	3.07	18
α'_{L} -Ca ₂ SiO ₄ (1060°C)	$Pn2_1a$	12	20.527 5.590 9.496	1089.6	3.11	18
Синтетический β-Ca ₂ SiO ₄ (630–680°С)	<i>P</i> 2 ₁ / <i>n</i> 11	4	6.745 5.502 9.297 94.59	343.9	3.28	6
Ларнит β -Ca ₂ SiO ₄	$P2_1/n11$	4	6.755 5.505 9.311 94.51	345.2	3.32	Данная работа
Кальциооливин ү-Са ₂ SiO ₄	Pcmn	4	5.074 6.754 11.211	384.2	2.94	3

Таблица 1. Кристаллографические характеристики природных и синтетических полиморфов Ca₂SiO₄

Примечание. Ромбические и моноклинные соединения представлены в установках, удобных для сопоставления. В скобках после формул указаны температуры, при которых фазы стабильны.

Таблица 2. Кристаллографические характеристики, данные эксперимента и уточнения структуры кристалла

Химическая формула	Ca ₂ [SiO ₄]
Сингония, пр. гр., Z	Моноклинная, <i>Р</i> 2 ₁ / <i>n</i> , 4
<i>a</i> , Å	5.5051(3)
b, Å	6.7551(3)
<i>c</i> , Å	9.3108(5)
β, град	94.513(4)
<i>V</i> , Å ³	345.17(3)
D_x , г/см ³	3.315
μ, мм ⁻¹	3.500
<i>Т</i> , К	293(2)
Размер образца, мм	0.09 imes 0.18 imes 0.20
Дифрактометр	Xcalibur-S (CCD)
Учет поглощения, T_{\min}, T_{\max}	По форме кристалла, 0.643, 0.835
θ_{max} , град	32.59
Область h, k, l	$-8 \le h \le 8, -10 \le k \le 10, \\ -14 \le l \le 14$
Число отражений: измеренных/независимых $(N_1), R_{int}/c I > 2\sigma(I) (N_2)$	10697/1195, 0.0466/1071
Метод уточнения	МНК по <i>F</i> ²
Число уточняемых пара- метров	65
Весовая схема	$\frac{1/[\sigma^2(Fo^2) + (0.0941P)^2 + (0.1134P], P = (Fo^2 + 2Fc^2)/3}{2}$
R_1 , w R_2 по N_1	0.0580, 0.1701
R_1 , w R_2 по N_2	0.0532, 0.1680
S	1.144
$\Delta \rho_{max} / \Delta \rho_{min}$, $\Im / Å^3$	2.68/-0.82
Программы	SHELX97 [8]

Для рентгеноструктурного исследования был отобран образец сдвойникованного кристалла минерала, для которого получен набор экспериментальных данных. Дальнейшие расчеты проводились с использованием отражений одного из индивидов. Основные кристаллографические данные, характеристики эксперимента и уточнения структуры ларнита приведены в табл. 2, позиционные и тепловые параметры атомов – в табл. 3. Полученные координаты базисных атомов подтвердили изоструктурность природного ларнита и синтетической β-модификации Ca₂SiO₄. Кристаллографическая информация по исследованной структуре депонирована в банке данных неорганических структур ICSD (депонент № 421708).

ОПИСАНИЕ СТРУКТУР ЛАРНИТА И ПОЛИМОРФОВ Са₂SiO₄

Основу структуры ларнита, как и остальных модификаций (α , α'_{H} , α'_{L} , β , γ) Ca₂SiO₄ составляет гетерополиэдрический глазеритоподобный каркас из связанных друг с другом Са-полиэдров и

Таблица 3. Координаты базисных атомов и эквивалентные тепловые поправки структуры кристалла

Атом	x	у	Z.	$U_{ m _{3KB}}$
Ca(1)	0.2207(2)	-0.0024(1)	0.7020(1)	0.0090(3)
Ca(2)	0.2273(2)	0.3426(1)	0.4303(1)	0.0108(3)
Si(1)	0.2328(2)	0.2813(2)	0.0816(1)	0.0070(3)
O(1)	0.2828(7)	0.5121(5)	0.0600(4)	0.0106(7)
O(2)	0.0212(7)	0.2481(5)	0.1919(4)	0.0114(7)
O(3)	0.4867(6)	0.1683(5)	0.1381(4)	0.0110(7)
O(4)	0.1561(7)	0.1712(5)	-0.0725(4)	0.0112(7)

Рис. 1. Фрагменты (слои) структуры афтиталита (глазерита) $K_3Na[SO_4]_2$ в проекции на плоскость (0001): слой из M(1)икосаэдров и SO_4 -тетраэдров (а); слой из M(2)-десятивершинников, SO_4 -тетраэдров и M(1)-октаэдров (б); зигзагообразные ленты из M(1)-девятивершинников в проекции на плоскость (100) структуры арканита β - K_2SO_4 (в). Точками обозначены контуры икосаэдров исходной структуры глазерита, штриховыми линиями – его элементарная ячейка. Сплошным контуром выделена элементарная ячейка арканита.

изолированных [SiO₄]-тетраэдров. В гетерополиэдрическом каркасе глазерита выделяются слои из К-двенадцативершинников (икосаэдров) с центрами в позиции M(1), окруженных шестеркой [SO₄]-тетраэдров, жестко связанных по вертикальным ребрам с тремя икосаэдрами (рис. 1а). Другой более объемный слой (рис. 1б) образован связанными по общим треугольным граням с Кикосаэдрами Na-октаэдрами с центрами в позиции М(1') и К-десятивершинниками с центрами в позиции M(2). Переход от глазеритовой структуры к арканитовой сопровождается, как показано в [9], поворотом исходной глазеритовой ячейки вокруг оси 21, введенной вместо оси 3 в начало координат. В полученной структуре внутри выделенной глазеритовой ячейки расположение атомов сохраняется, а в удвоенной по объему ромбической ячейке часть атомов кислорода смещена на полтрансляции вдоль [100], что приводит к изменению формы M(1)-икосаэдров и M(1')-октаэдров, которые становятся девятивершинниками, при этом *М*(1)-икосаэдрические слои трансформируются в ленты из М-полиэдров (рис. 1в). Расположенные на двух уровнях по оси а ленты связаны по общим О-вершинам и ребрам в каркас. Координация M(2)-атомов при указанной перестройке остается неизменной, меняется лишь ориентация гексагональных пирамид M(2)десятивершинников. Также меняется ориентация части SO_4 -тетраэдров вокруг M(1)-полиэдров.

Анализ особенностей строения полиморфов Ca_2SiO_4 [10] показал, что структуры высокотемпературных фаз данного ряда являются Ca- и Siаналогами глазерита и арканита, отличаясь от них смещением и расщеплением большинства атомных позиций. Такое искажение исходных структур приводит к сосуществованию "альтернативных" моделей в структурах высокотемпературных

КРИСТАЛЛОГРАФИЯ том 56 № 2 2011

 α - и α'_H -модификаций (в структуре α'_H -Ca₂SiO₄ два домена с пр. гр. *Pn2*₁*a* связаны зеркальной плоскостью симметрии $m \perp_b$), а в α'_L -модификации – к утроению одного из параметров. Одновременно с этим происходит отдаление части Овершин от центрального катиона Са в М-позициях и изменение характера связи Са-полиэдров в структурах. В структуре метастабильной β-модификации наибольшее искажение исходной структуры арканита приводит к понижению симметрии соединения до моноклинной. Кристаллы синтетических β -модификаций Ca₂SiO₄[6, 7], как и исследованные в настоящей работе природные образцы ларнита, сдвойникованы по плоскости (100), соответствующей при определенной установке осей элементарной ячейки зеркальной плоскости симметрии, связывающей два "альтернативных" домена в структуре α'_{H} - Ca₂SiO₄.

В структуре исследованного ларнита (рис. 2) и его синтетических аналогов расположение атомов сходно со структурой каждого из доменов α'_H -Са₂SiO₄. Атомы Са в позиции *M*(1) окружены восемью лигандами (величины расстояний катион-анион находятся в пределах от 2.38 до 2.66 Å, среднее значение – 2.50 Å), шесть из которых расположены в вершинах октаэдра, а две – апикальные вершины двух Si-тетраэдров, - в экваториальной плоскости. Апикальная вершина третьего тетраэдра, входящая в координацию М(1)-катиона в структуре арканита (рис. 1в), в структуре ларнита так же, как и в структурах ромбических полиморфов, отдалена от центрального катиона ~ на 3.5 Å. Это приводит к изменению способа связи *М*(1)-полиэдров: в структурах ромбических полиморфов ленты из М(1)-восьмивершинников связаны в каркас, а в структуре ларнита аналогичные полиэдры объединены в параллельные (101)

Рис. 2. Структура ларнита β -Ca₂SiO₄ в проекции на плоскость (010): слои из M(1)-восьмивершинников (а); каркас из M(2)-семивершинников (б). Кружки – атомы Са в позиции M(1) на уровнях $y \sim 0$ (светлые) и $y \sim 0.5$ (темные).

Рис. 3. Фрагменты структуры кальциооливина γ -Ca₂SiO₄ в проекции на плоскость (100): стенки из M(1)-октаэдров (а); оливиновые ленты из M(2)-октаэдров с зубцами из M(1)-октаэдров на уровнях $x \sim 0$ (б) и $x \sim 0.5$ (в).

"диагональные" слои (рис. 2а). Кроме того, смещение атомов в структуре природного ларнита и синтетической в-модификации приводит к уменьшению до семи числа ближайших соседей вокруг Са в позиции M(2) (минимальное и максимальное значения расстояний катион-анион равны соответственно 2.23 и 2.88 Å, среднее значение – 2.51 Å). Зигзагообразные колонки из M(2)-семивершинников, вытянутые вдоль оси а и связанные между собой через общие О-вершины в ажурный каркас (рис. 2б), "прошивают" слои из *М*(1)-восьмивершинников. Изменение способа объединения М-полиэдров сопровождается разворотом Si-тетраэдров, при этом расстояния Si-O остаются в стандартных пределах и равны 1.60–1.64 Å (среднее – 1.63 Å).

При переходе от β- к γ-модификации Ca₂SiO₄ происходит существенная перестройка структу-

ры, сопровождающаяся как изменением в расположении атомов Са с одновременным уменьшением числа ближайших лигандов вокруг них, так и смещением и разворотом части Si-тетраэдров. В структуре β -Ca₂SiO₄ связанные винтовыми осями второго порядка атомы Са в позиции M(1) расположены вдоль оси а элементарной ячейки практически друг под другом (на расстоянии в 3.5 Å, приблизительно равном 1/2Ta) и, как уже отмечалось, центрируют восьмивершинники, связанные в параллельные (101) слои. В структуре γ-Ca₂SiO₄ эти же пары (расстояние между ними равно ~4.3 Å) смещены друг относительно друга на половину трансляции вдоль двух осей (*a* и *b*) и центрируют октаэдры, связанные в параллельные (001) ажурные стенки (рис. 3а), в которых в шахматном порядке чередуются пустые и заполненные октаэдры. Атомы Са в *М*(2)-позициях также

центрируют октаэдры, объединенные в оливиноподобные ленты, которые вытянуты вдоль оси bэлементарной ячейки и расположены на двух уровнях по осям а и с (рис. 36, 3в). В структурах ромбических полиморфов и β -Ca₂SiO₄ центральный M(1)-катион окружают шесть Si-тетраэдров, центры которых расположены тройками на двух уровнях (приблизительно +1/4 и -1/4) по оси а относительно позиции М(1). В структуре кальциооливина ү-Са₂SiO₄ *M*(1)-октаэдр связан по вершинам только с пятью Si-тетраэдрами, три из которых имеют центры, расположенные приблизительно на одном уровне с M(1)-позицией, а два - смещенные на $+1/2T_a$ и $-1/2T_a$, причем с одним M(1)-октаэдр связан по общему ребру, а с другим по вершине. В результате каждый Si-тетраэдр в структуре ү-Са₂SiO₄ делит три горизонтальных ребра с двумя M(2)-октаэдрами и одним M(1)-октаэдром, а вертикальные ребра Si-тетраэдров остаются свободными.

ОСОБЕННОСТИ СТРУКТУРНЫХ СООТНОШЕНИЙ В ПОЛИМОРФНОМ РЯДУ Ca₂SiO₄

Исследование механизмов переходов от высокотемпературных к низкотемпературным модификациям Ca_2SiO_4 , проведенное в [10] на основе анализа послойной укладки атомов, в настоящей работе дополнено данными по ларниту и результатами моделирования гипотетических фаз. В структуре собственно глазерита (афтиталита) и глазеритоподобной α-модификации Ca_2SiO_4 (только для модели с пр. гр. $P3m1^{-1}$) параллельно плоскости (0001) можно выделить два типа гетерогенных плотно упакованных (ПУ) слоев, образованных совместно атомами О и К(Са). Первый тип (слой *I* на уровне $z \sim 0$) состоит из атомов О (апикальные вершины тетраэдров) и К(Са) в позиции M(1), второй тип (слои II и III на уровнях $z \sim 1/3$ и $z \sim 2/3$ соответственно) — из атомов О (вершины в горизонтальных основаниях тетраэдров и октаэдров) и K(Ca) в позиции M(2) (рис. 4a). В идеальной ПУ шары следующего слоя должны располагаться в лунках предыдущего. В структуре глазерита деформация ПУ связана с тем, что треугольники из атомов О в последующих слоях повернуты вокруг осей 3 на угол ~30° против часовой стрелки на уровне $z \sim 1/3$ (слой II) и в противоположном направлении – на уровне $z \sim 2/3$ (слой III). В результате в новых слоях образуются вакансии, заполненные атомами К (центры десятивершинников в M(2)-позиции), которые располагаются над или под атомами кислорода слоя

I, нарушая ПУ всей структуры. В [11, 12] отмечено, что такой разворот кислородных троек слоев *II* (или *III*) относительно слоя *I* приводит к более плотному заполнению пространства по сравнению с классическими гомогенными упаковками. Относительно друг друга слои *II* и *III* расположены по принципу ПУ с образованием октаэдрических "пустот", занятых в структуре глазерита и его Са- и Si-аналога катионами Na(Ca) в позиции *M*(1'). Тетраэдрические "пустоты", заполненные атомами S(Si), образуются между слоями I и II (с центрами на уровне $z \sim 0.2$) и слоями III и I (с центрами на уровне $z \sim 0.8$). При этом тетраэдры одного уровня ориентированы одинаково, а тетраэдры соседних уровней имеют противоположную вдоль оси z ориентацию. В структуре ромбического арканита β -K₂SO₄ и его Са- и Si-аналогов атомы K(Ca) в позиции M(1) и O(1) (апикальные вершины тетраэдров), расположенные на уровнях по $x \sim 0$ и ~1/2, связаны в ленты, а на уровнях по $x \sim$ ~ 1/4 и ~3/4 атомы К(Са) в позиции *М*(2) и атомы О (основания тетраэдров и октаэдров) образуют гетерогенные ПУ-слои, подобные слоям II и III глазерита (рис. 4б). Тетраэдрические "пустоты" формируются между О-атомами слоя II (или III) и О-атомами лент на уровнях $x \sim 0$ (или $\sim 1/2$), причем тетраэдры одного уровня имеют противоположную ориентацию апикальных вершин. Тройки атомов О слоев *II* и *III* составляют первую (октаэдрическую) координационную сферу вокруг атомов K(Ca) в позиции M(1) на уровнях по $x \sim 0$ и ~1/2 (в структуре арканита до девятивершинника данный полиэдр достраивается тремя атомами кислорода тех же уровней).

При переходе β-фазы в оливиноподобную γмодификацию гетерогенные слои ІІ и ІІІ структуры β-Ca₂SiO₄ преобразуются в гомогенные ПУслои (рис. 4в) из атомов О на уровнях по оси *х*~0.2−0.3 и ~0.7−0.8. При этом связанные центрами инверсии пары атомов Ca (M(2)-позиции) гетерогенных слоев структуры β-Ca₂SiO₄ смещаются в точки (позиции центров) с координатами (0,0,0; 0,1/2,0) и (1/2,0,1/2; 1/2,1/2,1/2), а освободившиеся вакансии занимают атомы О – апикальные вершины из расположенных в структуре β -Ca₂SiO₄ лент на уровнях по $x \sim 0$ и $\sim 1/2$. Таким образом, в гомогенных ПУ-слоях γ-Ca₂SiO₄ образуются тройки из атомов О – основания М-октаэдров и Si-тетраэдров с апикальными вершинами, расположенными в соседних слоях. В результате формируется структура, в которой атомы О расположены по закону двухслойной гексагональной ПУ, атомы Са центрируют 1/2 октаэдрических, а атомы Si - 1/8 тетраэдрических пустот, образующихся между двумя ПУ-слоями.

При переходе от высокотемпературных к низкотемпературным полиморфным модификациям Ca₂SiO₄ происходит деформация гетерогенных

¹ В структуре с пр. гр. *Р*6₃/*mmc* "глазеритовая" укладка атомов нарушается из-за присутствия альтернативных тетраэдров и десятивершинников.

Рис. 4. Плотноупакованные слои из атомов в структурах: глазерита $K_3Na[SO_4]_2$ (а); арканита β - K_2SO_4 , ромбических α'_H -, α'_L -модификаций и ларнита β - Ca_2SiO_4 (б); кальциооливина γ - Ca_2SiO_4 (в). Малыми кружками показаны центры октаэдрических пустот.

O(1) $2M(1) + M(2) + Si$	O(2) 2 $M(1) + 2M(2) + Si$	O(3) 2 $M(1) + 2M(2) + Si$	O(4) 2 $M(1) + 2M(2) + Si$	Литература
1.985	1.965	1.944	1.883	6
2.025	1.961	1.948	1.954	2
1.865	1.939	1.926	2.030	7
1.988	1.958	1.929	1.894	Данная работа

Таблица 4. Значения сумм валентных усилий (ΣV_{ij}) на анионах в структуре ларнита и синтетической модификации β -Ca₂SiO₄

ПУ-слоев: различия в высотах по оси x (Δx) атомов O, образующих горизонтальные основания тетраэдров, составляют для α -Ca₂SiO₄ $\Delta x = 0$; для α'_H -Ca₂SiO₄ – 0.48 Å; для природного ларнита и β -Ca₂SiO₄ – 0.54 Å; в структуре кальциооливина и синтетической γ -Ca₂SiO₄ $\Delta x = 0.03$ Å Ланная де-

синтетической γ -Ca₂SiO₄ $\Delta x = 0.03$ Å. Данная деформация сопровождается разворотом Si-тетраэдров, уменьшением числа ближайших лигандов вокруг *М*-катионов и расстояний катион–анион, а также количества общих ребер *M*(1)-полиэдров и Si-тетраэдров с одной стороны, и *M*(1)- и *M*(2)полиэдров – с другой. В метастабильной β-модификации Ca₂SiO₄ – переходной форме между структурным типом глазерита и оливина – размеры *M*-полиэдров наименьшие, а степень деформации ПУ-слоев и разворот Si-тетраэдров наибольшие по сравнению с остальными высокотемпературными полиморфами Ca₂SiO₄.

Отличием ларнита β-Ca₂SiO₄ также является легкость вступления его в химическую реакцию с водой при температурах даже несколько ниже 0°С, что может быть связано с небольшим нарушением локального баланса валентностей на части анионов. Значения сумм валентных усилий на анионах, рассчитанные с учетом расстояний катион-анион [13], указывают на небольшой избыток отрицательного заряда (табл. 4). В структуре кальциооливина ү-Са₂SiO₄, который способен интенсивно реагировать с водой при T > 200°C согласно [14], подобного нарушения нет: значения сумм валентных усилий (ΣV_{ij}) на анионах, занимающих близкие к ларниту кристаллохимические позиции, равны 2.056, 2.054 и 1.982 (рассчитаны по данным из [3]). В структуре же ларнита создаются возможности для быстро протекающей атаки гидроксилами участков с избыточным отрицательным зарядом и её перестройки с целью компенсации дисбаланса локального заряда. Возможно, эти же факторы облегчают и реакцию ларнита с галогенами. Реакция ларнита с водой – одна из важнейших реакций портландцемента, имеющая исключительно важное практическое значение. Именно высокая скорость реакции ларнита с водой и большой объём гидратных новообразований определяют прочность цементного камня, чего ни кальциооливин, ни бредигит, ни мервинит не обеспечивают.

Метастабильность β-Ca₂SiO₄ также подтверждается результатами структурного моделирования возможных гипотетических фаз Ca₂SiO₄. При расчетах, проведенных методом атомистических потенциалов [15], в качестве тестируемых были взяты три модели полиморфов Ca₂SiO₄: а'_н- Ca_2SiO_4 , β -Ca_2SiO₄ и γ -Ca_2SiO₄. Полученные гипотетические модели α'_{H} - Ca₂SiO₄ и γ-Ca₂SiO₄ отличаются от заданных незначительно, причем наиболее выгодной является оливиноподобная умодификация с минимальным значением структурной энергии ($E_{\rm crp}$) и оптимизированными параметрами элементарной ячейки, близкими к исходным (табл. 5). Моноклиннная β-модификация в процессе энергетической оптимизации трансформируется в ромбическую фазу, основу структуры которой составляют ленты из М(1)-октаэдров (рис. 5а), вытянутые вдоль оси а элементарной ячейки и расположенные на двух уровнях по осям *b* и *c* (рис. 56). Атомы Са в позиции *M*(2) центрируют октаэдры, связанные между собой в стенки, а с октаэдрами первого типа – в каркас. С *M*(1)-октаэдрами Si-тетраэдры объединены по вершинам, а с *М*(2)-октаэдрами – по общим ребрам. В результате создается плотная структура, в которой также нарушен локальный баланс валентностей на анионах: значения сумм валентных усилий (ΣV_{ij}), равные 2.17—2.19, указывают на некоторый избыток положительного заряда.

Таблица 5. Результаты энергетической оптимизации возможных гипотетических фаз Ca₂SiO₄

Соединение, формула	Структурная энергия <i>Е</i> _{стр} , эВ	Оптимизированные параметры элемен- тарной ячейки (<i>a</i> , <i>b</i> , <i>c</i> , Å) (α, β, γ, град)
α'_H - Ca ₂ SiO ₄	-204.60	6.698 5.409 9.883 90.00 90.00 90.00
Ларнит β -Ca ₂ SiO ₄	-204.53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Кальциооливин γ-Ca ₂ SiO ₄	-204.68	5.106 6.658 11.300 90.00 90.00 90.00

Рис. 5. Структура ромбической гипотетической модификации Ca₂SiO₄ в проекциях на плоскость: (010) (a) и (100) (б).

СРАВНИТЕЛЬНАЯ КРИСТАЛЛОХИМИЯ ГЛАЗЕРИТОПОДОБНЫХ МОДИФИКАЦИЙ Ca₂SiO₄

В геологических объектах для ларнита β -Ca₂SiO₄ и кальциооливина γ -Ca₂SiO₄ возможна ассоциация с бредигитом Ca₇Mg[SiO₄]₄ [16], в свою очередь для бредигита – с мервинитом Ca₃Mg[SiO₄]₂ [17]. Близость оптических и морфологических характеристик, а также сопоставимость размеров элементарных ячеек определяется структурным родством этих минералов.

Сравнительный кристаллохимический анализ мервинита, бредигита и полиморфов Ca₂SiO₄[10] показал, что мервинит Ca₃Mg[SiO₄]₂ (a = 13.254, b = 5.293, c = 9.328 Å, $\beta = 91.90^{\circ}$, пр. гр. $P2_1/a$, Z = 4) является Ca-, Mg- и Si-искаженным аналогом афтиталита (глазерита) K₃Na[SO₄]₂ или природным, также искаженным, Ca- и Mg-аналогом высокотемпературной α -Ca₂SiO₄ (ее модели с пр.

гр. P3m1), в структуре которой атомы Са в позиции M(1') замещены на Mg. Отличие структур мервинита и глазерита заключается в небольших смещениях атомов и развороте Si-тетраэдров. С этим связано понижение симметрии минерала до моноклинной и удвоение параметра *a*. В структуре мервинита аналогичные глазеритовым гетерогенные ПУ-слои сформированы из атомов О и атомов Са в позиции M(1), а октаэдрические "пустоты", образующиеся между слоями, заполнены атомами Mg в позиции M(1').

Структура бредигита Ca₇Mg[SiO₄]₄ (a = 6.739, b = 10.909, c = 18.340 Å, пр. гр. Pn2n, Z = 2) представляет собой сложную комбинацию структурных моделей как глазерита, так и ромбического арканита. Послойная укладка атомов в структуре бредигита сближает минерал с ромбическими и моноклинным полиморфами Ca₂SiO₄: так же, как

и в этих структурах, атомы Са в позициях M(1) и атомы O (апикальные вершины тетраэдров) образуют ленты, а атомы Са в позициях M(2) и O (основания тетраэдров и октаэдров) – гетерогенные ПУ-слои. Между указанными слоями образуются центрированные атомами Mg в позициях M(1')октаэдрические "пустоты" и заполненные атомами Si тетраэдрические "пустоты", причем чередование "полярных" тетраэдров одного уровня в структуре бредигита иное, чем в структурах ромбических и моноклинного полиморфов Ca₂SiO₄.

Чисто кальциевые природные аналоги высокотемпературных (α , α'_{H} и α'_{L}) модификаций Ca₂SiO₄ пока неизвестны, вероятнее всего, такие соединения удастся встретить в закалочных условиях. Это можно объяснить особенностями их строения: для указанных модификаций с обоими типами укладки ПУ-слоев характерен значительный разброс расстояний между атомами Са и О в слое, что связано с меньшей по сравнению с К соразмерностью их ионных радиусов (r), необходимой для образования гетерогенных слоев: r = 1.00 Å для ^[6]Са²⁺, *r* = 1.40 Å для ^[6]О²⁻, *r* = 1.38 Å для ^[6]К⁺. В структуре глазерита расстояния между ближайшими соседями в слое I равны 3.29 Å (K–O) и 3.31 Å (O–O). В структуре высокотемпературной модификации α-Ca₂SiO₄ наблюдаются большие колебания расстояний между соседними атомами слоя I: 2.60–3.53 Å (Са–О) и 1.03–3.54 Å (О–О), вследствие статистического заполнения атомами О трех близко расположенных позиций. Такая структура может быть устойчивой в условиях, когда амплитуды тепловых колебаний атомов велики, что возможно только при высоких температурах. Этим же объясняется и наличие расщепленных позиций атомов в их структурах: в этой связи модель α-модификации (пр. гр. Р6₃/mmc), использованная Мумми и соавторами [18], при уточнении структуры, представляется наиболее

вероятной. При замещении Na на Ca в "глазеритовой" M(1')-позиции в структуре α -Ca₂SiO₄ объем октаэдрических "пустот" оказывается недостаточен для относительно крупного ($r^{[6]}$ Ca²⁺ = 1.00 Å) катиона, в структуре же природного мервинита аналогичная позиция заполнена Mg ($r^{[6]}Mg^{2+}$ = = 0.72 Å), который действует как стабилизатор, в присутствии которого реализуется устойчивое при обычных условиях соединение. Магний, центрируя октаэдрические "пустоты", образующиеся между гетерогенными ПУ-слоями в структуре бредигита, также выполняет роль стабилизатора при образовании соединения, по метрическим характеристикам и симметрии наиболее близкого к высокотемпературной α'_{H} -Са₂SiO₄. Замещение Са на Мд в центрах октаэдрических "пустот" в структурах мервинита и бредигита также сопровождается деформацией гетерогенных ПУ-слоев: различия в высотах по оси x (Δx) атомов O, образующих горизонтальные основания тетраэдров, составляют 0.93 Å для мервинита и 1.15 Å для бредигита. Такое отклонение вызывает разворот Si-тетраэдров, что характерно и при переходе от α - к β - и от β - к γ -модификации Ca₂SiO₄ (предыдущий раздел).

Отмеченное выше несоответствие радиуса катиона размеру октаэдрической пустоты гексагональной плотнейшей упаковки при фазовом переходе $\beta \rightarrow \gamma$ приводит к сильной деформации (вытянутости вдоль осей b и c) Са-полиэдров. Данная деформация является причиной часто наблюдаемого явления растрескивания кристаллов β-Ca₂SiO₄ при охлаждении (в технологии силикатов известного как "пыление ларнита") и увеличения значений параметров (b и c) элементарной ячейки кальциооливина γ-Ca₂SiO₄ по сравнению с соответствующими параметрами остальных полиморфов Ca₂SiO₄. Сокращение перпендикулярного плоскости ПУ-слоев параметра а кальциооливина γ-Ca₂SiO₄ (табл. 1) связано с особенностями послойной укладки атомов: в структуре ү-Са₂SiO₄ центры тетраэдрических и октаэдрических пустот расположены приблизительно на одном уровне по оси *a*, а в структурах других модификаций – смещены приблизительно на 1/4Та.

Структурное родство полиморфов Ca_2SiO_4 определяет сопоставимость размеров их элементарных ячеек, а также отмеченный в [14] топотаксический характер (т.е. с сохранением определенной кристаллографической ориентации исходного материала) образования продуктов фазовых превращений Ca_2SiO_4 . Такое родство в свою очередь связано с тем, что все рассмотренные соединения, включая мервинит и бредигит, можно построить из одинаковых блоков-модулей — псевдогексагональных "глазеритовых" протоячеек состава ^[12] $M(1)^{[6]}M(1')^{[10]}M(2)_2[TO_4]_2$ с близкими к глазериту параметрами ($a \sim b \sim 5.5$ Å, $c \sim 6.8$ Å, $\alpha \sim \beta \sim 90^{\circ}$, $\gamma \sim 120^{\circ}$) и расположением атомов. Каждая из описанных выше структур (рис. 6) отличается способом сочленения соседних блоков, с чем связано различие в размерах и симметрии их элементарных ячеек. В структуре глазерита K₃Na[SO₄]₂, высокотемпературной модификации α -Ca₂SiO₄ (пр. гр. $P\overline{3}m1$) и мервинита Ca₃Mg[SiO₄]₂ (рис. 6а) отдельные блоки связаны трансляциями, исключая в последнем случае незначительное смещение атомов в соседних по оси *a* протоячейках. В структурах ромбического арканита β -K₂SO₄ и его силикатных Ca-аналогов (высокотемпературные модификации α'_H -Ca₂SiO₄ и α'_{-} -Ca₂SiO₄) (рис. 6б) соседние "глазе-

 Ca_2SiO_4 и α'_L -Ca₂SiO₄) (рис. 6б) соседние "глазеритовые" блоки связаны отражением в плоскости $a\perp_{z}$, а в структуре β -Са₂SiO₄ (рис. 6в) – поворотом вокруг винтовой оси второго порядка 2_x. Структуру кальциооливина (ү-Са₂SiO₄) можно рассматривать как производную от структуры глазерита, в которой соседние по оси с глазеритоподобные блоки связаны отражением в клиноплоскости $n\perp_z$, т.е. смещены друг относительно друга на 1/2Та и 1/2Тв, а в выделенной "глазеритовой" протоячейке *M*(1)-атомы и Si-тетраэдры (без учета различий в x-координатах) расположены так же, как и в структуре глазерита (рис. 6г). Структуру бредигита Ca₇Mg[SiO₄]₄ можно построить из "глазеритовых" протоячеек при условии расположения в ее вершинах атомов одного сорта. Внутри блоков атомы расположены так же, как и в структуре афтиталита (глазерита), а понижение симметрии и одновременное увеличение параметров элементарной ячейки бредигита определяется, прежде всего, характером укладки выделенных ячеек, а также замещением Ca на Mg и смещением атомов.

Во всех описанных случаях "глазеритовые" блоки связаны элементами симметрии пространственных групп, которым подчиняется расположение атомов всей структуры. В структуре бредигита в объединении "глазеритовых" блоков принимают участие и дополнительные элементы псевдосимметрии. Характерная для полиморфов Са₂SiO₄ топотаксия обусловлена близостью размеров и симметрии "глазеритовых" блоков (в выделенной "глазеритовой" протоячейке каждого соединения из элементов симметрии глазерита сохраняются центры инверсии), а также одинаковой ориентацией отдельных блоков в их структурах. Наличие в структурах описанных соединений близких по симметрии и составу строительных "глазеритовых" модулей-блоков объясняет, с одной стороны, обратимость фазовых переходов между полиморфами Ca₂SiO₄, а с другой, часто встречаемые ассоциации минералов данного ряда.

Рис. 6. Идеализированные проекции структур: глазерита $K_3Na[SO_4]_2$ и мервинита $Ca_3Mg[SiO_4]_2$ (a); арканита β - K_2SO_4 , α'_H - Ca_2SiO_4 и α'_L - Ca_2SiO_4 (b); ларнита β - Ca_2SiO_4 (b); кальциооливина γ - Ca_2SiO_4 (г). Кружки – атомы K(Ca) в позициях M(1) на уровнях $z(x) \sim 0$ (светлые), $z(x) \sim 0.5$ (темные) и в позициях M(2) на уровнях по осям z(x), обозначенных цифрами. Пунктиром выделены исходные "глазеритовые" протоячейки, связанные трансляциями (a) и элементами симметрии (б-г).

ЗАКЛЮЧЕНИЕ

Проведенное впервые рентгеноструктурное исследование природного ларнита подтвердило его принадлежность к полиморфному ряду Ca_2SiO_4 и изоструктурность с изученными ранее синтетическими образцами β -модификации Ca_2SiO_4 . Особенности строения ларнита и высокотемпературных полиморфов (α , α'_L , α'_H) Ca_2SiO_4 , а также механизмы фазовых переходов в данном ряду аналогичны фазовых переходов в данном ряду аналогичны фазовым соотношениям афтиталит (глазерит)—арканит. Переход от высокотемпературных α -, α'_L -, и α'_H -модификаций к метастабильной β -модификации сопровождается

уменьшением размеров координационной сферы вокруг Са в M(1)- и M(2)-позициях и числа обобществленных ребер полиэдров, что приводит к уменьшению плотности структуры. Ларнит β-Ca₂SiO₄ — сильно искаженный аналог ромбического арканита, в структуре которого наблюдается максимальная степень деформации гетерогенных ПУ-слоев, является переходной формой к структурному типу оливина, построенному на основе гомогенных ПУ-слоев. Это объясняет метастабильность β-Ca₂SiO₄, которая подтверждается результатами структурного моделирования возможных гипотетических фаз Ca₂SiO₄, а также от-

сутствием несдвойникованных образцов кристаллов для природного ларнита.

СПИСОК ЛИТЕРАТУРЫ

- 1. Smith D.N., Majumbar A., Ordway F. // Acta Cryst. 1965. V. 18. P. 767.
- Mumme W.G., Hill R.J., Bushnell G.W., Segnit E.R. // Neues Jahrb. Mineral. Abhandlungen. 1995. B. 169(1). S. 35.
- 3. *Гобечия Е.Р., Ямнова Н.А., Задов А.Е., Газеев В.М. //* Кристаллография. 2008. Т. 53. № 3. С. 437.
- 4. Задов А.Е., Газеев В.М., Перцев Н.Н. и др. // Докл. РАН. Геохимия. А. 2008. Т. 423. № 9. С. 1431.
- 5. Midgley C.M. // Acta Cryst. 1952. V. 5. P. 307.
- Jost K.H., Ziemer B., Seydel R. // Acta Cryst. B. 1977. V. 33. P. 1696.
- Catti M., Gazzoni G., Ivaldi G. // Acta Cryst. C. 1983. V. 39. P. 29.
- 8. *Sheldrick G.M.* SHELX97. Program for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany, 1997.

- 9. Егоров-Тисменко Ю.К., Соколова Е.В., Смирнова Н.Л., Ямнова Н.А. // Минерал. журн. 1984. Т. 6. № 6. С. 3.
- Ямнова Н.А., Егоров-Тисменко Ю.К., Гобечия Е.Р. и др. // Новые данные о минералах. М.: ООО "Альтум", 2008. Вып. 43. С. 64.
- Moore P.B. // Neues Mineral. Abhandlungen. 1976.
 B. 127. № 2. S. 187.
- 12. Moore P.B. // Bull. Mineral. 1981. V. 104. № 4. P. 536.
- Brese N.E., O'Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192.
- 14. *Тейлор Х.Ф.В.* Химия цемента / Пер. с англ. М.: Мир, 1996. 560 с.
- 15. *Еремин Н.Н., Урусов В.С. //* Проблемы кристаллологии. М.: ГЕОС, 2009. Вып. 6. С. 31.
- 16. Moore P. B., Araki T. // Am. Mineral. 1976. V. 61. P. 74.
- 17. *Moore P.B., Araki T. //* Am. Mineral. 1973. V. 57. P. 1355.
- 18. *Mumme W.G., Cranswick L., Chakoumakos B.* // Neues Mineral. Abhandlungen. 1996. B. 170(2). S. 171.