УДК 535.323, 535.53, 548

Посвящается памяти Б.Н. Гречушникова

ПЬЕЗООПТИЧЕСКИЕ СВОЙСТВА НЕСОРАЗМЕРНО МОДУЛИРОВАННЫХ КРИСТАЛЛОВ К₂ZnCl₄

© 2011 г. В. И. Стадник, З. О. Когут*, Р. С. Брезвин

Львовский национальный университет, Украина E-mail: vasylstadnyk@ukr.net *Национальный университет "Львовская политехника", Украина Поступила в редакцию 26.01.2010 г.

Исследовано влияние одноосных давлений вдоль главных кристаллофизических направлений на дисперсионные и температурные зависимости двулучепреломления кристаллов K_2ZnCl_4 , владеющих несоразмерной фазы в широком температурном диапазоне. Установлено, что двулучепреломление достаточно чувствительно к действию одноосных давлений. Исследованы спектральные и температурные зависимости комбинируемых пьезооптических коэффициентов. При фазовом переходе из несоразмерной в соразмерную фазу обнаружены значительные аномалии π_{im}^{im} , которые обусловлены изменением индуцированного двулучепреломления за счет возникновения спонтанной поляризации, а также значительным влиянием одноосного механического напряжения на солитонную структуру кристалла. Проведено разделение вкладов от электрооптического, упругооптического эффектов и параметра порядка в спонтанные изменения пьезоконстант.

ВВЕДЕНИЕ

Исследование пьезооптических коэффициен-

тов π_{im}^0 кристаллов имеет самостоятельный характер, что позволяет его изучить как один из важнейших кристаллооптических параметров, так и проанализировать температурно-спектральную деформацию оптической индикатрисы в поле механических усилий. Кроме того, интересно изучить поведение пьезооптических коэффициентов в области фазовых переходов (**ФП**) параэлектрическая—несоразмерная—соразмерная фазы.

Ранее были обнаружены значительные анома-

лии π_{im}^0 в области сегнетоэлектрического ФП, что для некоторых кристаллов на 1–2 порядка больше значения этих коэффициентов в сегнетоэлектрической или параэлектрической фазах [1], а также в области ФП из парафазы (ПФ) в несоразмерную (НФ) и далее соразмерную (СФ) фазы кристаллов LiKSO₄ [2] и (NH₄)₂BeF₄ [3]. Для кристаллов LiKSO₄ в области перехода НФ–СФ обнаружены значительные аномалии коэффициентов π_{im}^0 .

Цель данной работы — исследовать спектральные и температурные зависимости пьезооптических коэффициентов π_{im}^0 кристаллов K₂ZnCl₄ в области ФП, охватывающих несоразмерную фазу. Кристаллы тетрахлорцинканата калия (ТХЦК) K_2ZnCl_4 являются типичными представителями одномерно модулированной несоразмерной структуры типа A_2BX_4 . Они претерпевают стандартную для таких кристаллов последовательность ФП: парафаза (*mmm*, Z = 4, $T_i = 553$ K) \rightarrow \rightarrow НФ ($T_c = 403$ K) \rightarrow соразмерная сегнетофаза ($P2_1cn (mm2), q = c^*/3, Z = 12$) [4, 5].

Высокотемпературная фаза I кристалла ТХЦК является параэлектрической с пр. гр. *Ртсп* подобно кристаллам группы β -K₂SO₄. Промежуточная фаза II ($T_c < T < T_i$) является несоразмерно модулированной в *c*-направлении с волновым вектором $\mathbf{q} = (1 - \delta)\mathbf{c}^*/3$. Низкотемпературная фаза III ($T < T_c$) является несобственной сегнетоэлектрической (СФ) со спонтанной поляризацией вдоль *b*-оси и утроенным параметром элементарной ячейки вдоль псевдогексагональной *c*-оси.

НФ кристалла ТХЦК была определена по положению сателлитных пиков в рентгеновских лучах отражения и по дифракции нейтронов [6, 7]. Авторами установлено, что атомное смещение, обусловленное модуляционными волнами, для атомов хлора является достаточно большим. Это связано с тем, что при ФП фаза I – фаза II наблюдают значительное искривление тетраэдра ZnCl₄.

ФП парафаза – несоразмерная в кристаллах ТХЦК связан с конденсацией фонона в точке *q* зоны Бриллюэна, при этом мода имеет релакса-

Рис. 1. Спектральная зависимость двулучепреломления кристаллов K₂ZnCl₄ при комнатной температуре (светлые точки соответствуют механически свободному кристаллу; темные и полутемные точки – механически зажатому: $1 - \sigma_x = 200, 2 - \sigma_y = 200, 3 - \sigma_z = 200$ бар).

ционный характер. В кристалле K_2ZnCl_4 достаточно высокая температура существования HФ, что ослабляет дальнодействующие корреляции смещений и поэтому температурная зависимость параметра порядка $\delta(T)$ здесь очень слабая. В кристаллах с элементами беспорядка дальнодействующие корреляции смещений ионов малы, поэтому упорядочение структуры слабо влияет на характер пространственного распределения областей до тех пор, пока степень упорядочения не станет достаточно большой [8–10].

МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллы ТХЦК были выращены из водного раствора методом медленного охлаждения. Выращенные кристаллы имели вид ромбических призм с большим количеством граней.

Комбинированная разность пьезооптических констант была рассчитана по формуле

$$\pi_{im}^{0} = \frac{2\delta\Delta n_{i}}{\sigma_{m}} - 2\Delta n_{i}s_{im}, \qquad (1)$$

где $\delta \Delta n_i$ — индуцированное изменение двулучепреломления для направления распространения света вдоль кристаллографической оси *i* и давления на образце вдоль оси *m*. Второе слагаемое учитывает изменение размеров образца вдоль оси *m*, *s_{im}* — коэффициент упругой податливости.

Барические изменения двулучепреломления изучались по изменениям интерференционной

картины поляризованных лучей, что регистрировалось с помощью спектрального комплекса КСВУ-23. Исследуемый образец устанавливался в криостат в диагональное положение между скрещенными николями. При прохождении через такую систему пучка белого света в фокальной плоскости спектрографа возникала интерференционная картина. Интенсивность пропускания такой системы определялась согласно известному соотношению:

$$I = I_0 \sin^2\left(\frac{\pi}{\lambda} \Delta n_i d_i\right), \qquad (2)$$

где I_0 – интенсивность света, падающего на образец; Δn_i , d_i – величина двулучепреломления и толщина образца в направлении просвечивания соответственно.

При одноосном сжатии образца, которое осуществлялось с помощью специального приспособления, наблюдается спектральное смещение интерференционных полос, за которое отвечает изменение двулучепреломления. Зависимость величины Δn_i от давления при этом определяется выражением:

$$\Delta n_i(\lambda, \sigma_i) = k\lambda/d(\sigma). \tag{3}$$

Измерения проводились до давлений $\sigma_i \sim 200$ бар. Погрешность измерения двулучепреломления составляла $\delta \Delta n_i = \pm 2 \times 10^{-5}$.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Барические изменения двулучепреломления кристаллов. На рис. 1 представлена дисперсия двулучепреломления Δn_i кристалла ТХЦК при комнатной температуре для трех кристаллографических направлений и разных значений одноосного напряжения, измеренная интерференционным методом Обреимова. Как видно из рисунка, двулучепреломления Δn_i обладает значительной анизотропией, что свидетельствует об отсутствии изотропных точек в данном кристалле в нормальных условиях. Кроме того, видно, что дисперсия Δn_i кристалла ТХЦК нормальная $(d\Delta n_i/d\lambda < 0)$. Установлено, что двулучепреломление кристаллов ТХЦК чувствительно к действию одноосных давлений вдоль главных кристаллофизических направлений. На рисунке показана спектральная зависимость двулучепреломления кристаллов K₂ZnCl₄ при комнатной температуре для трех кристаллофизических направлений X, Y, Z(направления распространения пучка света) для механически свободного кристалла (им соответствуют светлые точки) и для тех же двупреломлений только под действием одноосных напряжений вдоль направлений X, Y, Z (им соответствуют

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Рис. 2. Температурная зависимость двулучепреломления кристаллов K₂ZnCl₄ при $\lambda = 500$ нм для разных направлений одноосного напряжения. Светлые точки – механически свободный кристалл, темные точки – механически зажатый кристалл: $1 - \sigma_x =$ = 200 бар; $2 - \sigma_y = 200$ бар; $3 - \sigma_z = 200$ бар.

темные или темно-светлые точки), т.е. Δn_x кристалла механически свободного и зажатого одноосными напряжениями σ_Y и σ_Z ; Δn_y также механически свободного и зажатого одноосными напряжениями σ_X и σ_Z и Δn_z — механически свободного и зажатого напряжениями σ_X и σ_Y . В сумме должно быть девять кривых, но поскольку кривые Δn_x для напряжения σ_Y и Δn_z для σ_Y практически совпадают, то кривые — восемь. Цифрами обозначены кривые $\Delta n_i(\lambda)$ для зажатых кристаллов: $1 - \sigma_x = 200, 2 - \sigma_y = 200, 3 - \sigma_z = 200$ бар.

Из рисунка видно, что напряжения σ_m ведут к разным по знаку изменениям двулучепреломления Δn_i : одноосное давление σ_x увеличивает Δn_y и уменьшает Δn_z ; одноосное давление σ_y увеличивает Δn_z и уменьшает Δn_x , тогда как σ_z увеличивает двулучепреломление в направлении X и уменьшает – в направлении Y. Кривые $\Delta n_i(\lambda)$ под действием давления качественно не изменяются, однако их дисперсия уменьшается при действии одноосных напряжений.

Температурные зависимости двулучепреломления Δn_i кристаллов ТХЦК в районе ФП парафаза-НФ-СФ для разных значений одноосного давления представлены на рис. 2.

Обнаружено, что в кристаллах ТХЦК одноосные напряжения влияют на точки ФП и температурный ход двулучепреломления. Установлено, что давление не изменяет характера температурных зависимостей двулучепреломления, а изменяет только величину $d\Delta n_i/dT$. Установлено, что зависимость $\Delta n_i(T)$ практически линейна для всех фаз. В парафазе обнаружены наиболее существен-

Рис. 3. Дисперсия пьезооптических констант кристаллов K₂ZnCl₄ при комнатной температуре: $I - \pi_{21}^0$; $2 - \pi_{32}^0$; $3 - \pi_{13}^0$; $4 - \pi_{12}^0$; $5 - \pi_{31}^0$; $6 - \pi_{32}^0$.

ные изменения $\Delta n_i(T)$: $d\Delta n_x/dT = 5.1 \times 10^{-6} \text{ K}^{-1}$, $d\Delta n_y/dT = 9.0 \times 10^{-6} \text{ K}^{-1} \text{ H} d\Delta n_z/dT = 8.2 \times 10^{-6} \text{ K}^{-1}$ для механически свободных кристаллов. Для зажатых одноосными напряжениями кристаллов ТХЦК эти величины существенно не различаются. В НФ наблюдаются следующие коэффициенты $d\Delta n_x/dT = 1.5 \times 10^{-6}, \ d\Delta n_v/dT = 6.0 \times 10^{-6}$ и $d\Delta n_z/dT = 5.1 \times 10^{-6} \, {\rm K}^{-1}$. Температурные различия в поведении $\Delta n_i(\sigma)$ для механически свободного и зажатого образцов обнаружены только в НФ. Видно, что в НФ одноосные напряжения в основном увеличивают температурную чувствительность двулучепреломления. При ФП НФ-СФ обнаружены скачкообразные изменения Δn_i : $\delta \Delta n_x =$ = 2.9 × 10⁻⁴, δΔ n_y = 1.2 × 10⁻⁴ μ δΔ n_c = 1.1 × 10⁻⁴. При действии одноосных напряжений величины этих скачков несколько меньше: $\delta \Delta n_x = 2.2 \times 10^{-4}$ и 2.5 × 10⁻⁴ Для σ_y и $\sigma_z = 200$ бар соответственно; $\delta\Delta n_y = 1.0 \times 10^{-4}$ и 0.9 × 10⁻⁴ для σ_z и $\sigma_x = 200$ бар соответственно и $\delta \Delta n_z = 0.9 \times 10^{-4}$ и 0.8×10^{-4} для σ_v и $\sigma_x = 200$ бар соответственно.

Пьезооптические свойства кристаллов K₂ZnCl₄. На рис. 3 представлены дисперсионные зависимости пьезооптических констант π_{im}^0 кристалла ТХЦК при комнатной температуре. Особенностью поведения π_{im}^0 кристаллов ТХЦК является значительная дисперсионная зависимость, при этом характер дисперсии $d\pi_{im}^0/d\lambda < 0$ отвечает дисперсии показателей преломления $dn_i/d\lambda < 0$ (таблица). Наиболее спектрально зависимой является константа π_{32}^0 , тогда как константы π_{12}^0 и

Рис. 4. Температурные зависимости пьезооптических констант кристаллов K₂ZnCl₄ для $\lambda = 500$ нм: $I - \pi_{21}^{0}$; $2 - \pi_{32}^{0}$; $3 - \pi_{13}^{0}$; $4 - \pi_{12}^{0}$; $5 - \pi_{31}^{0}$; $6 - \pi_{32}^{0}$.

 π_{31}^0 очень слабо изменяются в исследуемом спектральном диапазоне.

Разные знаки и спектральные изменения π_{im}° указывают на то, что влияние одноосного механического давления вдоль кристаллофизических осей *X*, *Z* и *Y* приводит к разному характеру изменения индуцированного двулучепреломления кристалла ТХЦК.

На рис. 4 представлены температурные зависимости пьезооптических коэффициентов π_{im}^0 кристаллов ТХШК. При переходах ПФ-НФ обнаружены значительные изменения наклона кривых $\pi_{im}^0(T)$, так что параметр $\frac{d\pi_{im}^0}{dT}$ в большинстве случаев изменяет свой знак (таблица) за исключением констант π_{23}^0 , где параметр $\frac{d\pi_{im}^0}{dT}$ изменяет лишь свою величину. Результаты поведения $\pi_{im}^0(T)$ подтверждают известные результаты поведения $n_i(T)$ и $\Delta n_i(T)$ при данном ФП. Во всей температурной области существования НФ большинство констант π_{im}^0 практически линейно уменьшаются при понижении температуры, за исключением констант π_{12}^0 и π_{21}^0 . При переходе из несоразмерной в сегнетоэлектрическую фазу обнаружены значительные скачкообразные изменения коэффициентов π_{im}^0 (таблица).

Значительные аномалии π_{im}^0 в точке T_c кристаллов ТХЦК обусловлены изменением индуцированного двулучепреломления за счет возникновения спонтанной поляризации, а также значительным влиянием одноосного механического напряжения на солитонную структуру кристалла при температуре T = 403 К.

Рассмотрим в качестве примера коэффициент π_{32}^0 (отвечает изменению двулучепреломления при распространении света вдоль оси несоразмерной модуляции *Z* при одноосном сжатии вдоль оси возникновения спонтанной поляризации *Y*). Значительная аномалия коэффициента π_{32}^0 при ФП может быть объяснена следующим

Дисперсия $(d\pi_{im}^0/d\lambda, 10^{-14} \text{ м}^2/\text{H} \text{ нм})$ при комнатной температуре, коэффициенты температурных изменений $(d\pi_{im}^0/dT, 10^{-14} \text{ M}^2/\text{H} \text{ K})$ и величины скачкообразных изменений $(\delta\pi_{im}^0, 10^{-12} \text{ M}^2/\text{H})$ при фазовом переходе несоразмерная—соразмерная фазы пьезооптических коэффициентов π_{im}^0 кристаллов K₂ZnCl₄

Пьезооптические константы	π^{0}_{12}	π^{0}_{13}	π^{0}_{21}	π^{0}_{23}	π^{0}_{31}	π^{0}_{32}
			$d\pi^0_{im}/d\lambda$			
400 нм	0.64	-1.68	-1.77	0.68	0.48	2.78
600 нм	0.63	-1.61	-1.01	0.32	0.46	-2.26
			$d\pi^0_{im}/dT$			•
ΠΦ	1.33	0.65	1.41	1.44	-0.78	0.43
ΗΦ	-1.15	-1.05	-0.80	0.93	0.98	-0.95
$\delta\pi^0_{im}$						
	-2.1	2.2	-1.1	1.3	2.2	-1.2

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

образом. В несоразмерной фазе в связи с зависимостью параметра порядка (в данном случае это плотность солитонов) $\omega \rho^2$ и спонтанной поляризации P_c от температуры и их смещения вдоль оси температур под действием механического давления σ_m значения $\omega \rho^2$ и P_c в НФ изменятся на величины $d(\omega \rho^2)$ и dP_c . Эти изменения вызовут дополнительные изменения двулучепреломления. Поэтому суммарный пьезооптический эффект в НФ будет определяться "истинным" пьезооптическим и вторичным вкладами от параматров порядка $d\Delta n_k/d(\omega \rho^2)$, спонтанной деформации $d\Delta n_k/d\chi^s$ и спонтанной поляризации $d\Delta n_k/dP_c$

$$\pi_{im}^{0} = \frac{2d\Delta n_{k}}{d\sigma_{m}} = 2\left[\left(\frac{d\Delta n_{k}}{d\sigma_{m}}\right)_{\text{\tiny WCT}} + \frac{d\Delta n_{k}}{dP_{c}}\frac{dP_{c}}{d\sigma_{m}} + \frac{d\Delta n_{k}}{d\chi^{s}}\frac{d\chi^{s}}{d\sigma_{m}} + \frac{d\Delta n_{k}}{d(\omega\rho^{2})}\frac{d(\omega\rho^{2})}{d\sigma_{m}}\right],$$
(4)

где $(d\Delta n_k/d\sigma_m)_{\rm ист}$ — вклад истинного пьезооптического эффекта в пьезооптические коэффициенты π^0_{im} ; 2-й, 3-й и 4-й члены формулы (4) описывают вторичные вклады от параметров порядка, спонтанной поляризации и спонтанной деформации в пьезоконстанты π^0_{im} .

Путем линейной экстраполяции температурных зависимостей $\pi_{32}^0(T)$ с парафазы в область температур ниже $T_i = 553$ К можно получить изменения коэффициента π_{32}^0 в НФ и СФ, обусловленные параметром порядка и спонтанной поляризацией.

Проведено разделение вкладов от спонтанной поляризации (электрооптического эффекта), спонтанной деформации (упругооптического эффекта) и параметра порядка в спонтанные изменения пьезоконстанты π_{32}^0 . Установлено, что в НФ при понижении температуры вклады от параметра увеличиваются до 60%, тогда как от спонтанной деформации уменьшаются до 40%. ФП сопровождается скачкообразным уменьшением $\delta \pi_{32}^0$. Спонтанная поляризация, которая возникает при этом, приводит к появлению вкладов от электрооптического эффекта.

В сегнетофазе максимальный вклад в спонтанные изменения вносит спонтанная поляризация (до 65%). Температурная зависимость вклада от параметра порядка имеет более сложный характер: при уменьшении температуры от T_i до 320 К он сначала увеличивается до 20%, а потом уменьшается практически до 0%.

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Наблюдаемые изменения вкладов от параметра порядка $\delta \pi_{32}^0$ в НФ и СФ могут быть объяснены при учете их пропорциональности 4-й и 6-й степени параметра порядку. В этом случае рассмотренные вклады можно представить так

$$\delta \pi_{32}^{0,\,\rho} \sim \omega_1 \rho^2 + \omega_2 \rho^4 + \omega_3 \rho^6.$$
 (5)

Аномалии пьезооптических констант в области фазовых переходов из несоразмерной в соразмерную фазы можно также объяснить тем, что сжатие кристалла изменяет плотность солитонов в кристалле $n_s = d_0/x_0 (d_0 -$ ширина солитона; x_0 междусолитонное расстояние). Это свою очередь приводит к изменению энергии солитон-солитонного взаимодействия $E_{SS} = \exp(-\pi/n_s)$ и энергии взаимодействия солитона с дефектами $U_B =$ $= n_{\alpha} x_0 E_B (n_{\alpha} -$ концентрация дефектов, $E_B -$ энергия связи солитона с дефектом). Энергия *E_B* – это энергия, которая необходима для перемещения одного солитона на расстояние, равное параметру решетки [11]. Очевидно, что механическое напряжение σ изменяет величину E_B , что приводит к изменению плотности солитонов и условий взаимодействия солитонов с дефектами решетки и проявляется в скачкообразных изменениях пьезооптических коэффициентов в районе несоразмерной фазы исследуемых кристаллов.

Таким образом, исследовано влияние одноосных давлений вдоль главных кристаллофизических направлений на дисперсионные и температурные зависимости двулучепреломления Δn_i кристаллов K₂ZnCl₄ несоразмерной фазы в широком температурном диапазоне. Установлено, что Δn_i достаточно чувствительно к действию одноосных давлений. Показано, что напряжения σ_m ведут к разным по знаку изменениям двулучепреломления Δn_i .

Установлено, что давление не изменяет характера температурных и спектральных зависимостей двулучепреломления, а изменяет только величины $d\Delta n_i/dT$ и $d\Delta n_i/d\lambda$. Установлено, что зависимость $\Delta n_i(T)$ практически линейна для всех фаз.

Исследованы спектральные и температурные зависимости комбинируемых пьезооптических коэффициентов π_{im}^0 . При переходе НФ-СФ обнаружены значительные аномалии π_{im}^0 , которые обусловлены изменением индуцированного двулучепреломления за счет возникновения спонтанной поляризации, а также значительным влиянием одноосного механического напряжения на солитонную структуру кристалла при температуре T = 403 К.

Проведено разделение вкладов от спонтанной поляризации (электрооптического эффекта), спонтанной деформации (упругооптического эффекта) и параметра порядка в спонтанные изме-

нения пьезоконстанты π_{32}^0 и показано, что наблюдаемые изменения вкладов от параметра по-

рядка $\delta \pi_{32}^0$ в НФ и СФ могут быть объяснены при учете их пропорциональности 4-й и 6-й степени параметра порядка.

СПИСОК ЛИТЕРАТУРЫ

- 1. Романюк Н.А., Мыцык Б.Г., Варикаш В.М. // ФТТ. 1983. Т. 25. № 6. С. 1670.
- 2. *Стадник В.И., Романюк Н.А., Брезвин Р.С. //* Оптика и спектроскопия. 1995. Т. 79. № 6. С. 714.
- Stadnyk V.Y., Romanjuk M.O. // Phys. Status Solidi. A. 1996. V. 158. P. 289.

- 4. *Kucharczyk D., Paciorek W., Kalicinska-Karut //* Phase Transitions. 1982. V. 2. P. 277.
- Milia F., Kind R., Slak J. // Phys. Rev. B. 1983. V. 27. № 11. P. 6662.
- 6. Gesi K., Iizumi M. // J. Phys. Soc. Jpn. 1984. V. 53. № 12. P. 4271.
- 7. *Itoh K., Kataoka T., Natsunaga H.* // J. Phys. Soc. Jpn. 1980. V. 48. № 3. P. 1039.
- 8. *Gesi K., Iizumi M.* // J. Phys. Soc. Jpn. 1979. V. 46. № 2. P. 697.
- 9. Катков В.Ф., Моисеенко В.Н., Пастухов В.И., Флерова С.А. // ФТТ. 1982. Т. 24. № 9. С. 296.
- Горелик В.С., Агальцов А.М., Пастухов В.И., Моисеенко В.Н. // Изв. АН СРСР. Сер. физ. 1987. Т. 51. № 12. С. 2179.
- 11. Aubry S. // J. Phys. 1983. V. 44. № 2. P. 147.