— НАНОМАТЕРИАЛЫ =

УДК 621.387.535.215: 537.534.73

О СТРУКТУРЕ МОНОСЛОЕВ ПОРФИРИН-ФУЛЛЕРЕНОВОЙ ДИАДЫ НА ПОВЕРХНОСТИ ВОДНОЙ СУБФАЗЫ И ТВЕРДОЙ ПОДЛОЖКЕ

© 2011 г. Ю. А. Дьякова, Е. И. Суворова, А. С. Орехов, А. С. Алексеев*, В. В. Клечковская, Е. Ю. Терещенко, Н. В. Ткаченко**, Х. Лемметюйнен**, Л. А. Фейгин, М. В. Ковальчук

> Институт кристаллографии РАН, Москва, Россия E_mail: klechvv@ns.crys.ras.ru * Институт общей физики РАН, Москва, Россия ** Технологический университет, Тампере, Финляндия Поступила в редакцию 10.08.2010 г.

Монослои порфирин-фуллереновой диады ТВDба формировали на поверхности водной субфазы и затем переносили на твердые подложки методом Ленгмюра–Шеффера. Моделировали структуру отдельной молекулы и их упаковку в монослое согласно значению площади, приходящейся на молекулу в сформированном монослое, рассчитанной из анализа π -А-изотермы. Выбрана элементарная ячейка для предложенной упаковки молекул (a = 1.54, b = 1.50, c = 1.75 нм, $\alpha = 80.0^{\circ}$, $\beta = 90.0^{\circ}$, $\gamma = 90.0^{\circ}$), рассчитаны координаты атомов. Сравнение межплоскостных расстояний и интенсивностей дифракционных пиков на экспериментальных и расчетных (с учетом предложенной элементарной ячейки) дифракционных картинах свидетельствует о том, что в монослое формируется пластинчатая текстура, а кристаллическая структура доменов соответствует выбранной модели.

ВВЕДЕНИЕ

Реакции переноса электрона являются характерными для биологических, химических и физических систем [1]. Например, в реакционных центрах фотосинтеза живых организмов преобразование энергии солнечного света в электрохимический потенциал происходит посредством фотоиндуцированного многоступенчатого переноса электрона между донорами и акцепторами. Понимание и контроль реакций переноса электрона представляют собой одну из наиболее активных областей исследований в естественных науках. Изучение принципов функционирования природной системы фотосинтеза и фотофизических процессов позволяет создавать искусственные фотореакционные структуры, которые в дальнейшем найдут применение в различных областях нанотехнологии. Для создания структур с переносом электрона исключительно важным является получение заданной функциональности системы путем выстраивания органических молекул, наночастиц и других компонентов в определенном порядке, который поддерживает электронный перенос и способен единичный акт переноса электрона довести до однонаправленного смещения зарядов на макроскопическое расстояние. Данное положение подтверждается примерами быстрого развития технологии создания органических солнечных батарей и фотовольтаических устройств, в которых полупроводниковые и органические наноструктуры, встроенные в прибор, превращают

солнечную энергию в энергию электрическую [2–4]. Еще одной важной областью применения, основанной на возникновении фотоотклика молекулярных наноструктур на перенос электрона, являются химические и биохимические сенсоры, в случае которых перенос электрона либо индуцируется, либо изменяется в результате химической реакции [5, 6].

Для создания фотовольтаических устройств и биохимических сенсоров на основе тонкопленочных структур, приготовленных с помощью техники Ленгмюра-Блоджет или Ленгмюра-Шеффера [7], необходимыми условиями являются: способность выбранных молекул к формированию упорядоченных наноструктур (монослоев) и осуществление условий переноса электрона и электронного транспорта в самоорганизованной структуре. В этой связи чрезвычайно важным является не только определение оптических и фотоэлектрических характеристик создаваемых систем [8-10], но и изучение структурной организации донорно-акцепторных молекул (диад) в монослоях. Такой подход позволит устанавливать зависимость фотоэлектрических характеристик создаваемых объектов от организации реальных функциональных молекул в монослоях, вносить коррективы в процессы химического синтеза донорно-акцепторных молекул и таким образом добиваться повышения эффективности преобразования световой энергии в электрическую.

Рис. 1. Модель молекулы TBD6а и ее ориентация на поверхности субфазы.

В научной литературе значительное внимание уделяется изучению порфирин-фуллереновых диад, способных к эффективному фотоиндуцированному разделению зарядов [11, 12].

В настоящей работе исследовались монослои порфирин-фуллереновой диады ТВD6а, химический синтез, а также оптические и фотоэлектрические свойства которых были изучены ранее [13, 14]. На основании полученных экспериментальных данных авторы этих работ пришли к заключению, что в монослое, перенесенном на твердую подложку, молекулы диады имели преимущественную ориентацию по отношению к поверхности подложки. В настоящей работе проведено исследование структуры сформированного на поверхности водной субфазы монослоя молекул порфирин-фуллереновой диады ТВD6а и монослоя, перенесенного на твердую подложку с помощью техники Ленгмюра-Шеффера, методами компьютерного моделирования и электронной дифракции.

МАТЕРИАЛЫ И МЕТОДЫ

Приготовление пленок. Структурная формула порфирин-фуллереновой диады ТВDба [13, 14], у которой гидрофильные группы присоединены к фуллереновой части, приведена на рис. 1. Для формирования монослоев и измерения изотерм сжатия, а также для переноса монослоев на твердые подложки использовалась установка KSV LB Mini trough (KSV Instruments). В качестве субфазы использовалась Milli-Q-вода, содержавшая фосфатный буфер (0.7 мМ Na₂HPO₄ и 0.1 мМ NaH₂PO₄) с pH \approx 7. Температура субфазы поддер-

живалась постоянной ($18.0 \pm 0.5^{\circ}$ С). Поверхностное давление после нанесения 40 мкл раствора ТВD6а в хлороформе с концентрацией 0.36 мМ на поверхность субфазы составило 0.01 мН/м. Монослой сжимали при помощи подвижных барьеров со скоростью сжатия 450 мм²/мин. Сформированный монослой ТВD6а переносили при поверхностном давлении 12 мН/м на твердые подложки (медные сеточки, покрытые углеродной пленкой) для дальнейшего исследования структуры.

Электронная микроскопия и электронография. Методы электронной микроскопии и электронографии использовались для исследования как исходного порошка ТВD6а, так и монослоя, перенесенного на тонкую углеродную пленку, расположенную на медной сетке.

Изображения частиц исходного порошка и соответствующие картины электронной дифракции получали в просвечивающем электронном микроскопе FEI Теспаі G2 30 при ускоряющем напряжении 300 кВ. Изображения и картины электронной дифракции в микроскопе получали с помощью Gatan 794 ССД-камеры. Кроме того, электронограммы от монослоев, перенесенных на медные сетки, покрытые тонкой пленкой углерода, получали в электронографе ЭМР 102 (ускоряющее напряжение 75 кВ, диаметр электронного зонда 0.1-0.3 мм), использование которого позволяет проводить сканирование по площади образца (до 1 см²), азимутальное вращение на 360° и наклон образца на угол до 70° относительно пучка. Для записи электронограмм использовали изобразительные пластинки Image Plate, которые обрабатывались в установке Imaging Plate Technology DITABIS 5 и калибровались по кольцевым электронограммам от порошковых стандартов MgO и NH₄Cl. Анализ электронограмм проводился с помощью программы DigitalMicrograph 3.11.0 (Gatan, Inc., Pleasanton, CA).

Моделирование картин электронной дифракции и структуры осажденного на подложку монослоя. Для подтверждения модели структуры монослоя и выбора элементарной ячейки был проведен анализ экспериментальных электронограмм путем сравнения с теоретическими картинами электронной дифракции, рассчитанными для кристаллической ячейки, с помощью программы JEMS [15]. В программе при моделировании порошковых (кольцевых) электронограмм использовалась формула Дебая [16], в которой интенсивность рассеяния задается формулой (1) в случае произвольной ориентации малых кристаллитов, содержащих N атомов:

$$I_N(s) = \sum_{i=1}^N \sum_{j=1}^N f_i(s) f_j(s) \frac{\sin(2\pi s d_{ij})}{2\pi s d_{ij}},$$
 (1)

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Рис. 2. Изотерма сжатия монослоя TBD6a и касательная к ней, проведенная через точку, соответствующую давлению переноса.

где $s = \frac{\sin \theta}{\lambda}$, $f_i(s)$ – комплексный атомный фактор рассеяния *i* -го атома и d_{ij} – расстояние между *i* -м и *j* -м атомами.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Раствор исследовавшихся молекул TBD6а в хлороформе распределялся по поверхности жидкой субфазы. На рис. 2 представлена изотерма зависимости площади на молекулу от поверхностного давления. Площадь, занимаемая одной молекулой в сформированном монослое, определенная с помощью касательной к изотерме сжатия в соот-

Рис. 3. Модель укладки молекул ТВD6а в монослое на поверхности жидкой субфазы, выбор элементарной ячейки.

ветствующей точке, составила 225 Å²/мол. Оценка площади, приходящейся на отдельную молекулу ТВD6а для случая ее ориентировки фуллереновой частью к жидкости (рис. 1), составила приблизительно 240 Å²/мол, что превышает площадь, занимаемую молекулой в сформированном монослое, установленную экспериментально по изотерме сжатия. Таким образом, можно предположить, что молекулы в конденсированном монослое имеют не случайные контакты, а пакуются более плотно.

Рис. 4. Электронномикроскопическое изображение частиц исходного порошка TBD6a (а) и соответствующая картина электронной дифрации (б).

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Рис. 5. Картина кольцевой электронной дифракции с профилем, рассчитанной от произвольно ориентированных кристаллитов ТВD6а размером в одну ячейку.

Было выполнено моделирование возможных укладок молекул в монослое на поверхности субфазы и выбрана модель (рис. 3), для которой площадь, занимаемая молекулой, совпадала с площадью, приходящейся на молекулу, определенной по изотерме сжатия (225 Å²/мол).

Исходя из моделей отдельной молекулы ТВD6а и их плотной укладки, была построена модель монослоя ТВD6а на поверхности жидкой субфазы. Для нее выбрана триклинная элементарная ячейка (рис. 3) с параметрами: a = 1.54, b = 1.50, c = 1.75 нм, $\alpha = 80.0^{\circ}, \beta = 90.0^{\circ}, \gamma = 90.0^{\circ}$ (пр. гр. *P*1) и определены координаты атомов, входящих в элементарную ячейку (таблица).

Электронно-микроскопическое изображение частиц исходного порошка ТВD6а и соответствующая картина электронной дифракции представлены на рис. 4. Порошок состоит из частиц субмикронных размеров (рис. 4а). На основе представленной выше структурной модели в соответствии с данными л-А-изотермы удалось идентифицировать три четких, хотя и сильно уширенных диффузных кольца на экспериментальной электронограмме (рис. 4б), и два кольца с очень слабой интенсивностью, и определить рефлексы, вносящие существенный вклад благодаря большому структурному фактору в интенсивность этих колец.

Сравнение теоретической электронограммы, рассчитанной от произвольным образом ориентированных кристаллитов ТВD6а размером в одну ячейку (рис. 5), с экспериментальной (рис. 4) дало хорошее согласование.

Экспериментальные электронограммы (рис. 6), полученные от слоя, перенесенного на углеродную подложку, содержат как кольца, так и точечные рефлексы, что означает присутствие в осажденной пленке двумерных и трехмерных структур, т.е. монослоя и нанокристаллов TBD6a.

Таким образом, в моделировании картин электронной дифракции необходимо было учесть структуру монослоя с нанокристаллами. Монослой строился путем присоединения элементарных ячеек друг к другу в направлениях *х* и *у*. После чего от такой модели рассчитывалась кольцевая электронограмма и сравнивались положения и

Рис. 6. Электронограммы от разных участков осажденного методом Ленгмюра–Шеффера на углеродную пленку монослоя TBD6a.

Координаты атомов в элементарной ячейке монослоя TBD6a (a = 1.54 нм, b = 1.50 нм, c = 1.75 нм, $\alpha = 80.0^{\circ}$, $\beta = 90.0^{\circ}$, $\gamma = 90.0^{\circ}$)

Атом	x	у	Z.	Атом	x	У	Z.	Атом	x	У	Z.
С	0.693	0.533	0.244	C	0.631	0.845	0.887	C	0.384	0.074	0.239
С	0.610	0.512	0.247	С	0.546	0.976	0.844	С	0.466	0.093	0.237
С	0.549	0.597	0.244	С	0.374	0.973	0.793	С	0.526	0.009	0.238
С	0.681	0.634	0.242	С	0.685	0.765	0.864	С	0.620	0.001	0.231
С	0.774	0.919	0.238	C	0.651	0.683	0.865	C	0.046	0.063	0.240
С	0.814	0.825	0.234	C	0.740	0.765	0.800	C	0.093	0.050	0.166
С	0.741	0.777	0.237	C	0.686	0.633	0.801	C	0.187	0.001	0.165
С	0.683	0.921	0.240	C	0.320	0.760	0.754	C	0.188	0.003	0.315
С	0.748	0.684	0.245	C	0.511	0.631	0.848	C	0.095	0.052	0.314
С	0.394	0.973	0.242	C	0.741	0.684	0.760	C	0.043	0.079	0.093
С	0.296	0.689	0.247	C	0.545	0.581	0.784	C	0.046	0.081	0.386
С	0.259	0.777	0.243	C	0.372	0.679	0.781	C	0.656	0.087	0.232
С	0.329	0.830	0.242	C	0.633	0.926	0.846	C	0.669	0.138	0.160
С	0.389	0.682	0.245	C	0.321	0.760	0.674	C	0.699	0.227	0.169
С	0.455	0.602	0.233	С	0.320	0.922	0.752	С	0.714	0.264	0.247
С	0.322	0.922	0.240	С	0.322	0.922	0.672	С	0.703	0.212	0.320
С	0.839	0.630	0.241	С	0.633	0.582	0.760	С	0.668	0.125	0.309
С	0.881	0.607	0.165	С	0.688	0.927	0.782	С	0.102	0.144	0.424
С	0.974	0.556	0.162	С	0.407	0.629	0.717	С	0.099	0.141	0.052
С	0.979	0.553	0.311	С	0.377	0.973	0.632	С	0.686	0.186	0.450
С	0.886	0.603	0.314	С	0.323	0.841	0.633	С	0.700	0.210	0.532
С	0.369	0.394	0.330	С	0.378	0.841	0.568	С	0.681	0.157	0.654
С	0.344	0.349	0.258	С	0.375	0.679	0.651	С	0.650	0.100	0.713
С	0.360	0.384	0.178	С	0.493	0.580	0.719	С	0.670	0.130	0.791
С	0.398	0.469	0.166	С	0.549	0.580	0.654	С	0.515	0.025	0.778
С	0.422	0.514	0.237	С	0.412	0.922	0.568	С	0.428	0.024	0.753
С	0.409	0.477	0.315	С	0.499	0.923	0.544	С	0.570	0.025	0.714
С	0.965	0.558	0.023	С	0.553	0.843	0.521	С	0.430	0.024	0.672
С	0.231	0.977	0.240	С	0.552	0.974	0.584	С	0.518	0.024	0.648
С	0.039	0.992	0.429	С	0.742	0.846	0.758	С	0.950	0.132	0.108
С	0.037	0.989	0.055	С	0.517	0.630	0.588	С	0.128	0.444	0.370
С	0.975	0.464	0.425	С	0.657	0.976	0.716	С	0.039	0.587	0.424
С	0.379	0.425	0.459	С	0.691	0.926	0.652	Ν	0.591	0.669	0.243
С	0.367	0.400	0.543	С	0.431	0.679	0.586	Ν	0.669	0.836	0.242
С	0.387	0.446	0.667	С	0.635	0.582	0.680	Ν	0.482	0.936	0.244
С	0.411	0.505	0.728	С	0.690	0.632	0.640	Ν	0.407	0.771	0.244
С	0.396	0.469	0.806	С	0.432	0.760	0.545	0	0.354	0.366	0.404
С	0.405	0.924	0.859	С	0.519	0.761	0.521	0	0.396	0.466	0.591
С	0.371	0.842	0.859	С	0.639	0.925	0.586	0	0.358	0.379	0.685
С	0.424	0.762	0.886	С	0.639	0.844	0.547	0	0.367	0.402	0.823
С	0.510	0.763	0.912	C	0.572	0.681	0.548	0	0.419	0.518	0.864
С	0.544	0.844	0.911	С	0.744	0.846	0.678	0	0.713	0.244	0.393
С	0.491	0.925	0.885	С	0.743	0.683	0.680	0	0.669	0.144	0.579
С	0.319	0.841	0.794	С	0.658	0.682	0.574	0	0.716	0.220	0.673
С	0.424	0.680	0.847	С	0.744	0.764	0.639	0	0.705	0.194	0.806
С	0.564	0.682	0.888	С	0.692	0.763	0.573	0	0.648	0.085	0.853

Рис. 7. Модель молекулы в расчетах дифракционных картин (а), домен ТВD6а размером 5 × 5 × 1 элементарных ячеек, вид в перспективе (б) и вдоль направления [010] (в).

Рис. 8. Сравнение экспериментальной электронограммы и рассчитанной для модели монослоя $5 \times 5 \times 1$ элементарных ячеек (а) и сравнение с суммарным профилем электронограммы от смешанного слоя кристаллических доменов размером $3 \times 3 \times 1$ с кристаллитами размером $2 \times 2 \times 3$ элементарных ячеек (б).

интенсивности рефлексов с экспериментальными.

На рис. 7 представлены: используемая для расчетов модель молекулы TBD6a (рис. 7а) с указанием атомов углерода, кислорода и азота (атомы водорода не учитывали); кристаллический домен размером 5×5 элементарных ячеек — вид в перспективе и вдоль направления [010] (рис. 76, 7в). На рис. 8а показано сравнение профиля интенсивности (от областей размером $5 \times 5 \times 1$ ячеек) с экспериментальной электронограммой от осажденного монослоя TBD6a (полосками на про-

филе отмечена теоретическая порошкограмма). Видно хорошее согласие дифракционной картины от предложенной модели структуры монослоя с экспериментальной. Заметим, что на электронограмме присутствуют только рефлексы *hk*0, т.е. домены в пленке ориентированы плоскостью *XY*0 параллельно подложке.

Моделирование показало, что электронограмма, рассчитанная от чистого монослоя, должна иметь рефлекс 120 (рис. 8а), в то время как на экспериментальных электронограммах такое кольцо отсутствует. Предположим, что при формирова-

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

нии монослоя или при переносе методом Ленгмюра—Шеффера может происходить в некоторых местах образование 3D-кристаллитов исследуемой диады и рассчитаем дифракционную картину от кристалликов, состоящих из $2 \times 2 \times 3$ и $3 \times 3 \times 1$ ячеек. На профилях от этих моделей можно видеть, что в случае "объемного" кристаллика рефлекс 120 сглаживается до уровня фона (рис. 8б).

Таким образом, методами компьютерного моделирования структуры изолированных молекул порфирин-фуллереновой диады ТВD6а, их взаимной укладки в соответствии с данными π-Аизотермы была предложена модель структуры монослоя на поверхности субфазы. Эта модель получила свое подтверждение при сравнении экспериментальных электронограмм, полученных от монослоев, перенесенных на твердую подложку методом Ленгмюра-Шеффера, с модельными дифракционными картинами, в основу которых при расчетах она была заложена. Присутствие на электронограммах рефлексов только с индексами *hk*0 свидетельствует об ориентации молекул перпендикулярно подложке длинной осью, т.е. о том, что в перенесенной пленке TBD6a формируется пластинчатая текстура с осью с, перпендикулярной подложке. Анализ дифракционных картин показал, что при переносе в некоторых областях пленки возможно формирование трехмерных кристалликов.

Работа выполнена при финансовой поддержке ФАНИ (Госконтракт № 02 527 12 0004).

СПИСОК ЛИТЕРАТУРЫ

- 1. Barbara P.F., Meyer T.J., Ratner M.A. // J. Phys. Chem. 1996. V. 100. P. 13148.
- 2. Grätzel M. // Nature. 2001. V. 414. P. 338.
- Hagfeldt A., Grätzel M. // Acc. Chem. Res. 2000. V. 33. P. 269.
- 4. *Peumans P., Yakimov A., Forrest S.* // J. Appl. Phys. 2003. V. 93. № 7. P. 3693.
- Huanga X.-J., Choi Y.-K. // Sens. Actuators. B. 2007. V. 122. P. 659.
- 6. *Borisov S.M., Wolfbeis O.S.* // Chem. Rev. 2008. V. 108. № 2. P. 423.
- 7. *Roberts G. Ed.* Langmuir-Blodgett Films. New York: Plenum Press, 1990.
- Tkachenko N.V., Vuorimaa E., Kesti T. et al. // J. Phys. Chem. B. 2000. V. 104. P. 6371.
- 9. Alekseev A.S., Tkachenko N.V., Tauber A.Y. et al. // Chem. Phys. 2002. V. 275. № 1–3. P. 243.
- Алексеев А.С., Домнин И.Н., Ткаченко Н.В. и др. // ЖФХ. 2004. Т. 78. № 3. С. 543.
- Imahori H., Sakata Y. // Eur. J. Org. Chem. 1999. 1. P. 2445.
- Gust D., Moore T.A., Moore A.L. // Acc. Chem. Rev. 2001. V. 34. P. 40.
- Efimov A., Vainiotalo P., Tkachenko N.V., Lemmetyinen H. // J. Porphyrins Phthalocyanines. 2003. V. 7. P. 610.
- 14. Vuorinen T., Kaunisto K., Tkachenko N.V. et al. // Langmuir. 2005. V. 21. P. 5383.
- 15. *Stadelmann P.* JEMS, 2010 http://cimewww.epfl.ch/ people/stadelmann/jemsWebSite/jems.html
- Guinier A. X-Ray Diffraction In Crystals, Imperfect Crystals And Amorphous Bodies. New York: Dover Publications, 1994. 378 p.