УДК 548.73;547.7

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ В ГЕТЕРОЦИКЛИЧЕСКОМ ДИЗАЙНЕ. 17. КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРЫ "МОЛЕКУЛЫ МЕСЯЦА" И ЕЕ ГИДРИРОВАННОЙ ФОРМЫ

© 2011 г. В. Б. Рыбаков, Р. С. Алексеев, А. В. Куркин, М. А. Юровская

Московский государственный университет им. М.В. Ломоносова E-mail: Rybakov@struct.chem.msu.ru Поступила в редакцию 14.05.2010 г.

Методом монокристальной дифракции исследованы структуры тригидробромида 2,8-диметил-5-[2-(6-метилпиридин-3-ил)этил]-2,3,4,4*a*,5,9*b*-гексагидро-1*H*-пиридо[4,3-*b*]индола (I) (*a* = 12.865(4), *b* = 14.281(3), *c* = 13.553(3) Å, *Z* = 4, пр. гр. *Pna2*₁) и дигидробромида 2,8-диметил-5-[2-(6-метилпиридин-3-ил)этил]-2,3,4,5-тетрагидро-1*H*-пиридо[4,3-*b*]индола (II) (*a* = 13.9704(14), *b* = 14.4447(15), *c* = 10.7819(12) Å, β = 107.58(1)°, *Z* = 4, пр. гр. *P2*₁/*c*). Структуры решены прямыми методами и уточнены полноматричным МНК в анизотропном приближении соответственно до 0.0603 и 0.0446. Установлено, что все анионы Вг образуют водородные связи с протонированными атомами азота. Приводятся методы синтеза и физико-химические параметры исследованных соединений.

ВВЕДЕНИЕ

Ряд соединений, принадлежащих к классу укарболинов (пиридо[4,3-*b*]индолов), проявляют широкий спектр биологической активности. Известно, что производные 1,2,3,4-тетрагидро- и 1,2,3,4,4*a*,9*b*-гексагидро-у-карболинов обладают антигистаминными свойствами ("Диазолин", "Димебон"), являются нейролептиками и оказывают угнетающее влияние на ЦНС ("Карбидин", "Стобадин") и др.

"Димебон" (2,8-диметил-5-[2-(6-метилпиридин-3-ил)этил]-2,3,4,5-тетрагидро-1*Н*-пиридо [4,3-b]индол) – оригинальный отечественный препарат, который используется в медицинской практике в качестве противоаллергического средства свыше 20 лет [1, 2]. Кроме того, "Димебон" является кардиопротектором (оказывает умеренное действие на коронарное кровообращение и незначительно влияет на сократимость миокарда) [3], обладает антиаритмическим [4] и антиэметическим (противорвотным) эффектами, а также оказывает защитное действие при экспериментальном лучевом поражении кожи [5], влияет на процесс передачи нервного импульса за счет ингибирования моноаминоксидазы-В и участвует в метаболизме катехоламинов в ЦНС [6]. Позднее было обнаружено, что "Димебон" слабо ингибирует бутирилхолин-эстеразу ($IC_{50} = 7.9 \text{ мкM}$) и ацетилхолин-эстеразу ($IC_{50} = 42$ мкМ), слабо блокирует *NMDA*-подтип глутаматных рецепторов ($ED_{50} = 42 \text{ мг/кг}$), активируя при низких концентрациях АМРА-подтип [7-10]. Совсем недавно было обнаружено, что "Димебон" проявляет нейропротекторный эффект при лечении болезни Альцгеймера [7, 11] и болезни Хантингтона, способствуя смягчению проявляющихся симптомов и предотвращая дальнейшее прогрессирующее развитие заболевания, улучшая при этом память и когнитивную функцию. В связи этим он был назван "Молекулой месяца" за август 2007 г. по версии издательства Prous Science [12], однако кристаллическая структура препарата до сих пор не была известна.

В настоящее время "Димебон" прошел клинические испытания двойным слепым методом с использованием плацебо, длившиеся в течение 52 недель, и зарекомендовал себя как безопасный препарат, улучшающий по многим параметрам состояние больных, страдающих болезнью Альцгеймера средней тяжести [13].

Широко известно, что производные *транс*гексагидро-у-карболинов обладают выраженным ноотропным и седативным действием на ЦНС [14], поэтому можно ожидать, что *транс*-гидрированное производное "Димебона" проявит физиологическое действие, сходное с действием самого "Димебона".

Настоящая работа посвящена исследованию кристаллической структуры лекарственного препарата "Димебон" (II), относящегося к классу 1,2,3,4-тетрагидро-ү-карболинов, и его *транс*гидрированного производного I (схема 1).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез оригинального отечественного лекарственного препарата "Димебон" (II) был осуществлен по схеме 2 пиридилэтилированием 2,8диметил-1,2,3,4-тетрагидро-ү-карболина (III) 5-винил-2-метилпиридином в диметилсульфоксиде (ДМСО) в присутствии щелочного агента (суперосновная среда), что способствует значительному увеличению выхода целевого соединения II [15]. Активация процесса с участием ДМСО основана на том, что образующийся в этом случае анион менее сольватирован, что приводит к увеличению его реакционной способности [16] (схема 2).

Стереоселективное восстановление "Димебона" в виде дигидрохлорида боргидридом натрия с последующей обработкой кислотой приводит к *транс*-гексагидро-у-карболиновому производному в качестве единственного продукта (схема 3). Наблюдаемая стереоспецифичность восстановления согласуется с механизмом, включающим внутримолекулярный перенос гидрид-иона, который протекает через шестичленное переходное состояние [17].

РЫБАКОВ и др.

Соединение	<i>t</i> _{пл} , °С	ЯМР ¹ Н*
Ι	234	8.38 (д, 2.0 Hz, 1H, 21-CH); 7.46 (д.д, 7.9 Hz и 2.0 Hz, 1H, 17-CH); 7.09 (д, 7.8 Hz, 1H, 11-CH); 6.96 (д, 7.9 Hz, 1H, 18-CH); 6.89 (с, 1H, 9-CH); 6.54 (д, 7.8 Hz, 1H, 12-CH); 3.44 (д.д, 10.4 Hz и 2.5 Hz, 1H, 6-CH ₂); 3.35 и 3.24 (2кв, 7.4 Hz, 2H, 14-CH ₂); 3.02 (д, 11.9 Hz, 1H, 4-CH ₂); 2.86 (м, 1H, 7-CH); 2.82 (т, 7.4 Hz, 2H, 15-CH ₂); 2.65 (т.д, 12.6 Hz и 3.3 Hz, 1H, 2-CH); 2.55 (с, 3H, 33-CH ₃); 2.43 (с, 3H, 31-CH ₃); 2.30 (с, 3H, 32-CH ₃); 2.18 (т, 10.4 Hz, 1H, 6-CH ₂); 2.10 (т.д, 11.9 Hz и 2.9 Hz, 1H, 4-CH ₂); 1.94 (д.д, 11.9 Hz и 2.9 Hz, 1H, 3-CH ₂) 1.71 (д.д.д, 12.6 Hz и 11.9 Hz и 4.0 Hz, 1H, 3-CH ₂)
II	271	8.25 (д, 2.2 Hz, 1H, 21-CH); 7.23 (с, 1H, 9-CH); 7.16 (д, 8.3 Hz, 1H, 11-CH); 7.09 (д.д., 7.9 Hz и 2.2 Hz, 1H, 17-CH); 7.00 (м, 2H, 18-CH и 12-CH); 4.20 (т, 7.1 Hz, 2H, 14-CH ₂); 3.67 (с, 2H, 6-CH ₂); 2.98 (т, 7.1 Hz, 2H, 15-CH ₂); 2.73 (т, 5.7 Hz, 2H, 3-CH ₂); 2.55-2.53 (2с + м, 8H, 32-CH ₃ и 33-CH ₃ и 4-CH ₂); 2.47 (с, 3H, 31-CH ₃)

Таблица 1.	Физико	-химические	характе	ристики	полученных	соединений
------------	--------	-------------	---------	---------	------------	------------

* Спектры ЯМР ¹Н зарегистрированы для соединений I и II в виде оснований в CDCl₃.

Таблица 2. Кристаллографические характеристики исследованных соединений и отдельные параметры уточнения структур I и II

Химическая формула	$C_{21}H_{30}Br_3N_3$	$C_{21}H_{27}Br_2N_3$	
M	564.21	481.26	
Сингония, пр. гр., <i>Z</i>	Ромбическая, <i>Pna2</i> ₁ , 4	Моноклинная, <i>Р</i> 2 ₁ / <i>с</i> , 4	
a, Å	12.865(4)	13.9704(14)	
b, Å	14.281(3)	14.4447(15)	
<i>c</i> , Å	13.553(3)	10.7819(12)	
β, град	90.000	107.580(10)	
<i>V</i> , Å ³	2490.1(11)	2074.2(4)	
<i>D</i> _x , г/см ³	1.505	1.541	
θ, град	4.50-69.90	3.32-74.91	
Пределы, h,k, l	$0 \le h \le 15, \ \le k \le 17, \ -16 \le l \le 16$	$0 \le h \le 17, 0 \le k \le 18, -13 \le l \le 12$	
Собрано рефлексов	4672	4443	
Рефлексов в МНК	4672	4269	
Уточняемых параметров	247	247	
S	0.921	1.035	
R_1/wR_2 для $I > 2\sigma(I)$	0.0603/0.1188	0.0446/0.1092	
R_1/wR_2 для всех рефлексов	0.1139/0.1432	0.0534/0.1149	
Параметр Флэка, Х	-0.03(4)		
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, \Im \text{\AA}^{-3}$	0.623/-0.556	1.121/-0.537	

Тригидробромид 2,8-диметил-5-[2-(6-метилпиридин-3-ил)этил]-2,3,4,4a,5,9b-гексагидро-1H-пиридо[4,3-b]индола (I): к суспензии 0.39 г (1.0 ммоль) "Димебона" дигидрохлорида в 4 мл ТГФ при интенсивном перемешивании добавляют небольшими порциями 0.14 г (4.1 ммоль) боргидрида натрия и выдерживают 90 мин при 25°С. Затем реакционную смесь выливают в 40 мл воды и оставляют до полного прекращения выделения пузырьков водорода. Остаток декантируют, растворяют в 7 мл диоксана, осторожно прибавляют к полученному раствору 7 мл концентрированной HCl и кипятят полученную смесь 2 ч. По охлаждении реакционную смесь подщелачивают до рН 10-11 и экстрагируют дихлорметаном (4×10 мл); экстракт сушат Na₂SO₄ и после упаривания получают 0.32 г (95%) прозрачного вязкого вещества желтоватого цвета. Его растворяют в метаноле, прибавляют по каплям конц. НВг до сильнокислой реакции среды и полученную смесь упаривают с толуолом до постоянной массы. После перекристаллизации полученного остатка из абсолютного этанола получают 0.56 г тригидробромида **I**.

Физико-химические характеристики полученных соединений I и II приведены в табл. 1.

Для монокристаллов соединений I и II экспериментальные интенсивности дифракционных

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Таблица 3. Отдельные межатомные расстояния *d* (Å) в структуре **I Таблица 5.** Отдельные межатомные расстояния *d* (Å) в структуре **II**

в структуре II	[×.	,
Связь	d	Связь	d
N1 C12	1 200(4)	N1 C2	1 200(4)

Связь	Связь d		d	
N1-C13	1.478(10)	N1-C2	1.505(9)	
N1-C14	1.507(9)	C2–C7	1.494(10)	
C2–C3	1.496(11)	C3–C4	1.531(11)	
C4-N5	1.520(10)	N5-C6	1.490(12)	
N5-C31	1.533(10)	C6-C7	1.483(11)	
C7–C8	1.500(12)	C8–C9	1.365(12)	
C8-C13	1.377(12)	C9-C10	1.469(15)	
C10-C11	1.349(14)	C10-C32	1.553(12)	
C11-C12	1.399(12)	C12-C13	1.363(11)	
C14-C15	1.494(12)	C15-C16	1.470(11)	
C16-C17	1.344(12)	C16-C21	1.403(12)	
C17-C18	1.322(12)	C18-C19	1.330(14)	
C19-N20	1.368(14)	C19–C33	1.550(14)	
N20-C21	1.345(12)			

Связь	d	Связь	d
N1-C13	1.388(4)	N1-C2	1.390(4)
N1-C14	1.456(4)	C2–C7	1.357(4)
C2–C3	1.481(4)	C3–C4	1.524(5)
C4-N5	1.494(5)	N5-C6	1.497(4)
N5-C31	1.502(4)	N5-H5	0.92(5)
C6-C7	1.493(4)	C7–C8	1.432(4)
C8–C9	1.398(4)	C8–C13	1.414(4)
C9-C10	1.388(5)	C10-C11	1.396(5)
C10-C32	1.507(5)	C11-C12	1.385(5)
C12-C13	1.385(5)	C14–C15	1.511(5)
C15-C16	1.506(4)	C16-C21	1.374(5)
C16-C17	1.383(5)	C17–C18	1.376(5)
C18-C19	1.384(5)	C19-N20	1.341(5)
C19-C33	1.488(5)	N20-C21	1.344(4)
N20-H20	0.84(6)		

Таблица 4. Отдельные валентные углы ω (град) в структуре I

Таблица 6.	Отдельные валентные углы ω (град) в струк-
туре II	

Угол	ω	Угол	ω	Угол	ω	Угол	ω
$C_{13}-N_{1}-C_{2}$	102 8(6)	C13-N1-C14	118 2(6)	C13-N1-C2	108.1(2)	C13-N1-C14	126.3(3)
$C_{2} = N_{1} = C_{14}$	102.0(0) 117.2(6)	C7 - C2 - C3	113.2(0) 113.5(7)	C2-N1-C14	125.6(3)	C7-C2-N1	109.7(3)
C_{7} C_{2} N_{1}	104.0(6)	C_{1}^{2} C_{2}^{2} C_{3}^{2} C_{1}^{3} C_{2}^{3} N_{1}^{1}	118 5(6)	С7-С2-С3	125.2(3)	N1-C2-C3	125.1(3)
$C^2 - C^2 - C^4$	104.0(0) 105.6(7)	$C_3 - C_2 - I_{11}$	110.3(0) 114.0(6)	C2-C3-C4	108.8(3)	N5-C4-C3	110.8(3)
C2-C3-C4	103.0(7)	N3-C4-C3	114.9(0)	C4-N5-C6	112.2(3)	C4-N5-C31	110.7(3)
C6-N5-C4	113.1(7)	C6-N5-C31	112.7(8)	C6-N5-C31	109.7(3)	C4-N5-H5	105(3)
C4-N5-C31	109.7(7)	C7-C6-N5	107.9(7)	C6-N5-H5	108(3)	C31-N5-H5	111(3)
C6-C7-C2	112.2(7)	C6–C7–C8	121.7(8)	C7-C6-N5	109.3(3)	C2–C7–C8	107.8(3)
C2-C7-C8	101.1(7)	C9-C8-C13	119.9(10)	C2-C7-C6	122.7(3)	C8-C7-C6	129.5(3)
C9-C8-C7	130.2(9)	C13–C8–C7	109.2(8)	C9-C8-C13	119.3(3)	C9–C8–C7	134.2(3)
C8-C9-C10	116.8(9)	C11-C10-C9	121.2(9)	C13-C8-C7	106.5(3)	C10-C9-C8	119.3(3)
C11-C10-C32	121.1(11)	C9-C10-C32	117.6(10)	C9-C10-C11	119.4(3)	C9-C10-C32	120.6(3)
C10-C11-C12	120.2(10)	C13–C12–C11	117.9(9)	C11-C10-C32	120.0(3)	C12-C11-C10	123.1(3)
C12-C13-C8	123.8(9)	C12-C13-N1	126.8(8)	C13-C12-C11	116.7(3)	C12-C13-N1	130.1(3)
C8-C13-N1	109.4(8)	C15-C14-N1	115.8(6)	C12-C13-C8	122.0(3)	N1-C13-C8	107.9(3)
C16-C15-C14	109.4(7)	C17 - C16 - C21	115 3(9)	N1-C14-C15	113.1(3)	C16-C15-C14	112.5(3)
C17 C16 C15	107.4(7) 102.1(10)	C_{11} C_{10} C_{21}	121 5(0)	C21-C16-C17	116.8(3)	C21-C16-C15	120.9(3)
	123.1(10)	C21-C16-C15	121.5(9)	C17-C16-C15	122.3(3)	C18-C17-C16	121.7(3)
C18–C17–C16	123.3(10)	C17–C18–C19	121.8(10)	C17-C18-C19	119.7(3)	N20-C19-C18	117.4(3)
C18-C19-N20	117.9(10)	C18-C19-C33	125.3(13)	N20-C19-C33	118.3(4)	C18-C19-C33	124.3(4)
N20-C19-C33	116.8(12)	C21-N20-C19	120.6(11)	C19-N20-C21	123.7(3)	C19-N20-H20	119(4)
N20-C21-C16	120.9(10)			C21-N20-H20	118(4)	N20-C21-C16	120.6(3)

КРИСТАЛЛОГРАФИЯ том 56 № 1 2011

Рис. 1. Геометрическое расположение атомов и их нумерация в молекуле соединения I. Эллипсоиды смещений атомов представлены с уровнем вероятности 50%. Атомы водорода представлены кругами произвольного радиуса.

отражений получены при комнатной температуре на дифрактометре CAD-4 [18] (λCuK_{α} , графитовый монохроматор, ω-сканирование). Параметры элементарных ячеек определяли и уточняли по 25 рефлексам в интервале углов в 30.07°-32.84° для І и 35.17°-37.90° для ІІ. Первичная обработка проводилась по комплексу программ WinGX [19]. Из-за высоких линейных коэффициентов поглощения в экспериментальный набор дифракционных данных вводилась поправка по Норту-Филипсу-Метьюзу [20]. Все последующие расчеты выполнялись в рамках комплекса программ SHELX97 [21]. Основные кристаллографические характеристики исследованных соединений и отдельные параметры уточнения структур приведены в табл. 2. Отдельные межатомные расстояния и валентные углы система-

Рис. 2. Геометрическое расположение атомов и их нумерация в молекуле соединения **II**. Эллипсоиды смещений атомов представлены с уровнем вероятности 50%. Атомы водорода представлены кругами произвольного радиуса.

тизированы в табл. 3–6. Для удобства сравнения геометрических параметров молекул I и II одноименные атомы имеют единую нумерацию. Пространственное расположение атомов в молекулах и их нумерация показаны на рис. 1 и 2, полученных с использованием графического пакета программ ORTEP-3 [22].

Кристаллографическая информация по исследованным соединениям депонирована в Кембриджской базе структурных данных (депоненты № 721100, 736428).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В исследованных соединениях протоны от HBr локализуются: в I – на атомах азота N1, N5 и N20, в то время как во II – только на атомах азота

D	Н	A	<i>D</i> –H, Å	H… <i>A</i> , Å	<i>D</i> … <i>A</i> , Å	Угол <i>D</i> —Н··· <i>A</i> , град	Симметрическая операция для А
N1	H1	Br2	0.91	2.22	3.121(6)	169.7	x - 1/2; -y + 1/2; z - 1
N5	H5	Br1	0.91	2.70	3.378(9)	132.4	-x + 1; -y + 1; z - 1/2
N5	H5	Br3	0.91	3.12	3.770(7)	130.0	x - 1/2; -y + 3/2; z - 1
N20	H20	Br3	0.86	2.48	3.339(11)	174.9	x - 1; y - 1; z - 1

Таблица 7. Параметры водородных связей в структуре I

Примечание. *D* – атом-донор, Н – атом водорода, А – атом-акцептор.

D	Н	A	<i>D</i> –H, Å	H… <i>A</i> , Å	<i>D</i> … <i>A</i> , Å	Угол <i>D</i> —Н… <i>А</i> , град	Симметрическая операция для А
N5	H5	Br1	0.92(5)	2.38(5)	3.293(3)	175(4)	-x + 1; -y; -z + 1
N20	H20	Br2	0.84(6)	2.35(6)	3.178(3)	170(5)	x + 1; y; z

Таблица 8. Параметры водородных связей в структуре П

Примечание. *D* – атом-донор, Н – атом водорода, А – атом-акцептор.

N5 и N20. При этом в соединении II сохраняется двойная связь C2–C7(табл. 3–6). При сопоставлении структур I и II отмечен интересный факт – метилпиридиновые циклы C16-C21 развернуты практически на 180° – рис. 1 и рис. 2, что, впрочем, не отражается на химических свойствах молекул. В обеих кристаллических структурах все NH-группы образуют системы водородных связей с анионами Br. Данные по геометрическим параметрам водородных связей приведены в табл. 7, 8 для соединений I и II соответственно.

СПИСОК ЛИТЕРАТУРЫ

- Матвеева И.А. // Фармакология и токсикология. 1983. Т. 46. С. 27.
- 2. Шадурский К.С., Данусевич И.К., Кост А.Н., Виноградова Е.В. // Патент СССР. SU1138164. 1985.
- Галенко-Ярошевский П.А., Чеканова О.А., Скибитский В.В. и др. // Бюл. эксперим. биологии и медицины. 1996. Т. 121. С. 506.
- Галенко-Ярошевский П.А., Шейх-Заде Ю.Р., Чеканова О.А. и др. // Бюл. эксперим. биологии и медицины. 1995. Т. 119. С. 375.
- 5. Кост А.Н., Юровская М.А., Трофимов Ф.А. // Химия гетероцикл. соединений. 1973. С. 291.
- 6. Шадурская С.К., Хоменко А.И., Переверзев В.А., Балаклеевкий А.И. // Бюл. эксперим. биологии и медицины. 1986. Т. 101. С. 700.

- Bachurin S., Bukatina E., Lermontova N. et al. // Ann. N.Y. Acad. Sci. 2001. V. 939.P. 425.
- Лермонтова Н.Н., Редкозубов А.Е., Шевцова Е.Ф. и др. // Бюл. эксп. биологии и медицины. 2001. Т. 5. С. 1079.
- Григорьев В.В., Драный О.А., Бачурин С.О. // Бюл. эксперим. биологии и медицины. 2003. Т. 36. С. 474.
- Bachurin S.O., Shevtsova E.P., Kireeva E.G. et al. // Ann. N.Y. Acad. Sci. 2003. V. 993. P. 334.
- Zefirov N.S., Afanasiev A.Z., Afanasieva S.V. et al. // Pat. USA 6187785, 2001.
- 12. http://www.prous.com/molecules/default.asp?ID=162
- Doody R.S., Gavrilova S.I., Sano M. et al. // Lancet. 2008. V. 372. P. 207.
- 14. Salimov R.M., Kovalev G.I., Preobrazhenskaya M.N. et al. // Pat. USA 2008./0262019. 2008.
- Кост А.Н., Юровская М.А., Мельникова Т.В., Потанина О.И. // Химия гетероцикл. соединений. 1973. С. 207.
- 16. Parker A.J. // Quart. Rev. 1962. V. 16. P. 163.
- 17. Berger J.G., Teller S.R., Adams C.D., Guggenberger L.J. // Tetrahedron Lett. 1975.P. 1807.
- 18. Enraf-Nonius CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- 19. Farrugia L.J. // J. Appl. Cryst. 1999. V. 32. P. 837.
- 20. North A.C.T., Philips D.C., Mathews F.S. // Acta Cryst. 1968. V. 24. P. 351.
- 21. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 22. Farrugia L.J. // J. Appl. Cryst. 1997. V. 30. P. 565.