РОСТ КРИСТАЛЛОВ

УДК 546.161

К 70-летию Института кристаллографии РАН

ЗАВИСИМОСТИ ПЛОТНОСТИ МОНОКРИСТАЛЛОВ $M_{1-x}R_xF_{2+x}$ И $R_{1-y}M_yF_{3-y}$ (M = Ca, Sr, Ba, Cd, Pb; R – РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ) ОТ СОСТАВА

© 2013 г. Н. И. Сорокин, Е. А. Кривандина, З. И. Жмурова

Институт кристаллографии РАН, Москва E-mail: sorokin@ns.crys.ras.ru Поступила в редакцию 10.04.2013 г.

Проведены измерения плотности монокристаллов нестехиометрических фаз $Ba_{1-x}La_xF_{2+x}$ ($0 \le x \le 0.5$), $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$ ($0 \le x \le 0.2$) со структурой типа флюорита (CaF_2) и $R_{1-y}Sr_yF_{3-y}$ (R = Pr, Nd; $0 \le y \le 0.15$) со структурой типа тисонита (LaF_3). Выращивание монокристаллов проводилось из расплава методом Бриджмена. Концентрационные зависимости измеренной плотности монокристаллов имеют линейный характер. Подтверждены междоузельная и вакансионная модели образования дефектов во флюоритовых и тисонитовых фазах соответственно. Для практической реализации контроля состава монокристаллов суперионных проводников $M_{1-x}R_xF_{2+x}$ и $R_{1-y}M_yF_{3-y}$ построены градуировочные графики рентгеновской плотности в системах $MF_2 - RF_3$ (M = Ca, Sr, Ba, Cd, Pb; R = La - Lu, Y).

DOI: 10.7868/S0023476113060222

ВВЕДЕНИЕ

Типичными продуктами высокотемпературных химических взаимодействий в системах $MF_2 - RF_3$ (*M* – щелочноземельные элементы Ca, Sr, Ba и Cd, Pb; R – редкоземельные элементы (РЗЭ)) являются гетеровалентные твердые растворы $M_{1-x}R_xF_{2+x}$ со структурой типа флюорита (CaF₂) и $R_{1-y}M_y$ F_{3-y} со структурой типа тисонита (LaF₃) [1]. Области гомогенности нестехиометрических фаз $M_{1-x}R_xF_{2+x}$ и $R_{1-y}M_yF_{3-y}$ содержат десятки мольных процентов второго компонента. Монокристаллы нестехиометрических фторидов широко применяются в научных исследованиях как модельные кристаллические среды с частично разупорядоченным атомным строением, а также активно изучаются для использования в технических устройствах в качестве суперионных проводников (твердых электролитов), оптических материалов (ИК- и УФ-область спектра), люминофоров и сцинтилляторов [2]. Преимуществом монокристаллов многокомпонентных фторидов перед их однокомпонентными прототипами является возможность изменения свойств первых при вариации состава, что позволяет конструировать материалы с характеристиками, максимально отвечающими требованиям научных и технических решений, использующих такие материалы.

В общем случае при кристаллизации из многокомпонентных расплавов состав твердой фазы отличается от состава исходного расплава. В результате при выращивании твердых растворов (ТР) происходит неоднородное распределение примесного компонента по длине и поперечному сечению кристаллической були. Применяя многокомпонентные кристаллы, необходимо как можно точнее контролировать их состав. Однако используемый в [3] метод изучения распределения второго компонента по длине кристаллической були – метод рентгенофлуоресцентного анализа – достаточно трудоемок и требует разрушения исследуемых кристаллических образцов. Поэтому для проведения исследований ионной проводимости и других физических свойств крупных монокристаллических образцов представляет интерес прежде всего использование неразрушающих методов контроля состава многокомпонентных монокристаллов. В [4, 5] использовался метод измерения плотности кристаллов для уточнения положения максимума на кривой плавкости тисонитовой фазы La_{1-v}Sr_vF_{3-v}.

Цель настоящей работы – исследование зависимости плотности монокристаллов флюоритовых $Ba_{1-x}La_xF_{2+x}$, $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$ и тисонитовых $R_{1-y}Sr_yF_{3-y}$ (R = Pr, Nd) фаз от состава, рассмотрение возможности применения денситометрического метода для определения содержания примесных компонентов в монокристаллах $M_{1-x}R_xF_{2+x}$ (M = Ca, Sr, Ba, Cd, Pb; $R - P3\Theta$) и $R_{1-y}M_yF_{3-y}$ ($R - P3\Theta$; M = Ca, Sr, Ba).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследования выбраны твердые растворы: $Ba_{1-x}La_xF_{2+x}$, $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$

Рис. 1. Зависимость плотности ρ монокристаллов $Ba_{1-x}La_xF_{2+x}$ от содержания LaF_3 (1) и $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$ от содержания LaF_3 и LuF_3 (2): $\bigcirc -\rho_{\mathsf{эксп}}$ (настоящая работа), $\square -\rho_{\mathsf{эксп}}$ [6], $+-\rho_{\mathsf{рент}}$.

со структурой типа CaF₂ и $R_{1-y}Sr_yF_{3-y}$ (R = Pr, Nd) со структурой типа LaF₃, являющиеся одними из лучших суперионных проводников по ионам фтора. Согласно фазовым диаграммам двойных систем BaF₂-LaF₃, SrF₂- RF_3 (R = Pr, Nd) [1], флюоритовые и тисонитовые фазы имеют широкие области гомогенности, которые составляют 50 мол. % LaF₃для Ba_{1-x}La_xF_{2+x} и 19 мол. % SrF₂ для $Pr_{1-y}Sr_yF_{3-y}$, Nd_{1-y}Sr_yF_{3-y}. В тройной системе SrF₂-LaF₃-LuF₃ реализуется непрерывный ряд TP Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}.

Очистка реактивов BaF₂, SrF₂ марки "ос. ч." и LaF₃, PrF₃, NdF₃ и LuF₃ марки "х. ч." от примеси кислорода осуществлялась предварительным фторированием расплава этих соединений. Монокристаллы Ba_{1-x}La_xF_{2+x} ($0 \le x \le 0.5$), Sr_{0.8}La_{0.2-x}Lu_xF_{2.2} ($0 \le x \le 0.2$), Pr_{1-y}Sr_yF_{3-y} ($0 \le y \le 0.15$) и Nd_{1-y}Sr_yF_{3-y} ($0 \le y \le 0.15$) выращивались в графитовых тиглях из расплава методом Бриджмена в двухзонной печи с графитовыми нагревателями сопротивления (установка КРФ-1, конструкция и изготовление СКБ ИК РАН). Осевой температурный градиент между горячей и холодной зонами печи составлял ~30 град/см, а радиальный градиент в ростовой зоне не превышал 5 град/см.

Для подавления характерного для фторидных веществ пирогидролиза выращивание монокристаллов проводилось в гелиевой атмосфере при добавлении в шихту раскислителя PbF₂ марки "ос. ч." в количестве 5 мас. %. Скорость опускания тигля составляла 3–10 мм/ч. Выращенные монокристаллические були представляли собой

КРИСТАЛЛОГРАФИЯ том 58 № 6 2013

цилиндры диаметром 10 и длиной 30—50 мм. Потери массы шихты при кристаллизации составили 1—4%. Ориентация оси роста кристаллических буль относительно кристаллографических осей не определялась.

Большинство составов, взятых для выращивания кристаллов, плавятся инконгруэнтно (исключение составляют составы, отвечающие максимумам кривых плавления на фазовых диаграммах), что проявляется в неоднородном распределении P3Э по длине кристаллической були. Образцы для денситометрических измерений вырезались из средней части буль, поскольку, как показано в [3], их состав практически отвечает составу шихты. Однофазность флюоритовых и тисонитовых ТР подтверждена рентгенографически (дифрактометр Filips PW1710, Cu K_{α} -излучение, внутренний стандарт Si).

Состав кристаллов $Ba_{1-x}La_xF_{2+x}$ и $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$ отвечает составу шихты. Образцы представляли собой кубы $5 \times 5 \times 5$ мм ($Ba_{1-x}La_xF_{2+x}$) или диски толщиной 2–3 и диаметром 10 мм ($Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$, $R_{1-y}Sr_yF_{3-y}$). Количественный состав кристаллов $Pr_{1-y}Sr_yF_{3-y}$ и Nd_{1-y}Sr_yF_{3-y} уточнялся рентгенофлуоресцентным методом по интенсивностям линий редкоземельных (Pr, Nd) и щелочноземельного (Sr) элементов (спектрометр Karl Zeiss VRA-33).

Плотность монокристаллов измерялась методом гидростатического взвешивания на приборе Mettler ME-33360 с точностью $\pm 10^{-2}$ г/см³.

ЗАВИСИМОСТИ ПЛОТНОСТИ НЕСТЕХИОМЕТРИЧЕСКИХ ФАЗ СО СТРУКТУРОЙ ТИПА СаF₂ ОТ СОСТАВА

Зависимости плотности $\rho(x)$ монокристаллов Ва_{1-x}La_xF_{2+x} ($0 \le x \le 0.5$) и Sr_{0.8}La_{0.2-x}Lu_xF_{2.2} ($0 \le x \le 0.2$) представлены на рис. 1. Полученные данные для кристаллов состава Sr_{0.8}R_{0.2}F_{2.2} (R == La, Lu) хорошо согласуются с результатами [6]. По мере увеличения содержания LaF₃ в Ba_{1-x}La_xF_{2+x} экспериментальная плотность образцов увеличивается от 4.89 г/см³ для чистого кристалла BaF₂ до 5.57 г/см³ для нестехиометрического кристалла Ba_{0.5}La_{0.5}F_{2.5} и имеет линейный характер:

$$\rho = 4.89 + 1.36x, \, r/cM^3. \tag{1}$$

Приведенные в [7, 8] зависимости измеренной плотности флюоритовых ТР M_{1-x} La_xF_{2+x} (M = Sr, Ba) и Ca_{1-x}Y_xF_{2+x} от состава также описываются линейным законом.

Для монокристаллов $Ba_{1-x}La_xF_{2+x}$ экспериментальные значения плотности совпадают с рентгеновской плотностью, рассчитанной по формуле

$$\rho_{\rm peht} = 4M/(a^3N_{\rm A}), \qquad (2)$$

Рис. 2. Зависимость плотности ρ монокристаллов $\Pr_{1-y}Sr_yF_{3-y}(1)$ и $Nd_{1-y}Sr_yF_{3-y}(2)$ от содержания $SrF_2: \bigcirc -\rho_{3KC\Pi}$ (настоящая работа), $\Box - \rho_{3KC\Pi}$ [10], $\triangle - \rho_{3KC\Pi}$ [11], $+ -\rho_{pehT}$.

где M — молярная масса, a — параметр решетки, N_A — постоянная Авогадро. Значения параметров решетки для $Ba_{1-x}La_xF_{2+x}$ взяты из [9]. Расчет молярной массы предусматривал схему изоморфного замещения в структуре TP с компенсацией разницы в зарядах катионов за счет образования междоузельных ионов фтора

$$M^{2+} \to R^{3+} + F_i^-, \qquad (3)$$

где F_i^- – междоузельный ион фтора.

По мере увеличения содержания LuF₃ в кристаллах Sr_{0.8}La_{0.2 – x}Lu_xF_{2.2} ($0 \le x \le 0.2$) измеренная плотность образцов увеличивается от 4.69 г/см³ для состава Sr_{0.8}La_{0.2}F_{2.2} до 5.18 г/см³ для состава Sr_{0.8}Lu_{0.2}F_{2.2}. Эта зависимость также имеет линейный вид и может быть аппроксимирована уравнением

$$\rho = 4.69 + 2.47x, \, \Gamma/\text{cm}^3. \tag{4}$$

Рентгеновская плотность $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$ рассчитывалась по формуле (2), где параметры элементарной ячейки *а* измерялись экспериментально. В табл. 1 приведены параметры элементарной ячейки кристаллов $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$ (кубическая сингония, пр. гр. $Fm\overline{3}m$), которые удовлетворяют правилу аддитивности:

$$a = 5.833 - 0.501x,\tag{5}$$

где концентрация x выражается в мольных долях LuF₃, размерность a приведена в ангстремах.

Совпадение экспериментальных и расчетных величин ρ (табл. 1) подтверждает междоузельную модель образования дефектов в анионной подрешетке и в случае трехкомпонентных кристаллов $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$. Однако при определении и сравнении значений плотности монокристаллов,

Таблица 1. Параметр решетки и плотность кристаллов $Sr_{0.8}La_{0.2-x}Lu_xF_{2.2}$

Твердый	a Å	Плотность, г/см ³		
раствор х	<i>и</i> , А _{Рэксп}		$ ho_{peht}$	
0	5.8314(5)	4.69	4.68	
0.03	5.8195(4)	4.77	4.74	
0.06	5.8021(6)	4.82	4.82	
0.1	5.7831(3)	4.92	4.92	
0.14	5.7633(4)	5.02	5.02	
0.17	5.7466(4)	5.12	5.10	
0.20	5.7327(3)	5.18	5.18	

полученных разными технологиями (применение PbF_2 и политетрафторэтилена в качестве раскислителей), следует учитывать, что PbF_2 частично входит в выращиваемые кристаллы [5] и может влиять на величину плотности.

ЗАВИСИМОСТИ ПЛОТНОСТИ НЕСТЕХИОМЕТРИЧЕСКИХ ФАЗ СО СТРУКТУРОЙ ТИПА LaF₃ от состава

Зависимости плотности $\rho(y)$ монокристаллов R_{1-y} Sr_yF_{3-y} (R =Pr, Nd; $0 \le y \le 0.15$) показаны на рис. 2, на котором для сравнения приведены данные [10, 11] по ρ для этих тисонитовых фаз. Видно, что по мере увеличения содержания SrF₂ в R_{1-y} Sr_yF_{3-y} плотность образцов увеличивается от 6.28 и 6.50 г/см³ для тисонитовых матриц PrF₃ и NdF₃ соответственно. Эти зависимости экспериментальной плотности имеют линейный характер и могут быть представлены уравнениями

$$\rho = 6.28 - 2.58y, \, r/cM^3 \, (Pr_{1-v}Sr_vF_{3-v}), \qquad (6)$$

$$\rho = 6.50 - 2.85y, \, r/cM^3 \, (Nd_{1-y}Sr_yF_{3-y}).$$
(7)

Приведенные в [5, 10] зависимости измеренной плотности тисонитовых ТР R_{1-y} Sr_yF_{3-y} (R == La–Nd) от состава также описываются линейным законом. Экспериментальные значения плотности совпадают с рентгеновской плотностью, рассчитанной по формуле

$$\rho_{\rm peht} = 6M/(0.86a^2cN_{\rm A}),\tag{8}$$

где a, c — параметры решетки. Значения параметров решетки для R_{1-y} Sr_yF_{3-y} взяты из [12]. Расчет молярной массы предусматривал схему изоморфного замещения в структуре TP с компенсацией разницы в зарядах катионов за счет образования анионных вакансий:

$$R^{3+} + F^- \to M^{2+} + V_F, \qquad (9)$$

где $V_{\rm F}$ – вакансия фтора.

КРИСТАЛЛОГРАФИЯ том 58 № 6 2013

Рис. 3. Зависимости рентгеновской плотности ρ флюоритовых $Sr_{1-x}R_xF_{2+x}$ ($R - P3\Theta$) (а) и тисонитовых фаз $Gd_{1-y}M_yF_{3-y}$ (M = Ca, Sr, Ba) (б) от состава.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для флюоритовых $Ba_{1-x}La_xF_{2+x}$ ($0 \le x \le 0.5$), Sr_{0.8}La_{0.2-x}Lu_xF_{2.2} ($0 \le x \le 0.2$) и тисонитовых R_{1-y} Sr_yF_{3-y} (R = Pr, Nd, $0 \le y \le 0.15$) ТР зависимости плотности от состава удовлетворяют линейным уравнениям. Из приведенных результатов следует, что экспериментальные значения совпадают с рентгеновской плотностью, рассчитанной по междоузельной и вакансионной моделям об-

КРИСТАЛЛОГРАФИЯ

том 58

Nº 6

2013

разования анионных дефектов для нестехиометрических кристаллов со структурами типа CaF_2 и LaF_3 соответственно.

Этот факт позволяет использовать измерения плотности в качестве перспективного неразрушающего монокристаллические образцы (с возможностью их дальнейшего использования в научных и прикладных исследованиях) экспресс-метода определения содержания примесного компонен-

Твердые растворы	$\operatorname{Ca}_{1-x} R_x \operatorname{F}_{2+x}$	$\operatorname{Sr}_{1-x} R_x \operatorname{F}_{2+x}$	$Ba_{1-x}R_xF_{2+x}$	$\operatorname{Cd}_{1-x}R_xF_{2+x}$	$Pb_{1-x}R_xF_{2+x}$
ρ_0 при $x = 0$, г/см ³	3.18	4.28	4.89	6.38	7.76
R	Значения коэффициента k_{ρ} при разном <i>R</i> , г/см ³				
La	3.43	2.05	1.36	-0.52	-1.57
Ce	3.61	2.22	1.53	-0.13	-1.37
Pr	3.75	2.36	1.62	-0.05	-1.15
Nd	3.96	2.59	1.79	0.18	-0.86
Sm	4.41	2.95	2.31	0.77	-0.37
Gd	4.79	3.40	2.64	1.23	0.07
Tb	4.93	3.56	2.82	1.47	0.32
Dy	5.14	3.78	2.96	1.66	0.53
Но	5.30	3.94	3.12	1.80	0.82
Er	5.47	4.16	3.26	1.97	1.04
Tm	5.52	4.28	3.37	2.06	1.20
Yb	5.88	4.49	3.63	2.32	1.31
Lu	6.02	4.63		2.52	1.41
Y	2.35	1.33	0.84		-1.74

Таблица 2. Рассчитанные значения коэффициента k_{ρ} в $\rho_{\text{pehr}}(x) = \rho_0 + k_{\rho}x$ для твердых растворов $M_{1-x}R_xF_{2+x}$ со структурой типа флюорита

Твердые растворы	$\operatorname{La}_{1-y}M_{y}\operatorname{F}_{3-y}$	$\operatorname{Ce}_{1-y}M_{y}\operatorname{F}_{3-y}$	$\Pr_{1-y}M_{y}F_{3-y}$		
ρ_0 при $y = 0$, r/cm^3	5.94	6.13	6.28		
М	Значения коэффициента k _р при разном <i>M</i> , г/см ³				
Ca	-2.71	-2.96	-3.12		
Sr	-2.12	-2.43	-2.67		
Ba	-1.55	-1.96	-2.39		
Твердые растворы	$\mathrm{Nd}_{1-y}M_{y}\mathrm{F}_{3-y}$	$\mathrm{Sm}_{1-y}M_{y}\mathrm{F}_{3-y}$	$Gd_{1-y}M_yF_{3-y}$		
ρ_0 при <i>y</i> = 0, г/см ³	6.51	6.90	7.34		
М	Значения коэффициента k _р при разном <i>M</i> , г/см ³				
Ca	-3.38	-3.55	-4.50		
Sr	-3.22	-3.36	-3.84		
Ba	-2.75	-2.52	-3.45		
Твердые растворы	$Tb_{1-y}M_yF_{3-y}$	$\mathrm{Dy}_{1-y}M_{y}\mathrm{F}_{3-y}$	$Ho_{1-y}M_yF_{3-y}$		
ρ_0 при $y = 0$, r/cm^3	7.50	7.71	7.93		
М	Значения коэффициента k _p при разном <i>M</i> , г/см ³				
Ca	-4.54	-4.90	-5.01		
Sr	-3.85	-4.09	-4.47		
Ba	-3.49				

Таблица 3. Рассчитанные значения коэффициента k_{ρ} в $\rho_{\text{рент}}(y) = \rho_0 + k_{\rho} y$ для твердых растворов $R_{1-y} M_y F_{3-y}$ со структурой типа тисонита

та в нестехиометрических фторидных фазах. Следует подчеркнуть, что денситометрический метод можно применять для определения количественного состава таких ТР, в которых параметры решетки меняются лишь в незначительной степени и по этой причине их нельзя использовать для нахождения концентрации RF_3 . Например, в ТР $Sr_{1-x}Nd_xF_{2+x}$ имеется концентрационная зависимость плотности, но не наблюдается концентрационной зависимости параметра решетки [9].

Для практической реализации контроля состава нестехиометрических монокристаллов в исследованиях ионной проводимости и других свойств построены градуировочные графики рентгеновской плотности 70 флюоритовых фаз $M_{1-x}R_xF_{2+x}$ (формула (2)) и 45 тисонитовых фаз $R_{1-y}M_yF_{3-y}$ (формула (8)) разного качественного (M, R) состава в бинарных системах MF_2-RF_3 (M = Ca, Sr, Ba, Cd, Pb; R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y). Значения параметров решетки для $M_{1-x}R_xF_{2+x}$ и $R_{1-y}M_yF_{3-y}$ взяты из [9, 12]. На рис. З в качестве примера показаны графики рентгеновской плотности $\rho_{\text{рент}}(x)$ для семейства ТР Sr_{1-x} R_x F_{2+x} (R = La-Lu, Y) и $\rho_{\text{рент}}(y)$ для семейства ТР Gd_{1-y} M_y F_{3-y} (M = Ca, Sr, Ba). Зависимости плотности флюоритовых $M_{1-x}R_x$ F_{2+x} и тисонитовых $R_{1-y}M_y$ F_{3-y} ТР от состава описываются линейным законом

$$\rho_{\rm peht}(x) = \rho_0 + k_\rho x \tag{10}$$

или

$$\rho_{\rm peht}(y) = \rho_0 + k_{\rho} y, \qquad (11)$$

где ρ_0 – плотность MF_2 или RF_3 , k_ρ – линейный коэффициент изменения плотности. Для флюоритовых фаз $M_{1-x}R_xF_{2+x}$ рассчитанные коэффициенты k_ρ приведены в табл. 2, а для тисонитовых $R_{1-y}M_yF_{3-y}$ – в табл. 3.

Используя эти данные, для соответствующего ТР можно построить зависимость ρ от его состава, а определив плотность образца выращенного монокристалла, по линейной зависимости ρ от xили y определить состав этого образца.

Таким образом, поскольку в научных и технологических исследованиях монокристаллов $M_{1-x}R_xF_{2+x}$ типа CaF₂ и $R_{1-y}M_yF_{3-y}$ типа LaF₃ часто требуется экспресс-метод контроля их состава, то денситометрический метод удовлетворяет этому требованию, не приводит к разрушению монокристаллических образцов и позволяет использовать их в дальнейших исследованиях.

Авторы выражают благодарность Б.П. Соболеву за обсуждение работы и полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sobolev B.P.* The Rare Earth Trifluorides. Part 1. Institute of Crystallography, Moscow and Institut d'Estudis Catalans, Barcelona, Spain. 2000. 520 p.
- 2. *Sobolev B.P.* The Rare Earth Trifluorides. Part 2. Institute of Crystallography, Moscow and Institut d'Estudis Catalans, Barcelona, Spain. 2001. 460 p.
- 3. *Кривандина Е.А., Жмурова З.И., Лямина О.И. и др. //* Кристаллография. 1996. Т. 41. № 5. С. 958.
- Кривандина Е.А., Жмурова З.И., Глушкова Т.М. и др. // Кристаллография. 2003. Т. 48. № 5. С. 940.
- 5. Кривандина Е.А., Жмурова З.И., Бережкова Г.В. и др. // Кристаллография. 1995. Т. 40. № 4. С. 741.
- Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н. и др. // Кристаллография. 2012. Т. 57. № 1. С. 151.
- 7. Croatto U., Bruno M. // Gazz. Chim. Ital. 1948. V. 78. P. 95.
- Short J., Roy R. // J. Less-Common Met. 1963. V. 67. № 9. P. 1860.
- 9. Федоров П.П., Соболев Б.П. // Кристаллография. 1992. Т. 37. Вып. 5. С. 1210.
- 10. Кривандина Е.А., Жмурова З.И., Соболев Б.П. и др. // Кристаллография. 2006. Т. 51. № 5. С. 954.
- 11. Ананьева Г.В., Баранова Е.Н., Заржицкая М.Н. и др. // Неорган. материалы. 1980. Т. 16. № 1. С. 68.
- 12. Соболев Б.П., Александров В.Б., Федоров П.П. и др. // Кристаллография. 1976. Т. 21. Вып. 1. С. 96.

КРИСТАЛЛОГРАФИЯ том 58 № 6 2013