ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 548.55

К 70-летию Института кристаллографии РАН

КОЛИЧЕСТВО ОПТИЧЕСКИХ ОСЕЙ В ТРИКЛИННЫХ ПОГЛОЩАЮЩИХ КРИСТАЛЛАХ

© 2013 г. Т. Г. Головина, А. Ф. Константинова, К. К. Константинов, Е. А. Евдищенко

Институт кристаллографии РАН, Москва E-mail: tatgolovina@mail.ru Поступила в редакцию 20.05.2013

Рассмотрены возможные варианты количества оптических осей в поглощающих триклинных кристаллах. В большинстве таких кристаллов имеются четыре круговые оптические оси, но возможно существование кристаллов с одной изотропной оптической осью, двумя или тремя круговыми оптическими осями, или одновременно с одной изотропной и одной или двумя круговыми оптическими осями. Показано существенное отличие частных случаев от общего случая кристалла с четырьмя круговыми осями. Представлен вид комплексного тензора диэлектрической проницаемости в зависимости от числа оптических осей. Рассчитаны эллиптичности собственных волн для таких кристаллов, а также эллиптичности прошедшего света при нормальном падении на кристалл волны правой или левой круговой поляризации.

DOI: 10.7868/S002347611306012X

ВВЕДЕНИЕ

Основы теории распространения света в поглощающих ромбических кристаллах заложены Фойгтом, Друде и Борном [1-3]. В этих работах использовалась система главных осей. Для ромбического кристалла такое упрощение всегда применимо, но оно может быть неприменимым для моноклинных и триклинных кристаллов. Федоровым построена общая теория распространения света в поглощающих кристаллах с помощью ковариантного метода [4]. В этом методе не используется какая-либо система координатных осей, поэтому он применим к любым кристаллам, даже в случае, когда комплексный тензор диэлектрической проницаемости не приводится к диагональному виду. В [4-7] рассмотрены шесть различных вариантов числа оптических осей в поглощающих моноклинных и триклинных кристаллах при разном виде тензора диэлектрической проницаемости. В [8, 9] подробно изучены эти варианты для поглощающих моноклинных кристаллов. Также проводилось сравнение между моноклинными и ромбическими кристаллами.

В предлагаемой работе рассматриваются триклинные поглощающие кристаллы с разным количеством оптических осей. Показаны соотношения, которым должны удовлетворять компоненты тензора диэлектрической проницаемости для частных случаев таких кристаллов, а также изменение количества оптических осей при отклонении от этих соотношений. Проведено сравнение поглощающих триклинных кристаллов с поглощающими моноклинными и ромбическими кристаллами. При расчетах использован матричный метод Берремана [10–12].

ОПТИЧЕСКИЕ ОСИ В ПОГЛОЩАЮЩИХ ТРИКЛИННЫХ КРИСТАЛЛАХ

Для общего случая поглощающих триклинных кристаллов (классы 1, $\overline{1}$) обратный тензор диэлектрической проницаемости ε^{-1} записывается в виде [4]:

$$\varepsilon^{-1} = a + b(\mathbf{c}' \cdot \mathbf{c}'' + \mathbf{c}'' \cdot \mathbf{c}'),$$

$$\mathbf{c}' = \{c_1', c_2', c_3'\}, \quad \mathbf{c}'' = \{c_1'', c_2'', c_3''\},$$
(1)

 $\mathbf{c'} \cdot \mathbf{c''}$ — диада, $\mathbf{c'}$, $\mathbf{c''}$ — комплексные векторы. Вектор \mathbf{c} , т. е. любой из векторов $\mathbf{c'}$ и $\mathbf{c''}$, является линейным, если [$\mathbf{cc^*}$] = 0; круговым, если $\mathbf{c^2}$ = 0; эллиптическим, если [$\mathbf{cc^*}$] $\neq 0$ и $\mathbf{c^2} \neq 0$ [4]. Направляющие векторы \mathbf{n}_{\pm} оптических осей находятся из соотношения

c

$$\mathbf{n}_{\pm} = \frac{\sqrt{(\mathbf{c}^*)^2 \mathbf{c}} + \sqrt{\mathbf{c}^2 \mathbf{c}^* \pm i[\mathbf{c} \, \mathbf{c}^*]}}{|\mathbf{c}|^2 + |\mathbf{c}^2|}.$$
 (2)

Запишем систему уравнений (1) в виде

$$\varepsilon^{-1} = \begin{pmatrix} a + 2bc_1'c_1'' & b(c_1'c_2'' + c_2'c_1'') & b(c_1'c_3'' + c_3'c_1'') \\ b(c_1'c_2'' + c_2'c_1'') & a + 2bc_2'c_2'' & b(c_2'c_3'' + c_3'c_2'') \\ b(c_1'c_3'' + c_3'c_1'') & b(c_2'c_3'' + c_3'c_2'') & a + 2bc_3'c_3'' \end{pmatrix}.$$
 (3)

Получается шесть уравнений. Еще два уравнения добавляются при задании типа векторов **c**' и **c**" (линейный, круговой или эллиптический).

КОЛИЧЕСТВО ОПТИЧЕСКИХ ОСЕЙ

Рис. 1. Зависимости эллиптичностей собственных волн $k_{1,2}(\phi, \phi)$ для разных случаев поглощающих триклинных кристаллов.

Обычно вдоль оптической оси в триклинном поглощающем кристалле распространяются не две, а одна волна, поляризованная по кругу. Такие оси названы Фойгтом [13] поворотными. Также их называют или сингулярными, или винтовыми, или круговыми осями. В дальнейшем изложении будем называть такие оптические оси круговыми.

В большинстве случаев векторы **c**', **c**" эллиптические, и каждому из них соответствуют две круговые оптические оси. Если есть круговой вектор, то ему отвечает только одна круговая оптическая ось, а линейному вектору соответствует изотропная оптическая ось. Вдоль изотропной оси возможно распространение волны любой поляризации.

На рис. 1 показаны зависимости эллиптичностей собственных волн $k_{1,2}$ от угла падения ϕ и угла поворота ϕ кристалла вокруг оси Z для всех возможных случаев поглощающих триклинных кристаллов, на рис. 2 — эллиптичности прошедшего света для правой и левой круговой поляризации падающего света при нормальном падении в зависимости от угла θ поворота плоскости YOZ вокруг оси X. Для наглядности в каждом из рассматриваемых случаев ориентация кристалла в лабораторной системе координат выбрана отдельно.

Рассмотрим более подробно каждый случай.

Одна изотропная оптическая ось: $\mathbf{c}'^2 = 0$, $\mathbf{c}'\mathbf{c}'' = 0$, $\mathbf{c}''^2 = 1$, $\mathbf{c}'' = \mathbf{c}''*$ ($\mathbf{c}' - \kappa$ руговой вектор, $\mathbf{c}'' - линей-$ ный, $\mathbf{c}'\mathbf{c}'' = 0$) [4]. Комплексный тензор диэлек-

КРИСТАЛЛОГРАФИЯ том 58 № 6 2013

трической проницаемости не приводится к диагональному виду. Пусть изотропная оптическая ось направлена вдоль оси Z (этого всегда можно добиться поворотом системы координат). Тогда линейный вектор должен иметь вид $\mathbf{c}'' = \{0,0,1\}$, а круговой — $\mathbf{c}' = \{c'_1, c'_2, 0\}$. В таком случае круговая оптическая ось, отвечающая круговому вектору, совпадает по направлению с изотропной оптической осью, в результате получается изотропная оптическая ось.

Из (3), учитывая, что $\mathbf{c}'^2 = 0$, и обозначив $bc'_1 = \delta$, получим

$$\varepsilon^{-1} = \begin{pmatrix} \alpha & 0 & \delta \\ 0 & \alpha & \pm i\delta \\ \delta & \pm i\delta & \alpha \end{pmatrix}, \tag{4}$$

где α , δ – комплексные числа. Возьмем тензор (4) со знаком "+" перед *і* δ и запишем собственные значения и собственные векторы дифференциальной матрицы распространения Δ [10–12] для такого тензора в зависимости от угла отклонения θ оптической оси от оси *Z*.

Собственные значения

$$\xi = \{-n_1, n_1, -n_2, n_2\},\$$

$$n_{1,2} = \sqrt{\frac{2\alpha \mp \delta \pm \delta \exp[\mp 2i\theta]}{2\alpha^2 - \delta^2 + \delta^2 \cos 2\theta - 2i\alpha\delta \sin 2\theta}}.$$
(5)
Собственные векторы

Рис. 2. Зависимости эллиптичностей прошедшего света *Elt* от угла θ при правой (сплошная линия) и левой (пунктир) круговой поляризации падающего света для разных случаев поглощающих триклинных кристаллов.

$$\begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{u}_3 \\ \mathbf{u}_4 \end{pmatrix} = \begin{pmatrix} (i\cos\theta + \sin\theta)/n_1 & -i\cos\theta - \sin\theta & -1/n_1 & 1 \\ -(i\cos\theta + \sin\theta)/n_1 & -i\cos\theta - \sin\theta & 1/n_1 & 1 \\ (i\cos\theta - \sin\theta)/n_2 & -i\cos\theta + \sin\theta & -1/n_2 & 1 \\ -(i\cos\theta - \sin\theta)/n_2 & -i\cos\theta + \sin\theta & 1/n_2 & 1 \end{pmatrix}.$$
(6)

Собственные векторы матрицы Δ имеют тот же общий вид, что и для моноклинного кристалла, имеющего одну круговую и одну изотропную оптические оси (в случае, когда круговая ось параллельна оси *Z*, а изотропная — оси *Y*) [8]. Используя (6), приведем выражение для эллиптичности собственных волн в зависимости от угла отклонения θ оптической оси от оси *Z*

$$k_{1,2} = \operatorname{tg}[\operatorname{arcsin}(\cos\theta)/2]. \tag{7}$$

На рис. 1а приведены зависимости $k_{1,2}(\phi, \phi)$ для триклинного поглощающего кристалла с одной изотропной оптической осью. Максимум в начале координат соответствует положению оптической оси. Эллиптичности прошедшего света *Elt* для правой и левой круговой поляризации падающего света в точке оптической оси ($\theta = 0$) равны соответственно +1 и -1 (рис. 2а), т.е. прошедший свет сохраняет правую и левую круговую поляризацию. Две круговые оптические оси: $\mathbf{c}' - \mathbf{к}$ руговой вектор, $\mathbf{c}'' - \mathbf{j}$ ллиптический, $\mathbf{c}'\mathbf{c}'' = 0$, $\mathbf{c}'^2 = 0$, $\mathbf{c}''^2 = 1$. Комплексный тензор диэлектрической проницаемости не приводится к диагональному виду. Пусть ориентация кристалла такова, что оптическая ось, отвечающая круговому вектору \mathbf{c}' , па-

раллельна оси Z. Тогда $\mathbf{c'} = \{c'_1, c'_2, 0\}, \mathbf{c''} = \{c''_1, c''_2, c''_3\}.$

Пусть $c'_1 = ic'_2$ (возможно также $c'_1 = -ic'_2$). Используя (3) и обозначив $\gamma = 2bc'_2c''_2$, $\eta = c''_3/(2c''_2)$, получим ε^{-1} в виде

$$\varepsilon^{-1} = \begin{pmatrix} \alpha - \gamma & i\gamma & i\gamma\eta \\ i\gamma & \alpha + \gamma & \gamma\eta \\ i\gamma\eta & \gamma\eta & \alpha \end{pmatrix},$$
(8)

где α , γ — комплексные числа. Рассмотрим случай, когда η — вещественная величина. Тогда обе круговые оптические оси лежат в плоскости *YOZ*.

Одна из оптических осей параллельна оси Z ($\theta = 0$). Другая ось отклоняется от Z на угол θ , величина которого в зависимости от η имеет вид:

1) $\eta^2 < 1/4$, $\theta = -\text{sgn}(\eta) \arccos[(1 - 4\eta^2)/(1 + 4\eta^2)]$. При этом эллиптичность собственных волн имеет один знак в окрестности обеих оптических осей.

2) $\eta^2 > 1/4$, $\theta = sgn(\eta) \arccos[(4\eta^2 - 1)/(4\eta^2 + 1)]$, эллиптичность собственных волн имеет разные знаки в окрестностях разных оптических осей.

На рис. 1б максимум и минимум эллиптичностей собственных волн $k_{1,2}(\phi, \phi)$ соответствуют положениям круговых оптических осей. На рис. 26 хорошо видно, что при падении в направлении одной из оптических осей волны правой круговой поляризации эллиптичность прошедшего света равна +1, т.е. прошедшая волна также имеет правую круговую поляризацию. При падении в том же направлении волны левой круговой поляризации прошедший свет эллиптически поляризован. В направлении другой оптической оси, наоборот, при падении волны левой круговой поляризации прошедший свет имеет такую же поляризацию, а для правой круговой поляризации падающего света прошедший свет эллиптически поляризован.

Три круговые оптические оси: $\mathbf{c}' - \mathbf{к}$ руговой вектор, $\mathbf{c}'' - эллиптический, <math>\mathbf{c}'^2 = 0$, $\mathbf{c}''^2 = 1$. Уже нет условия $\mathbf{c}'\mathbf{c}'' = 0$. Так же как и в двух предыдущих случаях, тензор ε не приводится к диагональному виду. Пусть ориентация кристалла такова, что оптическая ось, отвечающая круговому вектору \mathbf{c}' , параллельна оси *Z*. Тогда $c' = \{c'_1, c'_2, 0\}, c'' = \{c''_1, c''_2, c''_3\}$. Пусть $c'_1 = ic'_2$. Используя (3) и обозначая $\gamma =$

= $2bc_2'c_2''$, $\eta = -c_1'c_1''/c_2'c_2''$, $\delta = bc_2'c_3''$, запишем тензор ϵ^{-1} в виде

$$\varepsilon^{-1} = \begin{pmatrix} \alpha - \eta \gamma & i\gamma(\eta + 1)/2 & i\delta \\ i\gamma(\eta + 1)/2 & \alpha + \gamma & \delta \\ i\delta & \delta & \alpha \end{pmatrix},$$
(9)

где α , γ , η , δ – комплексные числа, $\eta \neq 1$ (при $\eta = 1$ получается кристалл с двумя круговыми оптическими осями).

На рис. 1в максимумы и минимумы эллиптичностей собственных волн соответствуют положениям трех круговых оптических осей. Видно, что при использованных данных эллиптичность собственных волн для одной оптической оси положительна, а для двух других отрицательна. На рис. 2в видна только одна оптическая ось — та, которая соответствует направлению $\theta = 0$, а две другие оси находятся в другой плоскости. При распространении вдоль этой оси эллиптичность прошедшего света при левой круговой поляризации падающего света равна —1, т.е. прошедшая волна также имеет левую круговую поляризацию,

КРИСТАЛЛОГРАФИЯ том 58 № 6 2013

а при падении волны правой круговой поляризации прошедшая волна эллиптически поляризована.

Одна круговая и одна изотропная оптические оси. В этом случае или с' – круговой вектор, с" – линейный, или с" – эллиптический, но с'*с" = 0. Тензор ε не приводится к диагональному виду. Пусть ориентация кристалла такова, что круговая оптическая ось расположена вдоль оси *Z*, а изо-

тропная лежит в плоскости *YOZ*, тогда $\mathbf{c}' = \{c_1, c_2, 0\},$ $\mathbf{c}'' = \{0, c_2', c_3''\}.$ Обозначим $\gamma = 2bc_2'c_2'', \eta = c_3''/(2c_2''), и,$ используя (3), запишем ε^{-1} в виде

$$\varepsilon^{-1} = \begin{pmatrix} \alpha & i\gamma/2 & i\gamma\eta \\ i\gamma/2 & \alpha + \gamma & \gamma\eta \\ i\gamma\eta & \gamma\eta & \alpha \end{pmatrix},$$
 (10)

при этом η – вещественная величина, α , γ – комплексные числа.

Зависимость $k_{1,2}(\phi, \phi)$ в этом случае (рис. 1г) аналогична $k_{1,2}(\phi, \phi)$ для случая одной изотропной оптической оси (рис. 1а). Но на рис. 1г максимум $k_{1,2}(\phi, \phi)$ в начале координат соответствует положению круговой оптической оси, а изотропная ось не видна. Обе оптические оси видны на рис. 2г. В направлении круговой оптической оси $(\theta = 0)$ при правой круговой поляризации падающего света прошедший свет также имеет правую круговую поляризацию (эллиптичность прошедшего света Elt = 1), а при падении волны левой круговой поляризации прошедшая волна эллиптически поляризована. При этом в точке изотропной оптической оси (θ ≈ 55°) прошедшая волна сохраняет поляризацию, и соответственно, при падении волны правой или левой круговой поляризации прошедшая волна также имеет правую или левую круговую поляризацию.

При этом случай одной круговой и одной изотропной оптических осей для триклинного кристалла отличается от соответствующего случая для моноклинного кристалла [8, 9] только тем, что круговая и изотропная оптические оси не перпендикулярны друг другу. Если эти оси совпадут по направлению, то получится кристалл с одной изотропной оптической осью. Зависимости $k_{1,2}(\phi, \phi)$ при такой ориентации кристалла, когда круговая оптическая ось расположена вдоль *Z*, для этих трех случаев аналогичны, а положение изотропной оптической оси не влияет на эллиптичность собственных волн.

Две круговые и одна изотропная оптические оси. В этом случае или \mathbf{c}' – эллиптический вектор, \mathbf{c}'' – линейный, или \mathbf{c}' , \mathbf{c}'' – эллиптические, но $\mathbf{c}'\mathbf{c}''*=0$. Тензор є приводится к диагональному виду. Рассмотрим такую систему координат, в которой изотропная оптическая ось параллельна оси *Z*.

При этом $\mathbf{c}' = \{c'_1, c'_2, c'_3\}, \mathbf{c}'' = \{0, 0, 1\}$. Тогда, исполь-

Рис. 3. Переход от случая одной изотропной оптической оси к случаям двух или четырех круговых оптических осей: а – одна изотропная оптическая ось, б – появление двух круговых оптических осей при изменении ε_{33} , в – появление четырех круговых оптических осей при изменении любой компоненты ε , кроме ε_{33} .

зуя (3) и обозначив $\delta_1 = bc'_1, \delta_2 = bc'_2, \delta_3 = bc'_3$, запишем обратный тензор диэлектрической проницаемости ε^{-1} в виде

$$\varepsilon^{-1} = \begin{pmatrix} \alpha & 0 & \delta_1 \\ 0 & \alpha & \delta_2 \\ \delta_1 & \delta_2 & \alpha + 2\delta_3 \end{pmatrix},$$
(11)

где α , δ_i (*i* = 1, 2, 3) – комплексные числа.

На рис. 1д видно положение двух круговых оптических осей, а изотропная ось не видна. На рис. 2д видно положение изотропной оптической оси ($\theta = 0$), в направлении которой эллиптичности прошедшего света равны ±1, при этом круговые оптические оси расположены в другой плоскости.

Четыре круговые оптические оси. Это самый общий и самый распространенный случай. Оба вектора c', c'' эллиптические. Тензор є приводится к диагональному виду. Кристалл имеет четыре круговые оптические оси. В отличие от ромбических и моноклинных кристаллов здесь нет никакой симметрии в расположении этих осей. Рассматривается такая система координат, в которой действительная часть тензора диэлектрической проницаемости имеет диагональный вид.

На рис. 1е показаны зависимости эллиптичностей собственных волн $k_{1,2}(\phi, \phi)$. Максимумы и минимумы эллиптичностей соответствуют положениям круговых оптических осей. Видно, что оси расположены несимметрично. На рис. 2е оптические оси не попадают в плоскость рисунка, поэтому при падении волны круговой поляризации прошедшая волна эллиптическая для всех углов θ поворота плоскости *YOZ* вокруг оси *X*.

Для реализации каждого из частных случаев, когда в кристалле меньше четырех оптических осей, необходимо выполнение достаточно строгих ограничений на компоненты тензора диэлектрической проницаемости кристалла є. При изменении какой-либо из этих компонент меняется и количество оптических осей. На рис. 3 показано, как меняется эллиптичность собственных волн при изменении компонент тензора є. Если взять кристалл с одной изотропной оптической осью (рис. 3a) и немного изменить величину ε_{33} , получим кристалл с двумя круговыми оптическими осями (рис. 3б). Если изменить любую другую компоненту є, получается общий случай четырех круговых оптических осей (рис. 3в).

ЗАКЛЮЧЕНИЕ

Исследованы шесть вариантов триклинных поглощающих кристаллов, отличающихся количеством и типом оптических осей. В триклинных кристаллах нет выделенного направления, поэтому во всех случаях оптические оси расположены произвольно в отличие от моноклинных поглощающих кристаллов, где также существуют шесть вариантов числа и типа оптических осей. При этом в ромбических поглощающих кристаллах возможны только два варианта: либо две изотропные, либо четыре круговые оптические оси. В общем случае в триклинных поглощающих кристаллах, также как и в моноклинных, и в ромбических, существуют четыре круговые оптические оси.

Существуют триклинные кристаллы, имеющие только одну изотропную оптическую ось, расположенную произвольно. Однако в моноклинном кристалле возможно существование одной круговой оптической оси, которая расположена вдоль оси второго порядка или перпендикулярно плоскости симметрии.

В триклинном кристалле, как и в моноклинном, могут существовать две круговые оптические оси, три круговые оптические оси, а также одна круговая и одна изотропная или две круговые и одна изотропная оптические оси. Однако в триклинном кристалле в отличие от моноклинного нет никакой симметрии в расположении этих осей.

Для триклинного кристалла соотношение знаков эллиптичностей в направлениях оптических осей может быть любым. В моноклинном кристалле обычно две оси имеют положительную эллиптичность, а две — отрицательную, но возможен случай, когда эллиптичность собственных волн имеет один знак в направлении всех четырех оптических осей. Для ромбического поглощающего кристалла с четырьмя круговыми оптическими осями эллиптичность собственных волн в направлении двух осей положительна, а для двух других осей отрицательна.

Во всех низкосимметричных поглощающих кристаллах возможны разные варианты количества и типов оптических осей. В большинстве таких кристаллов имеются четыре круговые оптические оси. Все другие случаи являются редкими, так как для их реализации необходимы определенные соотношения между показателями преломления и коэффициентами поглощения. Но возможно, что такие варианты могут появиться при фазовых переходах, магнитных и электрических явлениях, при наличии различных примесей и в других ситуациях, и это надо учитывать при исследовании низкосимметричных поглощающих кристаллов.

СПИСОК ЛИТЕРАТУРЫ

1. *Voigt W*. Kompendium der theoretischen Physik. Bd. 2: Elektricität and Magnetismus, Optik. Leipzig, 1896.

- 2. Друде П. Оптика. М.: ОНТИ, 1935. 458 с.
- 3. *Борн М., Вольф Э*. Основы оптики. М.: Наука, 1970. 855 с.
- 4. *Федоров Ф.И*. Оптика анизотропных сред. Минск: Изд-во АН БССР. 1958. 380 с.
- Гончаренко А.М. Дис. "Исследование оптических свойств поглощающих кристаллов на основе инвариантного метода" канд. физ.-мат. наук. Минск, БГУ, 1960. 159 с.
- 6. *Гончаренко А.М. //* Кристаллография. 1959. Т. 4. Вып. 3. С. 393.
- 7. *Гончаренко А.М. //* Кристаллография. 1959. Т. 4. Вып. 5. С. 727.
- Головина Т.Г., Константинова А.Ф., Евдищенко Е.А. и др. // Кристаллография. 2012. Т. 57. № 6. С. 886.
- Константинова А.Ф., Головина Т.Г., Евдищенко Е.А. и др. // Проблемы физики, математики и техники. 2012. № 4 (13). С. 15.
- 10. Berreman D.W. // J. Opt. Soc. Am. 1972. V. 62. P. 502.
- 11. Константинова А.Ф., Константинов К.К., Набатов Б.В., Евдищенко Е.А. // Кристаллография. 2002. Т. 47. № 4. С. 702.
- Константинова А.Ф., Набатов Б.В., Евдищенко Е.А., Константинов К.К. // Кристаллография. 2002. Т. 47. № 5. С. 879.
- 13. Voigt W. // Gött. Nachr. 1902. V. 1.