КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 6, с. 836-842

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736.6

К 70-летию Института кристаллографии РАН

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА НОВЫХ СОЕДИНЕНИЙ $K_4M_2[Al_2Si_8O_{24}]$ (M = Ce, Gd)

© 2013 г. С. М. Аксенов, В. А. Рассулов*, Р. К. Расцветаева, В. К. Тароев**

Институт кристаллографии РАН, Москва E-mail: aks.crys@gmail.com * Всероссийский научно-исследовательский институт минерального сырья, Москва ** Институт геохимии СО РАН, Иркутск

Поступила в редакцию 06.02.2013 г.

Методом рентгеноструктурного анализа исследованы два новых калиевых силиката редкоземельных элементов, полученных методом гидротермального синтеза, и установлена их формула $K_4M_2[Al_2Si_8O_{24}]$ (M = Ce, Gd). Параметры моноклинных ячеек $K_4Ce_2[Al_2Si_8O_{24}]$ и $K_4Gd_2[Al_2Si_8O_{24}]$: $a = 26.867(1), 26.6520(2); b = 7.4150(2), 7.2854(1); c = 14.910(1), 14.8182(1) Å; \beta = 123.52(1), 123.46(1)^\circ$, пр. гр. P_2_1/n . Структуры решены методом "charge flipping" и уточнены в анизотропном приближении тепловых колебаний атомов до R = 5.2 и 2.5% соответственно. Изученные соединения кристаллизуются в новом структурном типе, в основе которого лежат двухэтажные слои $[Al_2Si_8O_{24}]$, объединенные в трехмерный каркас колонками связанных ребрами *REE*-семивершинников. В каналах каркаса располагаются атомы К. Определены спектральные характеристики люминесценции. Полосы люминесценции характерны для ионов Gd^{3+} и Ce^{3+} . При возбуждении излучением с $\lambda_{exc} = 246$ нм в спектре $K_4Ce_2[Al_2Si_8O_{24}]$ наблюдается полоса перехода $^2D \rightarrow {}^8F_{5/2}$ с $\lambda_{max} = 430$ нм, а в $K_4Gd_2[Al_2Si_8O_{24}] -$ полоса перехода ${}^6P_{7/2} \rightarrow {}^8S_{7/2}$ с $\lambda_{max} = 311$ нм.

DOI: 10.7868/S0023476113060027

ВВЕДЕНИЕ

Щелочные микропористые силикаты редкоземельных элементов обладают фотолюминесцентными и ионообменными свойствами, поэтому в настоящее время их изучение вызывает особый интерес. Данная работа продолжает систематические исследования, касающиеся гидротермального синтеза и структурного изучения щелочных силикатов редких земель, для выяснения условий вхождения лантаноидов в твердые фазы.

Ранее были синтезированы и изучены соединения с европием. Синтез Eu^{3+} -содержащих фаз осуществлялся в Си-контейнерах и характеризовался окислительными условиями, соответствующими буферной ассоциации Cu–Cu₂O. Их структуры имеют слоистый [Si₆O₁₅] и ленточные [Si₆O₁₇] и [Si₈O₂₁] мотивы [1]. Еu-фаза, синтезированная при восстановительных условиях, соответствующих буферной паре Ni–NiO, характеризуется каркасной структурой, состоящей из кремнекислородных нанотубуленов [2]. В настоящей работе методом гидротермального синтеза получены две новые фазы K₄Ce₂[Al₂Si₈O₂₄] и K₄Gd₂[Al₂Si₈O₂₄], изучены их кристаллические структуры и люминесцентные свойства.

СИНТЕЗ И АНАЛИЗ ПОЛУЧЕННЫХ ОБРАЗЦОВ

Синтез соединений выполнен в автоклавах из нержавеющей стали, оснащенных никелевыми контейнерами, герметизированными перед опытами аргон-дуговой сваркой, при общем давлении 100 МПа в водно-щелочных растворах с концентрацией КОН 15.25 мас. %. Использование никелевых контейнеров для получения Се, Gd-содержащих силикатных фаз позволяет поддерживать кислородный потенциал на постоянном уровне, соответствующем буферной ассоциации Ni–NiO, что особенно важно для опытов с церием как элементом переменной валентности.

Температурный режим (500°С) в опытах, продолжительность которых составляла 35 сут, поддерживался с точностью \pm 5°С с учетом многосуточного дрейфа температуры. В качестве исходной шихты использовались оксиды SiO₂, Al₂O₃, CeO₂, Gd₂O₃ квалификации ОСЧ при мольном отношении SiO₂/Al₂O₃ = 11.21. Температурный перепад ΔT между нижней и верхней частью автоклавов варьировался от 8 до 10°С. После выдержки автоклавов в стационарных условиях они охлаждались в холодной проточной воде. Синтезированные бесцветные прозрачные кристаллы имеют удлиненно-призматическую форму (рис. 1). При низкой летучести кислорода, соответствующей КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА

Рис. 1. Синтезированные кристаллы K₄Ce₂[Al₂Si₈O₂₄] (а) и K₄Gd₂[Al₂Si₈O₂₄] (б).

буферу Ni–NiO, дополнительной фазой в опытах является Ni-слюда, образующая чешуйчатые скопления или оторочки вокруг Ce-содержащих кристаллов длиной менее 10 мкм. В некоторых кристаллах присутствуют включения калиевого полевого шпата. Отметим, что для опытов в восстановительных условиях в медных контейнерах при синтезе Eu-содержащих фаз [1, 2] характерно образование самородной меди в виде дендритовидных кристаллов длиной до 3–5 мм.

Для определения элементного состава синтезированных фаз использовался рентгеновский электронно-зондовый микроанализатор JXA-8200, снабженный растровым электронным микроскопом высокого разрешения, энергодисперсионным спектрометром с SiLi-детектором и разрешением 133 эВ и пятью спектрометрами с волновой дисперсией. Условия возбуждения и регистрации аналитических сигналов следующие: ускоряющее напряжение 20 кВ, ток зонда 20 нА, диаметр пучка электронов 1–10 мкм в зависимости от анализируемого объекта. Формулы исследованных соединений и валентность церия установлены методом рентгеноструктурного анализа. Валентность Се³⁺ подтверждается данными люминесценции.

ЭКСПЕРИМЕНТ И УТОЧНЕНИЕ СТРУКТУРЫ

Рентгенодифракционные эксперименты получены от монокристаллов в полной сфере обратного пространства на дифрактометре Xcalibur

Соединение	$K_4Ce_2[Al_2Si_8O_{24}]$	$K_4Gd_2[Al_2Si_8O_{24}]$			
<i>a</i> , <i>b</i> , <i>c</i> , Å	26.867(1), 7.4150(2), 14.910(1)	26.6520(2), 7.2854(1), 14.8182(1)			
β, град	123.52(1)	123.46(1)			
<i>V</i> , Å ³	2476.5(1)	2400.4(1)			
Симметрия, пр. гр., Z	Моноклинная, <i>P</i> 2 ₁ / <i>n</i> , 4				
D_x , г/см ³ ; µ, мм ⁻¹	2.95; 4.87	3.14; 6.75			
<i>F</i> (000)	2088	2136			
Размер кристалла, мм	0.17 imes 0.23 imes 0.25	0.20 imes 0.21 imes 0.24			
Дифрактометр	Xcalibur Oxford Diffraction				
Излучение; λ, Å	Mo K_{α} ; 0.71073				
Тип сканирования	ω				
Поправка на поглощение	Полуэмпирическая, по эквивалентам				
θ _{max} , град	56.14	56.18			
Пределы h, k, l	$-17 \le h \le 17, -34 \le k \le 34, -36 \le l \le 50$	$-61 \le h \le 61, -11 \le k \le 6, -34 \le l \le 33$			
Число отражений: измеренных/не- зависимых с $ F > 3\sigma(F)$, R_{int}	29208/12992, 0.14	30049/14319, 0.02			
Метод уточнения	МНК по <i>F</i> ²				
Весовая схема	$w = 1/(\sigma^2(F) + 0.0049F^2)$	$w = 1/(\sigma^2(F) + 0.0047F^2)$			
GOF	DF 0.97				
<i>R</i> / <i>wR</i> , %	5.2/8.4	2.5/4.4			
Программа	Jana 2006 [3]				

Таблица 1. Кристаллографические данные и характеристики экспериментов изученных соединений

Таблица 2. Координаты (×10⁴) и эквивалентные параметры смещений атомов (×10²) в соединениях $K_4M_2[Al_2Si_8O_{24}]$ (M = Ce, Gd)

Позиция	$K_4Ce_2[Al_2Si_8O_{24}]$			$K_4Gd_2[Al_2Si_8O_{24}]$				
	x/a	y/b	z/c	$U_{ m _{3KB}}$	x/a	y/b	z/c	$U_{ m _{3KB}}$
<i>M</i> 1	2299(1)	2165(1)	2512(1)	0.79(1)	7693(1)	7866(1)	-2506(1)	0.63(1)
М2	7699(1)	2117(1)	2488(1)	0.63(1)	7693(1)	2129(1)	2494(1)	0.54(1)
K1	3070(1)	5040(1)	0275(1)	2.57(4)	3070(1)	5064(1)	0263(1)	2.22(2)
K2	8069(1)	-0005(2)	0257(1)	2.89(4)	8067(1)	0059(1)	0261(1)	2.24(2)
K3	9637(1)	7552(3)	0396(2)	5.20(9)	9634(1)	7595(2)	0394(1)	4.67(5)
K4	4629(1)	2553(3)	0381(2)	6.0(1)	4638(1)	2596(2)	0401(1)	4.63(5)
Si1	3365(1)	-0297(1)	4977(1)	0.95(3)	8345(1)	5319(1)	-0067(1)	0.66(1)
Si2	8371(1)	4666(1)	4971(1)	0.70(2)	6655(1)	-0316(1)	0065(1)	0.64(1)
Si3	8427(1)	4744(1)	7102(1)	0.91(3)	6599(1)	-0195(1)	-2081(1)	0.63(1)
Si4	6175(1)	3557(1)	1577(1)	0.68(2)	6184(1)	3554(1)	1593(1)	0.59(1)
Si5	8428(1)	5208(1)	2109(1)	0.61(2)	8400(1)	5192(1)	2081(1)	0.61(1)
Si6	1176(1)	8585(1)	1585(1)	0.78(2)	6184(1)	-3559(1)	-3406(1)	0.64(1)
Si7	9385(1)	2637(1)	0787(1)	0.87(3)	9388(1)	2659(1)	0787(1)	0.71(1)
Si8	4384(1)	7601(1)	0777(1)	0.81(3)	5614(1)	2337(1)	-0785(1)	0.71(1)
Al1	5717(1)	6872(1)	2279(1)	0.79(3)	5717(1)	6895(1)	2277(1)	0.58(2)
Al2	0716(1)	1926(1)	2280(1)	0.74(3)	0717(1)	1908(1)	2278(1)	0.72(2)
01	6096(1)	1502(3)	1930(2)	1.14(7)	8895(1)	6462(2)	3081(1)	1.18(4)
O2	8903(1)	3478(3)	8139(2)	1.17(6)	6106(1)	-1494(2)	-3075(1)	1.13(4)
O3	5885(1)	3615(3)	0285(2)	1.79(9)	5888(1)	3574(3)	0294(1)	1.71(6)
O4	0876(2)	8608(4)	0298(2)	2.2(1)	5894(1)	-3578(3)	-4700(1)	1.70(6)
O5	9261(1)	1454(3)	1541(2)	1.34(8)	9283(1)	1459(3)	1574(1)	1.22(5)
O6	9055(1)	5469(3)	5495(2)	1.9(1)	5955(1)	0379(2)	-0503(2)	1.34(4)
O 7	4051(1)	0428(3)	5494(2)	1.64(9)	9051(1)	4621(3)	0520(2)	1.55(6)
O8	4273(1)	6463(4)	1582(2)	1.65(9)	5718(1)	3534(3)	-1579(1)	1.44(5)
O9	8359(1)	3968(3)	6016(2)	1.20(7)	6706(1)	-0969(3)	-0957(1)	1.23(5)
O10	3346(2)	-0951(4)	6017(2)	2.0(1)	8296(1)	5946(3)	0962(1)	1.45(6)
011	7121(1)	1240(3)	0674(2)	1.43(7)	7118(1)	1311(3)	0715(1)	1.30(4)
O12	1700(2)	2940(4)	0699(2)	2.1(1)	8279(1)	7107(3)	-0735(1)	1.29(4)
O13	0764(1)	-0105(4)	1775(3)	2.2(1)	5748(1)	-4852(3)	-3262(2)	1.60(6)
O14	8647(1)	6835(3)	7368(2)	1.30(7)	6379(1)	1920(2)	-2338(1)	1.05(4)
O15	8649(1)	3138(3)	2368(2)	1.29(9)	8614(1)	3061(2)	2331(2)	1.19(5)
O16	5765(1)	4846(3)	1746(2)	1.44(8)	5748(1)	4849(3)	1741(2)	1.45(5)
O 17	5075(1)	7990(3)	1273(2)	1.60(8)	4918(1)	1918(3)	-1277(2)	1.39(5)
O 18	0085(1)	3040(4)	1301(3)	1.8(1)	0087(1)	3089(3)	1278(2)	1.42(5)
O19	2896(1)	1257(4)	4363(2)	1.20(1)	7879(1)	3681(2)	-0709(1)	1.28(4)
O20	8311(1)	2881(3)	4309(2)	1.20(7)	8281(1)	2864(2)	4273(1)	1.19(4)
O21	1860(1)	-0861(3)	2214(2)	1.32(7)	6879(1)	-4156(2)	-2738(1)	0.99(4)
O22	7791(1)	5177(3)	1975(2)	1.00(7)	7778(1)	5156(2)	2000(1)	0.85(4)
O23	7792(1)	4781(3)	6951(2)	1.19(8)	7226(1)	-0160(2)	-1997(1)	0.94(4)
O24	6866(1)	4130(3)	2233(2)	1.54(9)	6872(1)	4159(2)	2250(1)	1.19(5)

838

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА

Катион-анион	$K_4Ce_2[Al_2Si_8O_{24}]$	$K_4Gd_2[Al_2Si_8O_{24}]$	Катион-анион	$K_4Ce_2[Al_2Si_8O_{24}]$	$K_4Gd_2[Al_2Si_8O_{24}]$
<i>M</i> 1–O12	2.329(3)	2.266(3)	O3	1.631(3)	1.628(2)
O23	2.398(2)	2.279(2)	O1	1.664(2)	1.648(2)
O19	2.399(3)	2.288(3)		(1.620)	(1.618)
O23	2.459(4)	2.374(2)	Si5–O1	1.607(2)	1.595(2)
O21	2.459(3)	2.384(4)	O22	1.611(3)	1.619(2)
O21	2.528(1)	2.495(2)	O15	1.614(2)	1.624(3)
O14	2.746(3)	2.684(4)	O10	1.614(4)	1.625(3)
	$\langle 2.474 \rangle$	(2.396)		(1.612)	(1.616)
M2-O20	2.338(3)	2.260(3)	Si6-O21	1.589(2)	1.599(3)
O11	2.348(3)	2.285(3)	O13	1.610(4)	1.606(2)
O22	2.368(3)	2.287(2)	O4	1.620(3)	1.625(2)
O24	2.430(3)	2.372(3)	O2	1.628(3)	1.630(2)
O22	2.450(3)	2.384(3)		(1.612)	(1.615)
O24	2.539(3)	2.485(3)	Si7–O5	1.598(3)	1.600(2)
O15	2.760(3)	2.696(3)	O7	1.618(3)	1.613(3)
	(2.462)	(2.396)	O18	1.620(3)	1.617(2)
Si1-O19	1.576(3)	1.587(2)	O4	1.646(3)	1.624(3)
O12	1.600(3)	1.603(3)		$\langle 1.621 \rangle$	$\langle 1.614 \rangle$
O 7	1.647(3)	1.659(4)	Si8-O17	1.600(3)	1.604(2)
O10	1.653(4)	1.663(2)	O3	1.607(3)	1.606(3)
	(1.619)	(1.628)	O6	1.611(3)	1.617(2)
Si2-O20	1.605(3)	1.596(2)	O8	1.622(4)	1.618(2)
O11	1.622(3)	1.602(3)		(1.610)	(1.611)
O9	1.659(3)	1.648(3)	Al1-O16	1.737(3)	1.712(3)
O6	1.659(3)	1.661(2)	O17	1.749(2)	1.733(3)
	(1.636)	(1.627)	O15	1.752(3)	1.744(2)
Si3-O23	1.594(3)	1.606(2)	O5	1.755(4)	1.759(2)
O14	1.629(2)	1.618(2)		(1.748>	$\langle 1.737 \rangle$
O9	1.630(3)	1.628(3)	Al2–O8	1.716(3)	1.721(3)
O2	1.651(3)	1.630(4)	O18	1.720(3)	1.723(2)
	(1.626)	(1.621)	O13	1.720(4)	1.736(4)
Si4-O16	1.581(3)	1.593(2)	O14	1.750(3)	1.749(2)
O24	1.605(3)	1.603(2)		(1.727)	(1.732)

Таблица 3. Межатомные расстояния в изученных соединениях $K_4M_2[Al_2Si_8O_{24}]$ (M = Ce, Gd)

Охford Diffraction, оснащенном ССD-детектором. После усреднения эквивалентных отражений экспериментальные наборы содержали 12992 и 14316 $|F| > 3\sigma(F)$ соответственно. Анализ погасаний дифракционных рефлексов указывал на пр. гр. $P2_1/n$. Структуры решены методом "*charge flipping*" и уточнены в анизотропном приближе-

нии тепловых колебаний атомов до R = 5.2 и 2.5% для K₄Ce₂[Al₂Si₈O₂₄] и K₄Gd₂[Al₂Si₈O₂₄] с использованием комплекса программ Jana2006 [3]. Основные характеристики экспериментов приведены в табл. 1, окончательные координаты и тепловые параметры — в табл. 2, характеристики координационных полиэдров — в табл. 3.

Рис. 2. Фрагмент тетраэдрического радикала: слой $[T_5O_{13}]$.

ОПИСАНИЕ И ОБСУЖДЕНИЕ СТРУКТУРЫ

В результате рентгеноструктурного анализа установлено, что оба редкоземельных элемента трехвалентны и изученные соединения могут быть описаны общей формулой (Z = 4): $K_4^{\text{VII-VIII}} M_2^{\text{VII}} [T_{10}O_{24}], M = \text{Ce, Gd}; T = \text{Al, Si, где}$ квадратными скобками выделен тетраэдрический мотив, а римскими цифрами показаны координационные числа (КЧ). Атомы кремния и алюминия образуют тетраэдры (расстояния Si-O лежат в интервале 1.576(3)-1.663(3); Al-O - 1.712(3)-1.759(2) Å), которые формируют сильно гофрированный двусторонний тетраэдрический слой [*T*₅O₁₃], параллельный (100) и состоящий из четырехчленных колец. Каждое кольцо из трех Si- и одного Al-тетраэдра связано с шестью ближайшими кольцами через дополнительные Si-тетраэдры, в результате чего образуются крупные петли из десяти тетраэдров (рис. 2).

Соседние слои, связанные центром инверсии, объединяются друг с другом общими вершинами

Рис. 3. Колонка из связанных ребрами [*MO*₇]-полиэдров, *M* = Ce, Gd.

Si- и Al-тетраэдров в двухслойные пакеты [*T*₁₀O₂₄] с дополнительными четырехчленными кольцами из двух Si-тетраэдров и двух Al-тетраэдров в поперечном сечении.

Атомы REE^{3+} формируют семивершинники – пентагональные бипирамиды со средними расстояниями (Ce1–O) = 2.474, (Ce2–O) = 2.462 Å и соответственно (Gd1–O) = 2.396, (Gd2–O) = 2.396 Å, объединяющиеся друг с другом по ребрам в колонки (рис. 3), идущие вдоль оси *b*, которые связывают тетраэдрические слои в трехмерную постройку. Атомы К располагаются в каналах структуры (рис. 4). Их крупные полиэдры (семи- и восьмивершинники) характеризуются расстояниями К–O в пределах 2.763–3.380 Å для Се-фазы и 2.732–3.386 Å для Gd-фазы соответственно.

Группа калиевых силикатов редкоземельных элементов в настоящее время насчитывает 36 синтетических соединений. Из них с церием и гадолинием изучено четыре фазы: $K_2Ce[Si_6O_{15}]$ [4], $K_3Gd_3[Si_2O_7]$ [5], $K_{7.64}Gd_3[Si_6O_{16}]_2(OH)_{0.64}$ [6], $K_5Gd^{VIII}Gd_4^{VII}[Si_5O_{15}]_2$ [7]. Несмотря на различие кремнекислородных мотивов, все соединения характеризуются гетеролиэдрическими каркасами и микропористым строением с заполнением каналов и пустот атомами калия. Для редкоземельных элементов характерна октаэдрическая координация, исключение составляют соединения $K_3Gd_3[Si_2O_7]$, где одновременно присутствуют дискретные октаэдры и тригональные призмы гадолиния, объединенные кремнекислородными

Рис. 4. Общий вид кристаллической структуры K_4M_2 [Al₂Si₈O₂₄], M = Ce, Gd.

диортогруппами, и $K_5Gd^{VIII}Gd_4^{VII}[Si_5O_{15}]_2$, в котором две колонки Gd-пентагональных бипирамид объединяются дискретными Gd-тетрагональными антипризмами в широкие ленты.

Изученные в настоящей работе соединения церия и гадолиния кристаллизуются в новом структурном типе и дополняют список калиевых редкоземельных силикатов.

ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА

Люминесцентные исследования выполнены с использованием модернизированного микроскопа-спектрофотометра МСФУ-312 с возбужденным излучением полупроводникового излучателя UVTOP-240 ($\lambda_{exc} = 246$ нм) фирмы SETI (USA).

Оптические спектры гадолиния и церия исследованы достаточно полно как в кристаллической матрице, так и в растворах [8]. Электронная конфигурация гадолиния — $4f^7$ с основным состоянием ${}^8S_{7/2}$. В нормальных условиях фиксируются узкие линии, обусловленные электронными пере-

КРИСТАЛЛОГРАФИЯ том 58 № 6 2013

ходами с уровней ${}^6P_{7/2} \rightarrow {}^8S_{7/2}$ и ${}^6I_{7/2} \rightarrow {}^8S_{7/2}$. При возбуждении излучением с $\lambda_{exc} = 246$ нм в спектре K₄Gd₂[Al₂Si₈O₂₄] наблюдается линия небольшой интенсивности с $\lambda_{max} = 311$ нм (рис. 5а), которую следует отнести к переходу ${}^6P_{7/2} \rightarrow {}^8S_{7/2}$.

Электронная конфигурация церия — $4f^1$, а основное состояние — ${}^2F_{5/2}$. Являясь простейшим редкоземельным активатором, ион Се³⁺ содержит один электрон на незаполненной 4f-оболочке. Спектры межконфигурационных переходов (*f*-*d*-спектры), как правило, состоят из широких, плохо структурированных полос, расположенных в УФ-области спектра. Силы осцилляторов *f*-*d*-переходов, разрешенных правилом Лапорта, на несколько порядков превышают силы осцилляторов *f*-*f*-переходов. Сильное взаимодействие 5*d*-электрона с кристаллическим полем приводит к значительному смещению положения полос в различных матрицах и малому времени затухания люминесценции. В исследованных образцах K₄Ce₂[Al₂Si₈O₂₄] наблюдается полоса перехода ${}^{2}D \rightarrow {}^{8}F_{5/2}$ с $\lambda_{\text{max}} =$ = 430 нм (рис. 5б).

Рис. 5. Спектр люминесценции K₄Gd₂[Al₂Si₈O₂₄] (а) и K₄Ce₂[Al₂Si₈O₂₄] (б) при возбуждении излучением полупроводникового излучателя UVTOP-240 ($\lambda_{exc} = 246$ нм).

Существенное различие в эффективности возбуждения, проявляющееся в интенсивности полос Gd³⁺ и Ce³⁺, наблюдаемое в спектрах люминесценции, может быть связано с неоптимальным для каждого люминогена используемым возбуждающим излучением.

выводы

Таким образом, синтезированные и изученные Се- и Gd-силикаты изоструктурны и характеризуются новым структурным типом. Однако в соответствии с разницей ионных радиусов Ce³⁺(1.07 для KЧ = 7) и Gd³⁺(1.00 для KЧ = 7) параметры ячеек и размеры полиэдров в Ce-соединении больше, чем в соединении с Gd.

Несмотря на изоструктурность изученных соединений, они проявляют индивидуальные люминесцентные свойства, обусловленные элементами-люминофорами — церием и гадолинием. Полосы люминесценции характерны для ионов Gd³⁺ и Ce³⁺. Низкие значения интенсивности люминесценции можно объяснить концентрационным тушением, так как данные люминогены являются "формульными" для изученных соединений, и в "люминесцирующем" положении может находиться незначительная часть ионов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Расцветаева Р.К., Аксенов С.М., Тароев В.К. // Кристаллография. 2010. Т. 55. № 6. С. 1101.
- Аксенов С.М., Расцветаева Р.К., Болотина Н.Б., Тароев В.К. // Proceed. 14-th Intern. meeting "Order, Disorder and properties of Oxides", Rostov-on-Don – Loo, 14–19 september 2011. V. 1. Р. 9.
- Petricek V., Dusek M., Palatinus L. Jana2006. Structure Determination Software Programs. Institute of Physics. Praha. Czech Republic. 2006.
- 4. *Карпов О.Г., Победимская Е.А., Белов Н.В.* // Кристаллография. 1977. Т. 22. № 2. С. 382.
- Vidican I., Smith M.D., zur Loye H.C. // J. Solid State Chem. 2003. V. 170. P. 203.
- 6. Себаис М., Филипенко О.С., Победимская Е.А. и др. // Кристаллография. 1983. Т. 28. № 5. С. 880.
- Zhao X., Li J., Chen P. et al. // Inorgan. Chem. 2010. V. 49. P. 9833.
- 8. *Таращан А.Н.* Люминесценция минералов. Киев: Наукова думка, 1978. 296 с.