УДК 548.736

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

К 70-летию Института кристаллографии РАН

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МОНОКРИСТАЛЛОВ La₂Mo₂O₉, ДОПИРОВАННЫХ ВАНАДИЕМ

© 2013 г. О. А. Алексеева, А. М. Антипин, А. Гагор*, А. Петрашко*, Н. Е. Новикова, Н. И. Сорокина, Е. П. Харитонова**, В. И. Воронкова**

Институт кристаллографии РАН, Москва, Россия E-mail: olalex@ns.crys.ras.ru

* Институт низких температур и структурных исследований ПАН, Вроцлав, Польша

**Московский государственный университет им. М.В. Ломоносова, Россия

Поступила в редакцию 11.09.2012 г.

Выполнены прецизионные рентгеноструктурные исследования монокристаллов двух составов La₂Mo_{1.78}V_{0.22}O_{8.89} и La₂Mo_{1.64}V_{0.36}O_{8.82}. Установлено, что аналогично структуре метастабильной β_{mc} -фазы чистого La₂Mo₂O₉ в допированных ванадием соединениях наблюдается смещение атомов La, Мо и одного из трех атомов кислорода относительно тройной оси, на которой находятся эти атомы в высокотемпературной β -фазе. В структуре имеются две не полностью заселенные позиции атомов кислорода. Показано, что часть атомов молибдена замещается атомами ванадия, которые не вовлечены в процесс разупорядочения, располагаются на оси третьего порядка и сдвинуты в направлении одного из атомов кислорода, что согласуется с изменениями, происходящими в структуре La₂Mo₂O₉ при повышении температуры, и с изменениями их свойств при введении в структуру ванадия.

DOI: 10.7868/S0023476113060039

ВВЕДЕНИЕ

Кристаллические материалы с высокой электропроводностью, связанной с аномальной подвижностью анионов кислорода, представляют значительный интерес как для фундаментальной науки, так и с практической точки зрения, в частности в связи с перспективами их использования в качестве кислородобменных мембран, сенсоров и других устройств. Высокая кислородная проводимость (0.06 См/см при 800°С) соединения с собственными кислородными вакансиями состава $La_2Mo_2O_9$ (LM) в системе La_2O_3 -MoO₃ была открыта в 2000 г. группой Лакорре [1]. При температуре 580°С это соединение испытывает фазовый переход первого рода: низкотемпературная моноклинная α-фаза (P2₁) переходит при нагреве в высокотемпературную кубическую β-фазу (Р213) с увеличением проводимости на два порядка [1, 2]. В зависимости от скорости охлаждения образцов после процесса их приготовления они могут существовать при комнатной температуре как в виде стабильной моноклинной α-фазы, так и в виде кубической метастабильной $\beta_{\rm MC}$ -фазы или смеси этих фаз [3, 4]. При медленном охлаждении LM испытывает фазовый переход типа динамический беспорядок (β -фаза) \rightarrow статический порядок (α-фаза), при закалке образец LM оказывается в метастабильной фазе $\beta_{\rm Mc}$, в которой имеет место статический беспорядок атомов кислорода. При последующем нагреве, как правило, эта фаза переходит в α-фазу с ее переходом при 580°С в β-фазу [4]. Существование метастабильной кубической $\beta_{\rm MC}$ -фазы при комнатной температуре связано со сложностью упорядочения большого количества атомов кислорода, которые присутствуют в структуре высокотемпературной кубической β-фазы в состоянии динамического разупорядочения. Структура высокотемпературной кубической β-фазы исследовалась в [2]. Ее особенность состоит в наличии собственных кислородных вакансий. Из трех позиций кислорода полностью заполненной оказалась только одна О1, в остальных двух позициях О2 и О3 существуют кислородные вакансии, ответственные за высокую проводимость LM. В структуре высокотемпературной β-фазы атомы La окружены 15 атомами кислорода (рис. 1а), атомы Мо - семью атомами кислорода: три О2 в экваториальной плоскости, один О1 над плоскостью в апикальной позиции, три ОЗ под плоскостью (рис. 16). В метастабильной кубической $\beta_{\text{мс}}$ -фазе катионы лантана и молибдена имеют аналогичное окружение, однако атомы La, Мо и О1 разупорядочены по трем позициям каждый [5].

При определенной концентрации многие из примесей подавляют переход $\alpha \rightarrow \beta$ и приводят к переходу высокотемпературной кубической β -фазы с динамическим беспорядком атомов кислорода при температуре ~450°C в кубическую $\beta_{\rm Mc}$ -фазу со статическим беспорядком этих атомов

Рис. 1. Координационное окружение атомов La (а) и Mo (б) в структуре высокотемпературной кубической β -фазы La₂Mo₂O₉ [2]; атома Mo в структуре метастабильной кубической β_{Mc} -фазы La₂Mo₂O₉ [5] (в) и атома Mo в допированной ванадием структуре La₂Mo₂O₉ (г).

[6-11]. В [11] сделана попытка проследить динамику фазообразования низкотемпературной α, высокотемпературной β и метастабильной β_{мс} фаз керамических образцов La₂Mo₂O₉, легированных ванадием, в зависимости от концентрации примеси. Авторами данной работы твердофазным синтезом были приготовлены керамические образцы $La_2Mo_{2-x}V_xO_y$ с различным содержанием ванадия (0 < x < 0.2). По калориметрическим данным, с помощью рентгенофазового анализа и изучения проводящих свойств образцов установлено, что при $x \ge 0.06$ стабилизируется кубическая и исчезает моноклинная фаза, подавляется основной переход $\alpha \rightarrow \beta$. По данным дифференциального термического анализа при содержании ванадия *x* ≥ 0.06 в области 450–470°С наблюдается слабая тепловая аномалия, свидетельствующая о переходе $\beta_{MC} \rightarrow \beta$.

Цель настоящей работы — получить при разных температурах с помощью прецизионного рентгеноструктурного эксперимента наиболее полные и точные данные о структуре серии монокристаллов метастабильной кубической $\beta_{\rm MC}$ -фазы La₂Mo₂O₉, допированных ванадием.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Монокристаллы двух составов $La_2Mo_{1.78}V_{0.22}O_{8.89}$ (LM:12%V) и $La_2Mo_{1.64}V_{0.36}O_{8.82}$ (LM:18%V) получены методом спонтанной кристаллизации из раствора в расплаве в системе $La_2O_3-MoO_3-V_2O_5$ по методике, описанной в [3].

Для рентгеноструктурного анализа отбирались наиболее совершенные монокристаллы. С целью наиболее корректного учета эффекта поглощения рентгеновских лучей кристаллам путем обкатки придавалась форма, близкая к сферической. Диаметр образцов не превышал 0.2 мм. Полученные образцы подвергались первичному рентгеноструктурному исследованию, в результате которого были выбраны по одному монокристаллу каждого состава с наилучшими профилями дифракционных пиков и сходимостью интенсивностей эквивалентных по симметрии дифракционных отражений.

Полные дифракционные эксперименты для данных монокристаллов получены для каждого из составов при T = 110 и 295 К на дифрактометре Кита КМ4-ССD, оборудованном двумерным ССD-детектором, с шагом $\Delta \omega = 1^{\circ}$. Время экспозиции, зависящее от угла дифракции, составляло 12, 30, 55 и 60 с/фрейм. Для проведения эксперимента при T = 110 К использовалась криосистема Oxford Cryosystem с открытым потоком азота. Интегрирование пиков проведено по программе, входящей в пакет математического обеспечения дифрактометров [12].

Поиск элементарных ячеек исследуемых монокристаллов завершился выбором кубических ячеек с параметрами для LM:12%V a = 7.1381(10), a = 7.1498(15) Å и для LM:18%V a = 7.1271(13), a = 7.1437(3) Å при температурах 110 и 295 К соответственно. Как и ожидалось, при понижении температуры образца параметры ячейки уменьшаются для обоих составов. Наблюдается уменьшение параметров ячейки с увеличением концентрации ванадия в La₂Mo₂O₉, что связано с внедрением в структуру более мелкого катиона $(r(V^{5+}) = 0.54, r(Mo^{6+}) = 0.59, r(La^{3+}) = 1.032$ Å для KЧ = 6 [13]).

Структуры уточнены с помощью программы JANA2006 [14] методом наименьших квадратов. При учете эффекта экстинкции наилучший результат дала модель Беккера—Коппенса — разориентировка блоков мозаики [15].

Основные кристаллографические параметры и результаты уточнения изученных монокристаллов приведены в табл. 1, значения координат атомов, заселенности позиций q и эквивалентных тепловых параметров — в табл. 2, основные величины межатомных расстояний — в табл. 3.

	Ι	II	III	IV		
Химическая формула	La ₂ Mo _{1.78} V _{0.22} O _{8.89}		La ₂ Mo _{1.64} V _{0.36} O _{8.82}			
Сингония, пр. гр., Z	Кубическая, <i>P</i> 2 ₁ 3, 4					
<i>a</i> , Å	7.1498(15)	7.1381(10)	7.1437(3)	7.1271(13)		
V, Å	365.50(13)	363.69(1)	364.6(1)	362.02(11)		
<i>D</i> , г/см ³	5.4245	5.4317	5.3878	5.4164		
Излучение; λ, Å	$M_{0}K_{\alpha}; 0.71069$					
μ, мм ⁻¹	14.716	14.798	14.695	14.804		
<i>Т</i> , К	295	110	295	110		
Диаметр образца, мм	0.2	0(1)	0.20(1)			
Дифрактометр	Kuma KM4-CCD					
Тип сканирования	Ω					
Учет поглощения; <i>T</i> _{min} , <i>T</i> _{max}	Сфера; 0.87573/1.0000	Сфера; 0.61760/1.00000	Сфера; 0.9444/1.0000	Сфера; 0.83776/1.00000		
θ _{max} , град	43.95	42.62	47.4	42.99		
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-13 \le h \le 13;$ $-13 \le k \le 13;$ $-13 \le l \le 13$	$-13 \le h \le 13; -13 \le k \le 12; -13 \le l \le 13$	$-13 \le h \le 13;$ $-13 \le k \le 11;$ $-13 \le l \le 13$	$-13 \le h \le 13; -13 \le k \le 13; -13 \le l \le 11$		
Число отражений: из- меренных/независи- мых (<i>N</i> 1), <i>R_{int}/с I</i> > 3σ(<i>I</i>)	11957/488, 0.0386/468	13246/550, 0.0450/546	10504/418, 0.0361/412	12018/492, 0.0453/480		
Метод уточнения	МНК по <i>F</i>					
Число уточняемых параметров	52					
Учет экстинции	По Беккеру–Коппенсу (тип 1, Лоренц)					
<i>R</i> 1/w <i>R</i> 2 по <i>N</i> 1	1.68/2.21	2.10/2.70	1.55/2.00	1.88/2.34		
<i>R</i> 1/w <i>R</i> 2 по <i>N</i> 2	1.70/2.22	2.11/2.70	1.67/2.04	1.98/2.36		
S	1.11	1.30	1.00	1.11		
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.29/0.29	-0.43/0.37	-0.25/0.25	-0.35/0.40		
Программы	CrysAlis [12], JANA2006 [14]					

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структур LM : 12%V (I и II), LM : 18%V (III и IV)

Информация об исследованных структурах депонирована в Банке данных неорганических структур ICSD (CSD № 425841, 425842, 425843, 425844).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В качестве исходной модели для уточнения строения исследуемых в данной работе монокристаллов взяты координаты атомов изученной ранее структуры β_{mc} -фазы La₂Mo₂O₉ [5]. Установлено, что аналогично структуре β_{mc} -фазы чистого La₂Mo₂O₉ в допированных ванадием соединениях наблюдается смещение атомов La, Mo и O1 относительно тройной оси, на которой находятся эти атомы в высокотемпературной кубической β -фазе [2, 16, 17]. В результате вокруг осей третьего порядка образуется по три позиции La, Mo и O1 с заселенностями 1/3. Как в чистом La₂Mo₂O₉, так и в

допированных ванадием его соединениях имеются две не полностью заселенные позиции атомов кислорода O2 и O3. Значения заселенности позиций этих атомов совпадают в пределах погрешности для изучаемых структур и равны 0.73 и 0.36 для позиций атомов O2 и O3 соответственно (табл. 2). Отметим, что изменение температуры практически не влияет на форму их тепловых эллипсоидов. Это указывает на то, что атомы кислорода O2 и O3 находятся в данной структуре в статическом беспорядке.

Исходя из близости величин ионных радиусов молибдена и ванадия ($r(Mo^{6+}) = 0.59$, $r(V^{5+}) = 0.54$ Å) и относительной дальности величин ионных радиусов ванадия и лантана ($r(V^{5+}) = 0.60$, $r(La^{3+}) = 1.032$ Å) [13], сделано предположение о том, что ванадий находится в позициях атомов молибдена. Анализ вычисленных синтезов раз-

	x/a	y/b	<i>z</i> / <i>c</i>	q	$U_{ m _{ ЭКВ}}$				
La (12 <i>b</i>)									
Ι	0.8465(8)	0.8481(5)	0.8715(6)	0.3333	0.0451(6)				
II	0.8719(6)	0.8474(5)	0.8477(8)	0.3333	0.0410(6)				
III	0.8507(8)	0.8687(6)	0.8465(5)	0.3333	0.0496(6)				
IV	0.8492(9)	0.8700(7)	0.8479(5)	0.3333	0.0448(6)				
Mo (12 <i>b</i>)									
Ι	0.1795(12)	0.1431(5)	0.1745(10)	0.294(3)	0.0363(9)				
II	0.1746(9)	0.1429(6)	0.1793(12)	0.299(4)	0.0351(10)				
III	0.1800(15)	0.1726(17)	0.1413(5)	0.272(4)	0.0356(12)				
IV	0.1786(15)	0.1741(13)	0.1411(6)	0.275(3)	0.0340(11)				
V(4a)									
Ι	0.1885(14)	0.1885(14)	0.1885(14)	0.12(1)	0.024(2)				
II	0.1883(18)	0.1883(18)	0.1883(18)	0.12(1)	0.022(4)				
III	0.1906(9)	0.1906(9)	0.1906(9)	0.18(1)	0.025(1)				
IV	0.1904(8)	0.1904(8)	0.1904(8)	0.18(1)	0.022(1)				
	1	O1	(12b)	<u>1</u>	1				
Ι	0.328(2)	0.294(3)	0.316(3)	0.3333	0.075(6)				
II	0.316(5)	0.296(3)	0.329(5)	0.3333	0.067(7)				
III	0.330(4)	0.316(5)	0.290(3)	0.3333	0.076(7)				
IV	0.330(3)	0.314(3)	0.292(3)	0.3333	0.076(7)				
		O2	(12b)	•	•				
Ι	0.9861(7)	0.3407(10)	0.1874(14)	0.73(2)	0.090(3)				
II	0.9861(7)	0.1879(16)	0.3416(12)	0.73(2)	0.088(3)				
III	0.9872(7)	0.1886(13)	0.3405(10)	0.73(2)	0.086(3)				
IV	0.9874(7)	0.1880(14)	0.3404(10)	0.73(2)	0.085(3)				
O3 (12 <i>b</i>)									
Ι	0.918(2)	0.544(2)	0.544(2)	0.37(2)	0.137(11)				
II	0.919(3)	0.650(4)	0.543(2)	0.34(2)	0.109(10)				
III	0.916(2)	0.645(4)	0.546(2)	0.38(2)	0.137(11)				
IV	0.914(2)	0.642(3)	0.5465(18)	0.36(2)	0.111(8)				

Таблица 2. Координаты атомов, заселенности позиций (*q*), и эквивалентные тепловые параметры атомов структур LM : 12%V при T = 295 K (I) и T = 110 K (II), LM : 18%V при T = 295 K (III) и T = 110 K (IV)

ностной электронной плотности показал, что наиболее мощные пики остаточной электронной плотности находятся вблизи позиций атомов молибдена — на оси третьего порядка. На основании изложенного было решено, что часть атомов молибдена в структуре замещается атомами ванадия, которые не вовлечены в процесс разупорядочения и располагаются на оси третьего порядка.

Согласно полученным значениям заселенности позиций атомов в структурах (табл. 2), химические формулы исследованных монокристаллов $La_2Mo_{1.78}V_{0.22}O_{8.58}$ и $La_2Mo_{1.64}V_{0.36}O_{8.60}$. Дефицит атомов кислорода в них по сравнению с электронейтральными формулами $La_2Mo_{1.78}V_{0.22}O_{8.89}$ и $La_2Mo_{1.64}V_{0.36}O_{8.82}$ связан с высокой степенью разупорядоченности атомов кислорода в структуре и невозможностью их полной локализации методом рентгеноструктурного анализа.

В структурах LM:12%V и LM:18%V атомы ванадия располагаются вблизи позиций атомов молибдена на осях третьего порядка и немного сдвинуты в направлении атома O1 (рис. 1, табл. 3). В результате значение самого большого расстояния V–O1 уменьшается, а значение расстояния V–O3 увеличивается по сравнению с соответствующими значениями для атомов Мо. Средние расстояния La–O, Мо–O и V–O совпадают в пределах погрешности для всех изученных структур (табл. 3). Расстояния между расщепленными позициями La–La сокращаются с увеличением кон-

Расстояние	Ι	II	III	IV	Расстояние	Ι	II	III	IV
La-O1	2.95(2)	2.93(3)	2.94(3)	2.94(2)		1.82(2)	1.83(3)	1.82(3)	1.82(2)
2.8 2.7 2.7 2.6 2.6 2.6 2.6 2.4 2.4	2.88(2)	2.87(3)	2.93(3)	2.89(2)	Среднее	1.84	1.85	1.84	1.84
	2.72(2)	2.70(3)	2.76(3)	2.73(2)	Mo-O2	1.98(1)	1.98(1)	1.98(1)	1.97(1)
	2.71(2)	2.70(3)	2.66(3)	2.67(2)		1.80(1)	1.80(1)	1.78(1)	1.79(1)
	2.69(2)	2.69(4)	2.66(3)	2.67(2)		1.64(1)	1.64(1)	1.63(1)	1.62(1)
	2.65(2)	2.65(3)	2.64(3)	2.64(2)	Среднее	1.81	1.81	1.80	1.79
	2.62(2)	2.63(3)	2.63(3)	2.63(2)	Mo-O3	1.73(2)	1.73(2)	1.73(2)	1.72(2)
	2.47(2)	2.46(3)	2.48(3)	2.47(2)		1.64(2)	1.63(2)	1.63(2)	1.64(2)
	2.46(2)	2.46(3)	2.46(3)	2.47(2)		1.52(2)	1.52(2)	1.51(2)	1.51(2)
Среднее	2.68	2.67	2.68	2.68	Среднее	1.63	1.63	1.63	1.62
La-O2	2.84(1)	2.84(1)	2.83(1)	2.83(1)	01–02	2.85(2)	2.82(3)	2.87(3)	2.85(2)
	2.71(1)	2.69(1)	2.68(1)	2.70(1)		2.82(2)	2.80(3)	2.84(3)	2.83(2)
	2.63(1)	2.63(1)	2.66(1)	2.65(1)		2.66(2)	2.65(3)	2.66(3)	2.66(2)
	2.57(1)	2.57(1)	2.56(1)	2.56(1)		2.64(2)	2.63(3)	2.64(3)	2.62(2)
	2.42(1)	2.42(1)	2.45(1)	2.43(1)		2.48(2)	2.48(3)	2.46(3)	2.44(2)
	2.41(1)	2.40(1)	2.41(1)	2.41(1)		2.43(2)	2.43(3)	2.39(3)	2.40(2)
Среднее	2.60	2.59	2.60	2.60	01–03	2.84(3)	2.82(3)	2.86(3)	2.84(3)
La-O3	2.79(2)	2.79(2)	2.72(2)	2.79(2)		2.83(2)	2.81(4)	2.83(4)	2.84(3)
	2.78(2)	2.78(2)	2.63(2)	2.75(2)		2.56(2)	2.55(3)	2.53(3)	2.55(3)
	2.75(2)	2.74(2)	2.70(2)	2.73(2)	02–03	2.85(2)	2.84(2)	2.86(2)	2.87(2)
	2.72(2)	2.73(2)	2.73(2)	2.70(2)		2.85(2)	2.84(2)	2.86(2)	2.87(2)
	2.70(2)	2.70(2)	2.78(2)	2.68(2)		2.73(2)	2.75(2)	2.73(2)	2.70(2)
	2.62(2)	2.61(2)	2.77(2)	2.63(2)		2.21(2)	2.22(2)	2.19(2)	2.17(2)
Среднее	2.73	2.73	2.72	2.72		1.60(3)	1.58(3)	1.60(3)	1.61(2)
V-01	$1.55(2) \times 3$	$1.55(3) \times 3$	$1.51(3) \times 3$	$1.51(2)\times 3$	03–03	1.69(3)	1.71(3)	1.70(3)	1.69(3)
-02	$1.81(1) \times 3$	$1.81(1) \times 3$	$1.81(1) \times 3$	$1.80(1) \times 3$	La–La	0.24(1)	0.25(1)	0.21(1)	0.22(1)
-03	$1.85(2) \times 3$	$1.84(1) \times 3$	$1.88(2) \times 3$	$1.88(2) \times 3$	Mo-V	0.35(1)	0.35(1)	0.38(1)	0.38(1)
Mo-O1	1.85(2)	1.86(3)	1.86(3)	1.85(2)	Mo2-Mo2	0.35(1)	0.35(1)	0.36(1)	0.36(1)
	1.84(2)	1.85(3)	1.85(3)	1.84(2)	01–01	0.31(3)	0.29(4)	0.36(4)	0.33(3)

Таблица 3. Межатомные расстояния (Å) в структурах LM : 12%V при T = 295 K (I) и T = 110 K (II), LM : 18%V при T = 295 K (III) и T = 110 K (IV)

центрации примеси в соединении и остаются неизменными (в пределах погрешности) при различных температурах. Расстояния между расщепленными позициями Мо-Мо и O1-O1 не меняются ни с изменением концентрации примеси, ни с изменением температуры.

Описание структур соединений семейства LAMOX с использованием координатных полиэдров La и Mo не является простым и удобным. Поэтому предложен способ описания подобных структур, основанный на антиполиэдрах, которые формируют катионы La и Mo вокруг атома O1 [18]. Эти антитетраэдры — наиболее стабильная часть структуры (рис. 2). Каждый из O1-антитетраэдров соединен по трем вершинам с другими антитетраэдрами. Все La-вершины тетраэдров поделены, тогда как вершины, в которых находится Мо, остаются "висячими", т.е. неподеленными с другими тетраэдрами. В результате образуется трехмерный каркас с каналами, в которых расположены частично заселяющие свои позиции атомы О2 и О3. Наличие этих каналов по всем трем направлениям в кристалле обеспечивает трехмерную проводимость по кислороду соединений семейства LAMOX.

Отметим, что заселенность позиций атомов O1 в сумме равна единице, в то время как вероятность присутствия атома O3 равна всего 35%. Аналогичные изменения в окружении атомов молибдена наблюдаются и при введении в структуру $La_2Mo_2O_9$ атомов сурьмы ($La_2Mo_{1.96}Sb_{0.04}O_{8.17}$) [19], висмута ($La_{1.82}Bi_{0.18}Mo_2O_{8.76}$) [20, 21] или иттрия ($La_1 {}_{9}Y_{0.1}Mo_2O_9$) [17]. Авторами [17, 19] уста-

Рис. 2. Кристаллическая структура метастабильной кубической β_{Mc} -фазы La₂Mo₂O₉ [5]. Атомы O1 расположены в центрах антитетраэдров, образованных атомами La и Mo.

новлено, что эти изменения подобны тем изменениям в окружении атомов молибдена, которые происходят в структуре $La_2Mo_2O_9$ при повышении температуры [22]. Таким образом, внедрение атомов ванадия, сурьмы, висмута и иттрия в структуру LM способствует стабилизации при комнатной температуре кубической фазы. Результаты структурных исследований хорошо согласуются с выводами [11, 17, 19, 20] о том, что при определенной концентрации указанные примеси подавляют переход $\alpha \rightarrow \beta$ и приводят к переходу при температуре ~450°C высокотемпературной кубической β -фазы с динамическим беспорядком атомов кислорода в кубическую β_{Mc} -фазу со статическим беспорядком этих атомов.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (грант № 11-03-00243а), Программы фундаментальных исследований ОФН РАН и Ведущих научных школ (грант НШ-2883.2012.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Lacorre P., Goutenoire F., Bohnke O. et al.* // Nature. 2000. V. 404. P. 856.
- 2. *Goutenoire F., Isnard O., Retoux R. et al.* // Chem. Mater. 2000. V. 12. P. 2575.
- 3. Воронкова В.И., Яновский В.К., Харитонова Е.П. // Кристаллография. 2005. Т. 50. № 5. С. 943.
- 4. *Selmi A., Corbel G., Kojikian S. et al.* // Eur. J. Inorgan. Chem. 2008. P. 1813.
- 5. Алексеева О.А., Сорокина Н.И., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 1. С. 26.
- Goutenoire F., Isnard O., Suard E. et al. // J. Chem. Mater. 2001. V. 11. P. 119.
- 7. Marrero-Lopez D., Perez-Coll D., Ruiz-Morales J.C. et al. // Electrochim. Acta. 2007. V. 52. P. 5219.
- Li C., Wang X.P., Li D. // Mater. Res. Bull. 2007. V. 42. P. 1077.
- Marozau I.R., Shaula A.L., Kharton V.V. et al. // Mater. Res. Bull. 2005. V. 40. P. 361.
- 10. Voronkova V.I., Kharitonova E.P., Krasilnikova A.E. // Phys. Status. Solidi. A. 2009. № 11. P. 2564.
- 11. Воронкова В.И., Харитонова Е.П., Красильникова А.Е. // Кристаллография. 2010. Т. 55. № 2. С. 306.
- 12. CrysAlisCCD CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.42, release 29-05-2009 CrysAlis171.
- 13. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.
- 14. *Petricek V., Dusek M., Palatinus L. JANA*. Structure Determenation Software Programs. Czech Republic. 2000.
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129.
- Lacorre P., Goutenoire F., Altorfer F. et al. // Adv. Sci. Technol. 2003. V. 33. P. 737.
- 17. Georges S., Goutenoire F., Altorfer F. et al. // Solid State Ionics. 2003. V. 161. P. 231.
- Corbel G., Laligant Y., Goutenire F. et al. // Chem. Mater. 2005. V. 17. P. 4678.
- 19. Алексеева О.А., Верин И.А., Сорокина Н.И. и др. // Кристаллография. 2011. Т. 56. № 3. С. 470.
- 20. Алексеева О.А., Верин И.А., Сорокина Н.И. и др. // Кристаллография. 2010. Т. 55. № 4. С. 626.
- 21. Алексеева О.А., Верин И.А., Новикова Н.Е. и др. // Кристаллография. 2011. Т. 56. № 2. С. 225.
- 22. *Tealdi C., Malavasi L., Ritter C. et al.* // J. Solid State Chem. 2008. V. 181. P. 603.