КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 5, с. 667-670

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.07; 541.18.053; 548.313.2

НАНОСТРУКТУРИРОВАННЫЕ КРИСТАЛЛЫ ФЛЮОРИТОВЫХ ФАЗ Sr_{1-x}R_xF_{2+x} И ИХ УПОРЯДОЧЕНИЕ. 8. ДЕФЕКТНАЯ КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА Sr_{0.71}Ce_{0.29}F_{2.29}

© 2013 г. Е. А. Сульянова, Д. Н. Каримов, Б. П. Соболев

Институт кристаллографии РАН, Москва E-mail: sulyanova@gmail.com Поступила в редакцию 26.09.2012 г.

Методом рентгеноструктурного анализа исследован монокристалл конгруэнтно плавящегося состава нест<u>е</u>хиометрической фазы Sr_{0.71}Ce_{0.29}F_{2.29}, кристаллизующейся в структурном типе CaF₂, пр. гр. *Fm*3*m*. Обнаружены вакансии в основной позиции фтора (8*c*) и междоузельные анионы в двух позициях 32*f*. Соотношение дефектов структуры в изученном твердом растворе Sr_{0.71}Ce_{0.29}F_{2.29} соответствует тетраэдрической конфигурации кластера дефектов {Sr_{4-n}Ce_nF₂₆}.

DOI: 10.7868/S0023476113040218

ВВЕДЕНИЕ

Работа продолжает цикл публикаций [1–7], посвященных получению монокристаллов флюоритовых нестехиометрических фаз $Sr_{1-x}R_xF_{2+x}$ (R = La - Lu, Y) и упорядоченных фаз $Sr_mR_nF_{2m+3n}$ (R = Gd - Lu, Y), изучению их дефектной кристаллической структуры и выявлению ее связи с некоторыми структурно-чувствительными свойствами.

Структурный тип флюорита, в котором кристаллизуются MF_2 (M = Ca, Sr, Ba, Cd, Pb), обладает высокой изоморфной емкостью по отношению к ионам редкоземельных элементов (R == La-Lu, Y). Низкая плотность заполнения пространства в структуре флюорита обеспечивает достаточно свободного пространства для внедрения ионов фтора, компенсирующих разницу в зарядах M^{2+} и R^{3+} . Неустойчивость кубического окружения катионов в структурном типе флюорита также является фактором, способствующим гетеровалентным изоморфным замещениям, при которых это кубическое окружение нарушается. Правильный куб является энергетически наименее устойчивой конфигурацией из всех полиэдров с восемью вершинами. Изоморфное вхождение в структуру R^{3+} и дополнительных ионов фтора провоцирует перестройку кубического окружения катионов. При этом восьмерное окружение может сохраняться, но при другом полиэдре. Благодаря этому в системах $MF_2 - RF_3$ (M = Ca, Sr, Ba, Cd, Pb) образуются обширные области гомогенности гетеровалентных твердых растворов $M_{1-x}R_xF_{2+x}$ со структурой флюорита.

В большинстве систем SrF₂–*R*F₃ на кривых плавления нестехиометрических флюоритовых фаз присутствуют максимумы. Составу максиму-

ма отвечает фаза с конгруэнтным характером плавления. В кристаллической буле конгруэнтного состава отсутствует распределение примеси по длине. Данный кристалл растет без ячеистой субструктуры и характеризуется хорошим оптическим качеством.

Образование максимума на кривой плавления — результат химических взаимодействий компонентов, которые должны отражаться в изменении дефектной структуры кристаллов $M_{1-x}R_xF_{2+x}$. До настоящего времени систематической работы по изучению кристаллической структуры конгруэнтно плавящихся составов флюоритовых нестехиометрических фаз не проводилось. Задача настоящей работы — изучить дефектную структуру монокристалла $Sr_{0.71}Ce_{0.29}F_{2.29}$ конгруэнтного состава.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика роста, морфология кристаллов и их препарирование описаны в [1]. Для рентгеноструктурного анализа отбирались оптически однородные участки, которые обкатывались в сферы. Параметры дифракционного эксперимента приведены в табл. 1.

Уточнение структуры Sr_{0.71}Ce_{0.29}F_{2.29} проводилось в рамках пр. гр. *Fm3m* с использованием программы JANA2006 [8]. В процессе уточнения в экспериментальный массив интенсивностей вводилась поправка на изотропную экстинкцию в приближении Беккера–Коппенса [9] (І тип, распределение блоков мозаики по закону Лорентца). При уточнении ангармонических компонентов тензора тепловых колебаний атомов использовалось разложение температурного множителя в

Сингония, пр. гр., Z	Кубическая, <i>Fm</i> 3 <i>m</i> , 4
* <i>a</i> , Å	5.8403(5)
<i>V</i> , Å ³	199.21
D_x , г/см ³	4.8782
Излучение, λ, Å	Mo <i>K</i> _α , 0.71073
μ, мм ⁻¹	25.519
<i>Т</i> , К	295
Диаметр сферы, мм	0.170
Дифрактометр	CAD-4 Enraf Nonius
Тип сканирования	ω/2θ
Учет поглощения, T_{\min} , T_{\max}	0.0873, 0.1597
θ _{max} , град	74.57
max' i	
Пределы h, k, l	$-15 \le h \le 15, -15 \le k \le 15, \\ -15 \le l \le 15$
Пределы h, k, l Число отражений: измеренных/независимых $(N_1), R_{int}/c \ l > 3\sigma(l) \ (N_2)$	$-15 \le h \le 15, -15 \le k \le 15, \\ -15 \le l \le 15 \\ 4122/139, 0.0237/139$
Пределы h, k, l Число отражений: измеренных/независимых $(N_1), R_{int}/c \ l > 3\sigma(l) \ (N_2)$ Метод уточнения	$-15 \le h \le 15, -15 \le k \le 15,$ $-15 \le l \le 15$ 4122/139, 0.0237/139 МНК по F^2
Пределы h, k, l Число отражений: измеренных/независимых $(N_1), R_{int}/c I > 3\sigma(I) (N_2)$ Метод уточнения Число уточняемых пара- метров	$-15 \le h \le 15, -15 \le k \le 15,$ $-15 \le l \le 15$ 4122/139, 0.0237/139 МНК по F^2 11
Пределы h, k, l Число отражений: измеренных/независимых $(N_1), R_{int}/c l > 3\sigma(l) (N_2)$ Метод уточнения Число уточняемых параметров Весовая схема	$-15 \le h \le 15, -15 \le k \le 15, -15 \le l \le 15, -15 \le l \le 15, -15 \le l \le 15, -15 \le 122/139, 0.0237/139$ MHK no F ² 11 1/[$\sigma^2(I) + (0.0045 I)^2$]
Пределы h, k, l Число отражений: измеренных/независимых $(N_1), R_{int}/c I > 3\sigma(I) (N_2)$ Метод уточнения Число уточняемых пара- метров Весовая схема R1/wR2 по $N2$	$-15 \le h \le 15, -15 \le k \le 15, -15 \le l \le 15, -15 \le 122/139, 0.0237/139$ MHK no F ² 11 1/[$\sigma^2(I) + (0.0045 I)^2$] 0.006/0.0167
Пределы h, k, l Число отражений: измеренных/независимых $(N_1), R_{int}/c \ I > 3\sigma(I) \ (N_2)$ Метод уточнения Число уточняемых пара- метров Весовая схема R1/wR2 по $N2S$	$-15 \le h \le 15, -15 \le k \le 15, -15 \le l \le 15, -15 \le 122/139, 0.0237/139$ MHK no F ² 11 1/[$\sigma^2(I) + (0.0045 I)^2$] 0.006/0.0167 1.00
Пределы h, k, l Число отражений: измеренных/независимых $(N_1), R_{int}/c l > 3\sigma(l) (N_2)$ Метод уточнения Число уточняемых параметров Весовая схема R1/wR2 по $N2S\Delta \rho_{min}/\Delta \rho_{max}, 3/Å^3$	$-15 \le h \le 15, -15 \le k \le 15, -15 \le l \le 15, -15 \le 122/139, 0.0237/139$ MHK no <i>F</i> ² 11 1/[$\sigma^2(I) + (0.0045 I)^2$] 0.006/0.0167 1.00 -0.24/0.23

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структуры Sr_{0.71}Ce_{0.29}F_{2.29}

* Параметр ячейки рассчитан по рентгенограмме порошка.

ряд Грама-Шарлье [10] до третьего порядка. МНК проводили по F^2 с использованием атомных кривых рассеяния [10].

Состав исследуемого кристалла по параметру решетки из рентгенограммы порошка [1] определен как $Sr_{0.71}Ce_{0.29}F_{2.29}$.

Разностный синтез электронной плотности для $Sr_{0.71}Ce_{0.29}F_{2.29}$ в плоскости (110) показан на рис. 1а. Синтез построен после вычитания катионов (Sr^{2+} , Ce^{3+}), для которых задана смешанная кривая рассеяния, и анионов в основной позиции $F_{(8c)}$. Уточнена заселенность позиции основных ионов фтора $F_{(8c)}$.

Оставшийся на разностных синтезах (рис. 1а) максимум электронной плотности в позиции 32f соответствует междоузельным ионам фтора $F_{int(32f)1}$ (рис. 2). Электронная плотность вблизи позиции $F_{(8c)}$ соответствует сместившимся из своих позиций (релаксировавшим $F_{(8c)} \rightarrow F_{int(32f)1}$) анионам фтора $F_{int(32f)1}$. Характер распределения электронной плотности на разностном синтезе (рис. 1а) вблизи позиции $F_{(8c)}$ свидетельствует об

Рис. 1. Разностный (а) и нулевой (б) синтезы электронной плотности для кристалла $Sr_{0.71}Ce_{0.29}F_{2.29}$. Шаг изолиний — 0.1 э/Å³. Сплошные линии — положительная электронная плотность, пунктир — отрицательная, широкий пунктир — нулевой уровень. Координатная сетка приведена в долях элементарной ячейки.

отклонении тепловых колебаний атома F_(8c) от гармонического закона.

На последнем этапе уточнения суммарное количество анионов было зафиксировано в соответствии с составом кристалла на уровне 9.16 атомов

КРИСТАЛЛОГРАФИЯ том 58 № 5 2013

на ячейку. Нулевой синтез электронной плотности показан на рис. 16.

Координаты и тепловые параметры атомов для $Sr_{0.71}Ce_{0.29}F_{2.29}$ даны в табл. 2. Стандартные отклонения рассчитаны при уточнении каждого параметра отдельно.

КЛАСТЕРНАЯ МОДЕЛЬ СТРОЕНИЯ ФАЗЫ $Sr_{0.71}Ce_{0.29}F_{2.29}$

Уточнение структуры $Sr_{0.71}Ce_{0.29}F_{2.29}$ приводит к кластерной модели строения кристалла на основе тетраэдрического кластера (**TK**) { R_4F_{26} } [11].

Вокруг тетраэдрического кластерного анионного ядра { F_4 }, образованного анионами $F_{int(32f)3}$, располагаются четыре катиона (Sr^{2+} , Ce^{3+}), которые статистически распределены по полиэдрам с координационным числом 10. Конфигурация дефектного кластера такова, что в его составе оказываются катионы Sr^{2+} с анионным окружением (координационное число 10), отличающимся от кубического окружения катионов атомами фтора в структуре SrF_2 .

Таким образом, состав ТК выражается кристаллохимической формулой { $Sr_{4-n}Ce_nF_{26}$ }. Для сохранения электронейтральности ТК должен содержать не больше трех катионов Ce^{3+} ($n \le 3$). Если n > 4, то в структуре должен присутствовать еще один анион фтора.

Состав ТК в $Sr_{0.71}Ce_{0.29}F_{2.29}$ можно рассчитать из заселенности позиции, занимаемой анионами $F_{int(32f)3}$:

$$m = 4/(Q_{Fint(32f)3});$$

 $q_{Ce} = m4x;$
 $q_{Sr} = 4 - q_{Ce};$

где m – количество ячеек, приходящееся на один TK; q – количество соответствующих атомов в TK; Q – заселенность позиции. $q_{Ce} = 2.89$, $q_{Sr} = 1.11$.

Релаксация анионной подрешетки вокруг ТК возникает по причине выравнивания межатомных расстояний при деформации кристаллической решетки, обусловленной образованием ТК.

Рис. 2. Тетраэдрический кластер ${Sr_{4-n}Ce_nF_{26}}$ в структуре флюорита.

выводы

Методом рентгеноструктурного анализа изучено строение нестехиометрической флюоритовой фазы $Sr_{0.71}Ce_{0.29}F_{2.29}$ с конгруэнтным плавлением и установлена ее принадлежность к структурному типу флюорита.

В кристалле $Sr_{0.71}Ce_{0.29}F_{2.29}$ обнаружены вакансии в основной анионной позиции 8*c* и междоузельные ионы фтора в позиции 32*f* – $F_{int(32f)3}$. Отношение количества атомов фтора $F_{int(32f)3}$ к числу вакансий составляет приблизительно 1.5, что соответствует образованию тетраэдрических анионных группировок { F_4 }, составляющих анионное ядро TK.

Таблица 2. Координаты и тепловые параметры атомов в структуре Sr_{0.71}Ce_{0.29}F_{2.29}

Атом	Позиция	Заселенность*	x/a	y/b	z/c	$B_{_{\rm H3O}}\left(B_{_{ m 3KB}} ight)$
Sr, Ce	4 <i>a</i>	0.71, 0.29	0	0	0	0.907(2)
**F _(8c)	8 <i>c</i>	0.7806	1/4	1/4	1/4	1.438(9)
Fint(32f)1	32 <i>f</i>	0.0410(5)	0.294(3)	0.294(3)	0.294(3)	1.9(2)
$F_{int(32f)3}$	32 <i>f</i>	0.0501(6)	0.413(1)	0.413(1)	0.413(1)	1.8(1)

* Заселенность $F_{(8c)}$ рассчитана по формуле $Q_{F(8c)} = 9.16 - Q_{Fint(32f)1} - Q_{Fint(32f)3}$.

** $B_{11} = 1.05(2) \times 10^{-2}, C_{123} = 2.3(3) \times 10^{-3}.$

Для описания строения твердого раствора $Sr_{0.71}Ce_{0.29}F_{2.29}$ предложена тетраэдрическая конфигурация кластера дефектов { $M_{4-n}R_nF_{26}$ }.

Расчет катионного состава ТК показал, что в среднем кластер содержит 2.89 атома Се и 1.11 атома Sr.

Данные о кристаллической структуре Sr_{0.71}Ce_{0.29}F_{2.29} депонированы в банк данных неорганических соединений (ICSD № 425202).

Работа выполнена при частичной финансовой поддержке Президента РФ (грант по поддержке научных школ РФ № НШ-65636.2010.2) и Министерства образования и науки Российской Федерации в рамках федеральной целевой программы "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007–2012 годы" (Государственный контракт от 12 июля 2012 года № 16.523.11.3005).

СПИСОК ЛИТЕРАТУРЫ

1. Соболев Б.П., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2009. Т. 54. № 1. С. 129.

- 2. Сульянова Е.А., Молчанов В.Н., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 3. С. 554.
- 3. Глушкова Т.М., Каримов Д.Н., Кривандина Е.А. и др. // Кристаллография. 2009. Т. 54. № 4. С. 642.
- 4. Федоров В.А., Каримов Д.Н., Комарькова О.Н. и др. // Кристаллография. 2010. Т. 55. № 1. С. 1225.
- 5. Сорокин Н.И., Каримов Д.Н., Сульянова Е.А. и др. // Кристаллография. 2010. Т. 55. № 4. С.702.
- 6. Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н. и др. // Кристаллография. 2012. Т. 57. № 1. С. 151.
- 7. Сульянова Е.А., Верин И.А., Соболев Б.П. // Кристаллография. 2012. Т. 57. № 1. С. 79.
- 8. *Petricek V., Dusek M., Palatinus L. //* Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic. 2006.
- 9. Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. № 2. P. 129.
- International Tables for Crystallography V. C / Ed. Wilson A.J.C. Dordrecht; Boston; London: Kluwer Acad. Publ., 1992.
- 11. *Мурадян Л.А., Максимов Б.А., Симонов В.И.* // Координац. химия. 1986. Т. 12. № 10. С. 1398.