= ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 537.226: 548.0

РЕФРАКТОМЕТРИЯ ОДНООСНО ЗАЖАТЫХ КРИСТАЛЛОВ ТГС С ПРИМЕСЬЮ *L*-ТРЕОНИНА

© 2013 г. В. И. Стадник, Ю. И. Кирык

Львовский национальный университет, Украина E-mail: vasylstadnyk@ukr.net Поступила в редакцию 19.12.2011 г.

Исследованы температурные и спектральные зависимости показателей преломления кристаллов триглицинсульфата с примесью *L*-треонина. Установлено, что внесение примеси приводит к ослаблению температурной зависимости показателей преломления. Рассчитаны электронная поляризуемость, рефракции, параметры ультрафиолетовых осцилляторов механически деформированных примесных кристаллов. Определены температурные коэффициенты смещения точки фазового перехода.

DOI: 10.7868/S0023476113040206

ВВЕДЕНИЕ

Физические свойства номинально чистых кристаллов группы триглицинсульфата (ТГС) довольно хорошо изучены [1–6]. Установлено, что эти кристаллы обладают высокой анизотропией показателей преломления n_i и двупреломления Δn_i [5], коэффициентов термического расширения и изменения величин n_i и Δn_i при фазовом переходе (ФП) (49°С). Эти кристаллы проявляют значительную чувствительность к наличию примесей и облучению [7], что приводит к уменьшению анизотропии их оптической индикатрисы. Наиболее полно изучено изменение показателей преломления и двупреломление при внесении в кристаллы ТГС примесей аланина [8], *L*-треонина и *L*-валина [9–11]. Введение примесей стабилизирует доменную структуру (релаксационные процессы стабилизации доменной структуры примесных кристаллов наблюдаются во всем исследуемом температурном диапазоне, тогда как для чистых кристаллов — только вблизи T_{C} [12, 13]. Установлено также, что введение примесей приводит к увеличению максимума диэлектрической проницаемости, уменьшению спонтанной поляризации и увеличению коэрцитивного поля [14 - 16].

В настоящей работе исследовано влияние примеси *L*-треонина и одноосного механического напряжения на показатели преломления кристаллов ТГС.

L-треонин — это аминокислота, имеющая химическую формулу CH₃CH(OH)CH(NH₂)COOH (C₄H₉NO₃) и отличающаяся от молекулы глицина группой С—CH₃(OH) [17]. Известно, что кристаллы ТГС с примесью треонина (*L*TTГС) растут асимметрично относительно затравки вдоль *b*- оси [18], а распределение примеси по объему кристалла является неоднородным, примесь сдерживает рост кристалла в направлении *b*-оси. Установлено, что при внесении примеси диэлектрическая проницаемость ε_{max} уменьшается по сравнению с чистым кристаллом [19]. Температура Кюри кристалла LTTГС несколько выше (T_c = = 50.4°С), чем для чистого кристалла ТГС (T_c = $= 49.0^{\circ}$ C). При увеличении концентрации примеси в растворе спонтанная поляризация уменьшается, а коэрцитивное поле увеличивается. В отличие от кристаллов ТГС с *L*- α -аланином для свежевыращенных образцов LTTГС величина поля смещения E_b существенно меньше, что приводит к значительному температурному гистерезису. Наличие примеси L- α -аланина приводит к монодоменизации образца, а примеси треонина – к четкой доменной структуре [19]. Эти данные дают основание ожидать значительных изменений оптических характеристик кристаллов *L*TTГС в сравнении с чистыми кристаллами ТГС или кристаллов ТГС с другими примесями.

Несмотря на определенный интерес к примесным кристаллам ТГС, в литературе практически отсутствуют исследования влияния одноосных напряжений на параметры их оптической индикатрисы. Цель данной работы – исследование влияния одноосного механического напряжения вдоль кристаллофизических осей X, Y, Z на температурные изменения показателей преломления n_i кристаллов LTTГС в температурном интервале, охватывающем ФП этого кристалла.

Ранее исследовалось влияние одноосного давления на спектральные и температурные зависимости двулучепреломления ряда изоморфных к *L*TTГС кристаллов и была установлена значительная барическая чувствительность электронной подсистемы этих кристаллов, что проявлялось в значительном смещении по энергетическому спектру положения эффективных полос ультрафиолетового (УФ) и инфракрасного (ИК) осцилляторов [11, 20, 21].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Анализ барических изменений главных показателей преломления *n_i* кристаллов *L*TTГС проводился на основе пьезооптических коэффициентов с использованием формулы

$$n_i(\lambda, T) = n_{io}(\lambda, T) - \frac{1}{2}\pi_{im}(\lambda, T)\sigma_m n_{io}^3(\lambda, T), \qquad (1)$$

где n_{io} — показатель преломления механически свободного кристалла *L*TTГС; π_{im} — абсолютные пьезооптические константы, которые рассчитывались на основе ранее полученных экспериментальных температурных и спектральных зависимостей двупреломления данного кристалла под действием одноосного напряжения вдоль главных кристаллофизических направлений. Температурно-спектральные зависимости двупреломления исследуемых кристаллов измерены интерференционным методом. Одноосное механическое напряжение осуществлялось с помощью специального приспособления, позволяющего достигать усилий до ~200 бар.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Установлено, что в исследуемом спектральном диапазоне (300–750 нм) дисперсия показателей преломления $n_i(\lambda)$ механически свободных и зажатых кристаллов нормальная и при приближении к краю поглощения резко возрастает. Одноосные давления не изменяют характера кривых $n_i(\lambda)$, изменяется только значение дисперсии $dn_i/d\lambda$ ($dn_x/d\lambda = 11.3 \times 10^{-5}$ и 11.0×10^{-5} , $dn_y/d\lambda = 7.5 \times 10^{-5}$ и 7.1×10^{-5} , $dn_z/d\lambda = 9.3 \times 10^{-5}$ и 9.0×10^{-5} в области $\lambda = 500$ нм для механически свободного и зажатого одноосными давлениями $\sigma_i = 200$ бар соответственно образцов) (рис. 1). Одноосное сжатие ведет к увеличению показателей преломления в среднем на величину $\partial n_i/\partial \sigma \approx 2 \times 10^{-6}$ бар⁻¹.

Температурные изменения показателей преломления n_i кристаллов *L*ТТГС в парафазе линейны, а в сегнетофазе – нелинейны (рис. 2). Видно, что в полярной фазе с температурой наиболее изменяются показатели преломления в *X*-направлении. Здесь выполняется соотношение $|\partial n_x/\partial T| >$ $> |\partial n_z/\partial T| > |\partial n_y/\partial T|$, хотя сами величины $\partial n_i/\partial T$ одноосно зажатых кристаллов несколько меньше, чем в механически свободных кристаллах. В свою очередь величины $|\partial n_i/\partial T|$ для примесных кри-

КРИСТАЛЛОГРАФИЯ том 58 № 4 2013

Рис. 1. Дисперсия показателей преломления механически свободных (светлые точки) и одноосно зажатых (темные точки) кристаллов ТГС с примесью *L*-треонина.

сталлов несколько меньше, чем для чистых кристаллов $T\Gamma C$, т.е. введение примесей L-треонина и одноосное сжатие приводит к уменьшению температурной чувствительности показателей пре-

Рис. 2. Температурные зависимости показателей преломления механически свободных (светлые точки) и одноосно зажатых (темные точки) кристаллов ТГС с примесью *L*-треонина. 1 – механически свободный кристалл; 2, 3, 4 – одноосно зажатый напряжением $\sigma_x = 200$, $\sigma_z = 200$ и $\sigma_y = 200$ бар соответственно.

ломления $n_i(T)$. На феноменологическом уровне последнее можно объяснить влиянием внутренних напряжений и уменьшением спонтанной поляризации примесных и одноосно сжатых кристаллов [22, 23].

Из рис. 2 также видно, что при действии давлений $\sigma_x = 200$ и $\sigma_y = 200$ бар точка ФП смещается в сторону низких температур: $T_c^X = 321.9$ и $T_c^Y = 322.2$ К, тогда как давление σ_z смещает последною в сторону более высоких температур $T_c^Z = 326.4$ К (для механически свободного кристалла $T_c^0 = 323.4$ К). При этом температурные коэффициенты смещения ФП составляют $\partial T_c/\partial \sigma_x = -0.0075$, $\partial T_c/\partial \sigma_y = -0.006$ и $\partial T_c/\partial \sigma_z = +0.015$ К/бар. "Суммарный" (гидростатический) коэффициент смещений точки ФП под влиянием одноосных напряжений составляет: $\partial T_c/\partial p = \sum_{i=1}^{3} \partial T_c/\partial \sigma_i = +0.0015$ К/бар. Эти результаты хорошо коррелируют с соответствующими результатами для чистого кристалла TГС [24, 25], где были найдены следующие значения: $\partial T_c/\partial \sigma_x = -7$, $\partial T_c/\partial \sigma_y = -8.5$ и $\partial T_c/\partial \sigma_z = 20$ К/кбар. Полученные нами коэффициенты являются несколько меньшими, что подтверждает увеличение жесткости кристаллов TГС при внесении примесей.

Данные небольшие расхождения могут быть обусловлены сложной структурой кристаллов ТГС и неоднозначностью вхождения примеси треонина в структуру кристалла. В процессе роста кристалла примесь входит в кристаллическую структуру кристалла ТГС, замещая, возможно, один глицин. Молекулы глицина I–III являются планарными в парафазе, тогда как в сегнетофазе молекула глицина I становится непланарной. Когда *L*-треонин замещает глицин I, спонтанная поляризация *P_c* становится фиксированной, и возникает поле смещения, которое изменяет все измеряемые диэлектрические параметры кристалла, а также смещает точку ФП. Кроме этого, значительное смещение точки ФП, очевидно, обусловлено действием одноосного напряжения на сегнетоэлектрические домены. Меньшие значения этих величин в кристалле *L*ТТГС по сравнению с чистым кристаллом обусловлены тем, что в примесных кристаллах домены имеют большие размеры и размытые края, а их концентрация уменьшается в процессе спонтанного старения образца.

В свою очередь примесь *L*-треонина также смещает точку $\Phi\Pi$ по сравнению с чистым кристаллом ($T_c = 323.4$ К для *L*ТТГС и $T_c = 322.2$ К для номинально чистого кристалла ТГС). Это свидетельствует о том, что примеси создают разные по пространственной ориентации механические и электрические поля. Можно сказать, что примесь *L*-треонина создает преимущественно напряжения вдоль оси *Z*. Действительно, поскольку одно-

осное напряжение σ_z ведет к увеличению T_c , то это может быть связано с ростом угла между плоскостями молекул глицина I в структуре номинально чистого кристалла ТГС и плоскостью симметрии, нормальной к оси $L^2 \parallel Y$, которые в парафазе совпадают, и тогда $P_c = 0$.

О соотношении компонент внутренних полей также можно судить по коэффициентам термического расширения номинально чистых и примесных кристаллов. Использование в роли "начальных" значений $\Delta l/l_i$, полученных нами, приводит к напряжениям в пределах 60–120 бар.

Если термическая деформация свободного образца равна α , то ее алгебраическая сумма с механической деформацией, обусловленной внутренними напряжениями, будет давать другое значение β , по которому можно рассчитать актуальные напряжения при известных коэффициентах упругой податливости s_{im} и коэффициентах относительного растяжения $\Delta l/l_0$:

$$\alpha = \frac{\Delta l}{l}; \quad \beta = \frac{\Delta l(T) + \Delta l(\sigma)}{l} = \alpha + \frac{\Delta l(\sigma)}{l}.$$
 (2)
Torga

β

или

$$_{ii} - \alpha_{ii} = s_{iijj} \sigma_{jj} \tag{3}$$

$$\sigma_x \approx \frac{-4.5 \times 10^{-5} \times 0.1}{4.2 \times 10^{-12} \times 10^4} \approx 100 \text{ fap},$$

$$\sigma_y \approx \frac{-1.4 \times 10^{-5} \times 0.1}{6.5 \times 10^{-12} \times 10^4} \approx 20 \text{ fap}, \qquad (4)$$

$$\sigma_z \approx \frac{+6.0 \times 10^{-6}}{9.7 \times 10^{-12} \times 10^4} \approx 70$$
 Gap.

Учтено, что элементы тензора упругой податливости: $s_{11} = 4.22 \times 10^{-12}$, $s_{22} = 6.41 \times 10^{-12}$, $s_{33} = 9.75 \times 10^{-12}$, и $\alpha_{ii} - \beta_{ii} = -4.5 \times 10^{-5}$ (*X*), -1.4×10^{-5} (*Y*), $+6.0 \times 10^{-5}$ (*Z*), а также

$$\sigma_x = \varepsilon_x / s_{xx}.$$
 (5)

То есть речь идет о напряжениях порядка 100 бар. С другой стороны, если принять во внимание барические коэффициенты смещения точки $\Phi\Pi$, то получим величины порядка 1–3 K, наблюдаемые в эксперименте.

При нагревании образца ТГС размеры знака напряжений вдоль осей Y и Z увеличиваются, что свидетельствует о внутренних напряжениях растяжения. Для примесных образцов коэффициенты расширения меньше, чем для номинально чистых. Это значит, что примесь создает поле, противоположное "внутреннему" полю термического происхождения, т.е. вдоль осей Y и Z эти поля по знакам аналогичны внешнему сжатию кристалла. По оси X при нагревании образец уменьшается (как при внешнем поле сжатия),

КРИСТАЛЛОГРАФИЯ том 58 № 4 2013

примесь уменьшает деформации сжатия, т.е. также действует в противоположном направлении, что соответствует растяжению образца.

Рассмотрим связь зависимостей $n_i(\lambda, \sigma)$ с другими характеристиками кристалла, вытекающими из дисперсионной формулы Зельмеера и формулы Лорентц–Лоренца, которая описывает рефракцию R_i и электронную поляризуемость α_i :

$$n_i^2 = 1 + \frac{B_{1i}\lambda^2\lambda_{01}^2}{\lambda^2 - \lambda_{01}^2} + \frac{B_{2i}\lambda^2\lambda_{02}^2}{\lambda_{02}^2 - \lambda^2},$$
 (6)

$$\alpha_i = \frac{3}{4\pi N} \frac{n^2 - 1}{n^2 + 2},\tag{7}$$

$$R_i = 4\pi/3 N_A \alpha = \frac{\mu n^2 - 1}{\rho n^2 + 2},$$
 (8)

где N – число частиц в единице объема, N_A – число Авогадро, μ – молярная масса, ρ – плотность кристалла, λ_{01} , λ_{02} – длины волн максимума полос поглощения УФ- и ИК-осцилляторов соответственно.

Из полученных зависимостей $n_i(\lambda, \sigma)$ и приведенных выше формул рассчитаны параметры, представленные в табл. 2, из которой видно, что давление ~200 бар увеличивает величины α_i в среднем на ~3 × 10⁻²⁶ см³, что по порядку величины совпадает с барическим изменением объема и линейных размеров образца вдоль на-

Таблица 1. Индуцированные примесями напряжения и барические смещения температур фазовых переходов примесного кристала ТГС

Кристалл	Примесные изменения							
	напря	іжени	я, бар	прираг	цения 2	<i>Г_с</i> , град		
Направление	X	Y	Ζ	X	Y	Ζ		
ТГС + треонин	-60	-55	130	0.4	0.45	2.6		

правления сжатия, полученных на основе закона Гука

$$(\Delta l/l_0)_i = s_{im}\sigma_m. \tag{9}$$

При давлении $\sigma_m \sim 200$ бар и $s_{im} \sim 6 \times 10^{-12} \text{ м}^2/\text{H}$ находим $\Delta l/l_0 \sim 10^{-4}$.

Исходя из (8), получаем соотношение

$$\frac{dR}{d\sigma} = -\left(\frac{\mu}{\rho^2} \frac{n^2 - 1}{n^2 + 2} \frac{d\rho}{d\sigma}\right)_n + \left(\frac{\mu}{\rho} \frac{6n}{(n^2 + 2)^2} \frac{dn}{d\sigma}\right)_N, \quad (10)$$

дающее возможность оценить вклады в барические изменения величин R_i от слагаемых $\frac{\partial \rho}{\partial \sigma}$ и $\frac{\partial n}{\partial \sigma}$. Используя известные численные значения для кристаллов *L*TTГС [3, 27]: $\mu = 355$ г/моль, $\rho =$ = 1.67 г/см³, $\frac{\partial \rho}{\partial \sigma} \cong s_{im} \approx 0.6 \times 10^{-11}$ бар⁻¹, $n_i \approx 1.5$ и

Таблица 2. Параметры оптической индикатрисы механически свободных и одноосно зажатых кристаллов ТГС с примесью *L*-треонина

Пара- метр	Характеристика	Направление						
		X		Y		Ζ		
		$\sigma = 0$ бар	200 бар	$\sigma = 0$ бар	200 бар	$\sigma = 0$ бар	200 бар	
400	n _i	1.60987	1.61035	1.49979	1.49999	1.57370	1.57412	
500		1.59465	1.59499	1.48913	1.48963	1.56181	1.56231	
700		1.58012	1.58054	1.48115	1.48161	1.55100	1.55144	
400	<i>−∂n_i/∂</i> λ, 10 ⁻⁵ нм ⁻¹ (294К)	17.51	17.33	11.01	10.91	14.02	14.00	
500		11.32	11.02	7.52	7.42	9.10	9.06	
700		8.7	8.34	2.44	2.42	3.01	2.95	
СФ*	$-\partial n_i/\partial T$, 10 ⁻⁵ , K ⁻¹	4.60	4.51	1.10	1.07	4.41	4.37	
ПΦ*		8.70	8.40	1.50	1.45	2.81	2.78	
λ _{0<i>i</i>} , нм	1	111.71	111.76	98.80	98.85	102.11	102.15	
$B_i \times 10^6$	^б , нм ⁻²	176.21	176.16	134.52	134.47	120.80	120.76	
$\alpha_i \times 10^2$	²⁵ , cm ³	7.956	8.268	6.778	6.981	7.602	7.955	
R_i , см ³		78.75	78.80	67.05	67.11	75.21	75.26	

* ПФ и СФ – параэлектрическая и сегнетоэлектрическая фазы соответственно.

КРИСТАЛЛОГРАФИЯ том 58 № 4 2013

 $\frac{\partial n}{\partial \sigma} \cong 2 \times 10^{-6} \, \text{бар}^{-1}$, получим для первого слагаемого $0.8 \times 10^{-4} \, \text{бар}^{-1}$, для второго $-2.1 \times 10^{-4} \, \text{бар}^{-1}$, т.е. геометрический фактор составляет ~28% общего барического приращения рефракции *R*.

На основе формулы Зельмеера с одним осциллятором можно получить

$$\frac{\partial n}{\partial \sigma} \cong \frac{1}{2n} \frac{e^2}{mc_0^2} \times \left\{ \frac{\lambda^2 \lambda_0^2}{\lambda^2 - \lambda_0^2} \left[f \frac{\partial N}{\partial \sigma} + N \frac{\partial f}{\partial \sigma} \right] + \frac{2Nf \lambda_0 \lambda^4}{(\lambda^2 - \lambda_0^2)^2} \frac{\partial \lambda_0}{\partial \sigma} \right\} = (11)$$
$$= 0.03 \frac{\partial f}{\partial \sigma} + 10^{-7} f + 3 \times 10^{-6} f \frac{\partial \lambda_0}{\partial \sigma},$$

откуда следует, что преобладающий вклад в барические изменения показателей преломления да-

ют составляющие с $\frac{\partial f}{\partial \sigma}$ и $\frac{\partial \lambda_0}{\partial \sigma}$.

Барические изменения показателей преломления *n_i* позволяют оценить соответствующие изменения ширины запрещенной зоны в соответствии с соотношением Mocca [28]:

$$n^4 E_g = \text{const},$$
 (12)

откуда следует

$$\frac{\partial E_g}{\partial \sigma} = -\frac{4}{n} E_g \frac{\partial n}{\partial \sigma}.$$
 (13)

По известным значениям $\frac{\partial n}{\partial \sigma} \sim 2 \times 10^{-6}$ бар⁻¹, $n_i \sim 1.57$ и $E_g \sim 6.2$ эВ находим, что величина барического смещения ширины запрещенной зоны составляет $\frac{\partial E_g}{\partial \sigma} \sim 3.2 \times 10^{-5}$ эВ/бар. Барическое смещение эффективного УФ-осциллятора оказалось практически таким же $\left(\frac{\partial \lambda_0}{\partial \sigma} \approx (2-5) \times 10^{-3}$ Å/бар \approx

Таким образом, исследованы температурные и спектральные зависимости показателей преломления n_i одноосно зажатых кристаллов ТГС с примесью 5% (весовое содержание) *L*-треонина. Установлено, что внесение примеси приводит к ослаблению температурной зависимости величин n_i для примесных кристаллов ТГС. Наблюдаемые изменения можно связать с известным ростом жесткости примесных кристаллов, уменьшением спонтанной поляризации, заменой компонент рефракций связей треонина или спонтанным электрооптическим эффектом. Рассчитаны электронная поляризуемость α_i , рефракции R_i , параметры УФ (λ_{0i} , B_{1i}) осцилляторов механически деформированных примесных кристаллов ТГС. Установлено, что одноосные напряжения увеличивают рефракции R и поляризуемость α_i и ведут к изменениям параметров эффективных осцилляторов. Показано, что увеличение показателя преломления под действием одноосного давления в основном обусловлено увеличением рефракций (~72%) за счет изменения ширины запрещенной зоны и длинноволнового смещения максимума полосы УФ-поглощения и плотности эффективных осцилляторов (~28%) примесного кристалла ТГС.

Определены температурные коэффициенты смещения точки $\Phi \Pi \partial T_c / \partial \sigma_m$, которые несколько меньше, чем в чистых кристаллах ТГС, что подтверждает увеличение жесткости кристаллов ТГС при внесении примесей.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Сонин А.С., Ломова Л.Г //* Изв. АН СССР. Сер. физ. 1965. Т. 29. № 6. С. 965.
- 2. Ломова Л.Г., Сонин А.С., Регульская Г.А. // Кристаллография. 1969. Т. 13. № 1. С. 90.
- 3. *Желудев И.С.* Основы сегнетоэлектричества. М.: Атомиздат, 1973. 324 с.
- Романюк Н.А., Костецкий А.М., Виблый И.Ф. // Укр. физ. журн. 1976. Т. 21. № 2. С. 207.
- 5. Кисловский Л.Д., Галанов Е.К. // Докл. АН СССР. 1966. Т. 170. № 2. С. 327.
- Иванов Н.Р., Шувалов Л.А., Кисловский Л.Д. // Докл. АН СССР. 1966. Т. 171. С. 1092.
- 7. Романюк Н.А., Костецкий А.М. // Кристаллография. 1981. Т. 26. № 1. С. 125.
- 8. Романюк Н.А., Дикий С.С., Костецкий А.М., Габа В.М. // Физ. электроника. 1983. Т. 26. С.76.
- 9. Стадник В.И., Кардаш В.И., Романюк Н.А., Станковская Я. // Укр. физ. журн. 1996. Т. 41. № 10. С. 940.
- 10. Стадник В.И., Кирык Ю.И., Матвиишин И.М. // Укр. физ. журн. 2010. Т. 55. № 4. С. 431.
- 11. Стадник В.И., Романюк Н.А., Кирик Ю.И. // Кристаллография. 2010. Т. 55. № 6. С. 1169.
- 12. Никишина А.И., Дрождин С.Н., Голицына О.М. // ФТТ. 2006. Т. 46. Вып. 6. С. 1073.
- Голицына О.М., Дрождин С.Н. // ФТТ. 2010. Т. 52. Вып. 1. С. 129.
- 14. Choudhury R.R., Chitra R., Ramanadham M. // Acta Cryst. B. 2003. V. 59. P. 647.
- 15. *Abu El-Fadl A.* // Cryst. Res. Technol. 1999. V. 34. № 8. P. 1047.
- Stankowska J., Bochynski Z., Czarnecka A., Dejneka L. // Ferroelectrics. 1991. V. 124. P. 55.
- Stankowska J., Mielcarek S., Czarnecka A., Musial M. // Ferroelectrics. 1994. V. 158. P. 169.
- Stankowska J., Czarnecka A., Mielcarek S. // Ferroelectrics. 1995. V. 172. P. 221.

КРИСТАЛЛОГРАФИЯ том 58 № 4 2013

- Stankowska J., Czarnecka A., Kwitkowska G. // Ferroelectrics. 1990. V. 108. P. 325.
- 20. Романюк Н.А., Мыцык Б.Г., Варикаш В.М. // Изв. АН БССР. Сер. физ.-мат. наук. 1980. № 6. С.105.
- 21. *Мыцык Б.Г., Романюк Н.А.* // Укр. физ. журн. 1983. Т. 28. № 4. С. 538.
- 22. Stankowska J., Czarnecka A., Mielcarek S. // Ferroelectrics. 1995. V. 172. P. 221.
- 23. *Czarnecka A., Stankowska J.* // Phys. Status Solidi. B. 1988. V. 207. № 2. P. 557.
- 24. Stankowska J., Polovinko I., Stankowski J. // Ferroelectrics. 1978. V. 21. P. 529.
- 25. Романюк Н.А., Мыцык Б.Г., Варикаш В.М. // ФТТ. 1983. Т. 25. № 6. С. 1670.
- 26. *Мыцык Б.Г., Романюк Н.А. //* Изв. АН СССР. Сер. физ. 1983. Т. 47. № 4. С. 674.
- 27. Сонин А.С., Перфилова В.Э., Василевская А.С. // Изв. АН СССР. Сер. физ. 1965. Т. 29. № 6. С. 969.
- 28. *Moss T.S.* Optic properties of semiconductors. London. 1961. 279 p.