СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736

РЕНТГЕНОГРАФИЧЕСКОЕ И НЕЙТРОНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ДЕФЕКТНОЙ СТРУКТУРЫ КРИСТАЛЛОВ "AS GROWN" НЕСТЕХИОМЕТРИЧЕСКОЙ ФАЗЫ $Y_{0.715}$ Ca $_{0.285}$ F $_{2.715}$

© 2013 г. Н. Б. Болотина¹, А. И. Калюканов^{1, 2}, Т. С. Черная¹, И. А. Верин¹, И. И. Бучинская¹, Н. И. Сорокин¹, Б. П. Соболев¹

¹ Институт кристаллографии РАН, Москва ² Филиал ФГУП "НИФХИ им. Л.Я. Карпова", Обнинск E-mail: bolotina@ns.crys.ras.ru
Поступила в редакцию 13.06.2012 г.

Работа открывает серию исследований дефектного строения нестехиометрических фаз $R_{1-y}\mathrm{Ca}_y\mathrm{F}_{3-y}$ со структурой типа тисонита (LaF₃). В структуре монокристалла $Y_{0.715}\mathrm{Ca}_{0.285}\mathrm{F}_{2.715}\,\mathrm{c}$ малой тисонитовой ячейкой (пр. гр. $P6_3/mmc$, a=3.9095(2), c=6.9829(2) Å; Z=2; $R_w=2.16\%$) впервые зафиксированы смещения катионов Y^{3+} и анионов F^{2-} с осей 6_3 . Рентгенодифракционная картина содержит слабые сателлиты, недостаточные для структурных расчетов. Структурный тип LaF_3 стабилизируется "вверх" и "вниз" по температуре благодаря анионным вакансиям и симметризующей роли катионов Ca^{2+} , локализованных на осях 6_3 . В нестехиометрической фазе $Y_{0.715}\mathrm{Ca}_{0.285}\mathrm{F}_{2.715}$ при $120^\circ\mathrm{C}$ проводимость по ионам фтора на пять порядков выше, чем в стехиометрической фазе β -YF $_3$. Переход в суперионное состояние вызван нарушением стехиометрии и не связан с реконструктивным фазовым превращением.

DOI: 10.7868/S0023476113040073

ВВЕДЕНИЕ

В 42 бинарных системах MF_2 – RF_3 , образованных фторидами щелочноземельных элементов $(M- \mathbf{\mathbf{U}} \mathbf{\mathbf{3}} \mathbf{\mathbf{3}} - \mathbf{Ca}, \mathbf{Sr}, \mathbf{Ba})$ и редкоземельных элементов ($R - \mathbf{P39} - 14$ элементов, не считая Sc, химически отличающегося от РЗЭ, радиоактивного Рт и частично восстанавливающегося Eu), широко распространены сильные нарушения стехиометрии [1, 2]. Двухкомпонентные нестехиометрические фазы в этих системах преобладают, составляя ~75% от всех обнаруженных фаз. Среди нестехиометрических фаз практический интерес представляют два доминирующих по численности семейства: $M_{1-x}R_xF_{2+x}$ типа флюорита (CaF₂) и $R_{1-\nu}M_{\nu}F_{3-\nu}$ типа тисонита (LaF₃). Фазы переменного состава $R_{1-y}M_y$ F_{3-y} на основе α - RF_3 (R== Er-Lu, Y) со структурой типа α-UO₃ термически нестабильны.

Флюоритовые $M_{1-x}R_xF_{2+x}$ и тисонитовые $R_{1-y}M_yF_{3-y}$ фазы представлены в этих системах почти поровну, составляя ~54 и ~46% от общего числа. Первые образуются во всех 42 системах, вторые — в 36. Термическая стабилизация структурного типа LaF_3 изоморфными замещениями R^{3+} на M^{2+} проявляется в образовании тисонитовых фаз в системах с теми RF_3 (R=Tb-Lu, Y), которые не имеют тисонитовых модификаций. Флюоритовые и тисонитовые фазы открыты одновременно в 1914 г. [3] при изучении фазовой

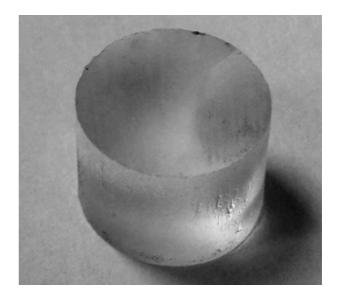
диаграммы системы CaF_2 — YF_3 . Составы сосуществующих флюоритовой $Ca_{0.65}Y_{0.35}F_{2.35}$ и тисонитовой $Y_{0.62}Ca_{0.38}F_{2.62}$ фаз были определены приближенно, но они свидетельствуют о сильных нарушениях стехиометрии в обоих типах структур. Исследования фазовых диаграмм более 200 систем MF_m — RF_n ($m < n \le 4$), выполненные в ИК РАН [1], подтвердили этот вывод.

Дефектная структура флюоритовых фаз $M_{1-x}R_xF_{2+x}$ стала изучаться намного позже их открытия [4, 5]. На сегодняшний день исследовано строение более 50 таких фаз. Их главная особенность — образование кластеров структурных дефектов нанометровых размеров, аккумулирующих высокозарядные катионы R^{3+} , междоузельные анионы фтора F_{int}^- и анионные вакансии $V_{\rm F}$. Интерес к кластерной структуре фаз $M_{1-x}R_xF_{2+x}$ связан с появлением у кристаллов новых, обусловленных ею, полезных свойств и "модельностью" этих материалов с регулируемой объемной наноструктурированностью [6] для нанонауки.

Структурные исследования тисонитовых фаз $R_{1-y}M_yF_{3-y}$ значительно отстают от работ по флюоритовым фазам, несмотря на то что тисонитовые фазы оказались лучшими суперионными проводниками с проводимостью по ионам фтора. Структурные дефекты и суперионная проводимость тисонитов взаимосвязаны. Однако данные о дефектном строении кристаллов $R_{1-y}M_vF_{3-y}$

немногочисленны и неоднозначны. Их недостаточно даже для решения принципиального вопроса о механизме ионного транспорта.

Структурная симметрия тисонитовых фаз представлена в литературе двумя гексагональными ячейками: "малой" и "большой". Разные пр. гр. $P6_3/mmc$ (Z=2) и $P\bar{3}c1$ (Z=6) определялись в кристаллах разного происхождения в стандартных условиях. Малая ячейка служит для описания высокосимметричной структуры с одной независимой позицией для катионов и двумя независимыми позициями для анионов. Большая ячейка получается из малой преобразованием базиса, A=2a+b; B=-a+b; C=c, и содержит анионы фтора в трех независимых позициях.


К настоящему времени в малой ячейке рентгенографически исследована структура тисонитовых монокристаллов $Gd_{0.8}Ca_{0.2}F_{2.8}$ [7], методом Ритвельда изучены порошки $Yb_{0.75}Sr_{0.25}F_{2.75}$ [8] и $Eu_{0.85}Ba_{0.15}F_{2.85}$ [9]. Большая ячейка и закон двойникования установлены для тисонитовых фаз $La_{0.85}Sr_{0.15}F_{2.85}$ [10], $La_{0.96}Ba_{0.04}F_{2.96}$ и $Nd_{0.95}Ca_{0.05}F_{2.95}$ [11] по данным нейтронографии. Согласно [12], эти структурные формы RF_3 (R = La - Eu) переходят одна в другую с изменением температуры. Переход, который нельзя отнести к полиморфному, необычен тем, что сильно размыт по температуре и имеет низкую теплоту, тем не менее, фиксируемую методом термического анализа. Все температуры наблюдавшихся переходов выше 1000°C. Малая ячейка характерна для высокотемпературных состояний RF_3 . При понижении температуры образуется более упорядоченная фаза с большой ячейкой.

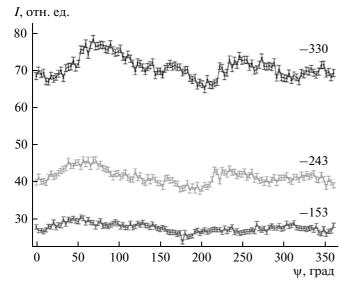
Можно полагать, что неконтролируемые примеси, как и контролируемое изоморфное введение M^{2+} в RF_3 , стабилизируют высокотемпературную (разупорядоченную) фазу. Это предположение о взаимоотношении наблюдавшихся двух фаз трифторидов РЗЭ в разных условиях, в том числе и стандартных, структурно не изучено. Располагая кристаллами с малой и большой ячейками, можно поставить вопрос об их структурном взаимоотношении. Исследования ионной проводимости дадут информацию о ее связи с дефектным строением тисонитовых фаз $R_{1-y}M_yF_{3-y}$, являющихся на сегодняшний день лучшими фторпроводящими твердыми электролитами.

Задача данной работы — рентгенографическое и нейтронографическое изучение структуры кристаллов тисонитовой нестехиометрической фазы $Y_{0.715}Ca_{0.285}F_{2.715}$ "as grown" с целью уточнения ее дефектного строения, связанного с суперионной проводимостью по ионам фтора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рост кристаллов проводился направленной кристаллизацией расплава методом Бриджмена в графитовом тигле, скорость опускания которого

Рис. 1. Часть кристаллической були $Y_{0.285}$ Cа $_{0.715}$ F $_{2.715}$.


составляла 12 мм/ч. Реактив YF_3 предварительно фторировался в расплаве продуктами пиролиза тетрафторэтилена. Температурный градиент в зоне роста 35 град/см. Диаметр кристаллов 12 мм при длине до 50 мм. Часть прозрачной кристаллической були показана на рис. 1. Кристаллы охлаждались до комнатной температуры со скоростью \sim 50 град/ч без последующей термической обработки (отжига), что позволяет охарактеризовать их состояние общепринятым термином "as grown".

Рентгенографический эксперимент проведен на образце сферической формы диаметром 0.22 мм при комнатной температуре на автоматическом дифрактометре Xcalibur S Oxford Diffraction с ССD-детектором (Мо K_{α} -излучение, графитовый монохроматор). Обработка эксперимента по программе CrysAlis Pro [13] предусматривала учет необходимых поправок, в том числе на поглощение рентгеновского излучения в образце.

Дополнительный эксперимент на нейтронном излучении проведен для сбора более детальной информации об анионной подрешетке. Интегральные интенсивности от монокристаллического образца сферической формы диаметром 5.1 мм получены на четырехкружном дифрактометре Huber с точечным детектором на монохроматическом пучке нейтронов (Си (331)-монохроматор) на реакторе ВВР-ц в филиале ФГУП НИФХИ им. Л.Я. Карпова, г. Обнинск. Внесение поправок на дрейф, фактор Лоренца и обработка измеренных интегральных интенсивностей по алгоритмам Лемана—Ларсена [14] и Гранта—Гейба [15] проводились с использованием программы ASTRA [16]. Основные кристаллографические ха-

Таблица 1. Основные кристаллографические характеристики, данные рентгеновского и нейтронного экспериментов и результаты уточнения структуры кристалла $Y_{0.715}$ Ca_{0.285}F_{2.715}

Метод	Рентген	Нейтроны		
T, K	295	295		
Диаметр образца, мм	0.22	5.1		
μ , mm^{-1}	23.22	0.0014		
Учет поглощения	multi-scan			
Сингония, пр. гр., Z	Гексагональная, <i>P</i> 6 ₃ / <i>mmc</i> , 2	Гексагональная, $6_3/mmc$, 2		
$a, c, ext{Å}$	3.9095(2), 6.9829(2)	3.908(1), 6.986(1)		
V, Å ³	92.429(7)	92.42(1)		
D_{x} , Γ/cm^{3}	4.5463(4)	4.55(1)		
Излучение; λ, Å	$MoK_{\alpha}, 0.7107$	Нейтроны, 1.168		
Дифрактометр	Xcalibur S	HUBER		
Тип сканирования	ω	$\omega/2\theta$		
$\theta_{ m max}$, град	58.91	71.09		
Пределы h, k, l	-9 < h < 9, -9 < k < 8, -16 < l < 16	-6 < h < 6, -6 < k < 6, 0 < l < 11		
Число рефлексов: измеренных/независимых (N_1) , R_{int} , $R_{e.s.d}$ % то же для $I > 3\sigma(I)$ (N_2)	6243/296, 5.08, 1.99 2449/152, 4.48, 1.16	374/-/- 284/-/-		
Метод уточнения	MHK по F	МНК по F		
Весовая схема	$w = 1/\sigma^2(F) + 0.0001F^2$	$w = 1/\sigma^2(F)$		
Число уточняемых параметров	23	26		
$R(N_1)/R_w(N_1), \%$	4.07/2.16	9.17/7.05		
$R(N_2)/R_w(N_2), \%$	1.54/1.80	7.32/6.91		
Параметр качества $S(N_1)/S(N_2)$	0.96/1.17	3.60/4.10		
Остаточные пики $\Delta ho_{min}/\Delta ho_{max}$	$-0.69/0.99 \ \text{ခ/Å}^3$	$-0.72/0.81$ см/Å 3		
Программы	Jana2006	Jana2000, Jana2006		

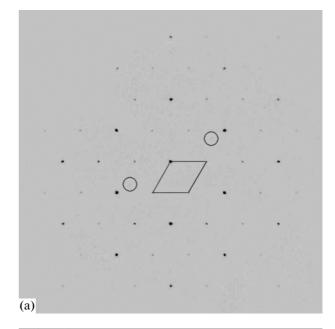
Рис. 2. Зависимость интенсивности нейтронных рефлексов от угла поворота вокруг нормали к отражающей плоскости.

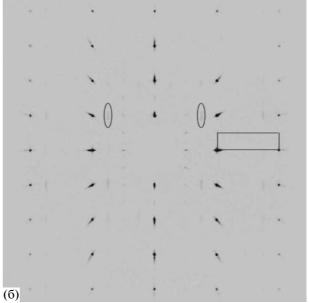
рактеристики образцов, данные нейтронного и рентгеновского экспериментов и параметры уточнения структуры кристаллов $Y_{0.715}Ca_{0.285}F_{2.715}$ приведены в табл. 1.

По сравнению с рентгеновским экспериментом в нейтронном эксперименте интенсивности эквивалентных рефлексов различались существенно. Дополнительные измерения выявили зависимость интенсивностей рефлексов от угла поворота вокруг нормали к отражающей плоскости **H**(*hkl*), как показано на рис. 2. Интенсивности нейтронных рефлексов подвержены заметному влиянию экстинкционных эффектов, и указанная зависимость может быть следствием анизотропии экстинкции в числе других возможных причин. Поправки на вторичную экстинкцию в формализме Беккера-Коппенса вводились при уточнении структуры по программе Jana [17].

Исследование проводимости по ионам фтора кристаллов $Y_{0.715}Ca_{0.285}F_{2.715}$ выполнено на части полированного диска площадью 30 мм 2 и толщи-

ной 2.2 мм. На торцы образца наносили серебряные электроды (паста Degussa). Электрофизические измерения проведены в вакууме \sim 1 Па в интервале температур 450—831 К. Электропроводность определена методом импедансной спектроскопии в диапазоне частот $5-5\times10^5$ Гц (прибор Tesla BM-507). Наличие в спектрах импеданса блокирующего эффекта от инертных электродов (Ag) указывает на преимущественно ионный характер проводимости.


УТОЧНЕНИЕ СТРУКТУРЫ


Двумерный детектор позволяет получить рентгеновскую дифракционную картину от монокристалла в узлах и междоузлиях обратной решетки. Дифракция от кристалла $Y_{0.285}Ca_{0.715}F_{2.715}$ в двух взаимно перпендикулярных сечениях представлена на рис. За (плоскость гексагональных сеток обратной решетки с индексами узлов l = 2) и 36 (сечение содержит векторы $\mathbf{a}^* + \mathbf{b}^*$, \mathbf{c}^* и нулевой узел обратной решетки). Сателлиты проявляются как едва заметные точки на четвертях длинных диагоналей ромбов (рис. 3а), которые в другой проекции (рис. 36) оказываются вытянутыми вдоль с* слабыми штрихами. Сателлитов мало, и они слишком слабые для эффективного участия в структурных расчетах. Тем не менее дополнительные рефлексы, единообразно расположенные в междоузлиях обратной решетки, с определенностью свидетельствуют о процессах сверхструктурного упорядочения, а их штрихообразная форма указывает на незавершенность этих процессов.

Структура кристаллов с P3Э закономерно меняется с увеличением атомного номера элемента и соответствующими изменениями электронной структуры. Поэтому в кристаллах $R_{1-y}M_y\mathrm{F}_{3-y}$ с другими P3Э можно ожидать появления более четких признаков упорядочения.

Основные рентгеновские рефлексы определяют гексагональную ячейку с a = 3.9095(2), c == 6.9829(2) Å, содержащую две формульные единицы $Y_{0.715}Ca_{0.285}F_{2.715}$. Структурные параметры уточнялись методом наименьших квадратов в малой ячейке по рентгеновским и нейтронным данным. Стартовый набор структурных параметров заимствован из [7, 18]. Катионы иттрия и кальция размещались в смешанной позиции 2c (1/3, 2/3, 1/4). Занятые анионами фтора позиции 4f(1/3,2/3, 0.57) и 2b (0, 0, 1/4) обозначаются далее как F1 (F_{4f}) и F2 (F_{2b}). Процедура уточнения включает в себя пять этапов с пошаговыми изменениями структурной модели. Подробно представлены этапы рентгеноструктурного анализа, результаты которых затем сопоставляются с результатами нейтроноструктурного анализа.

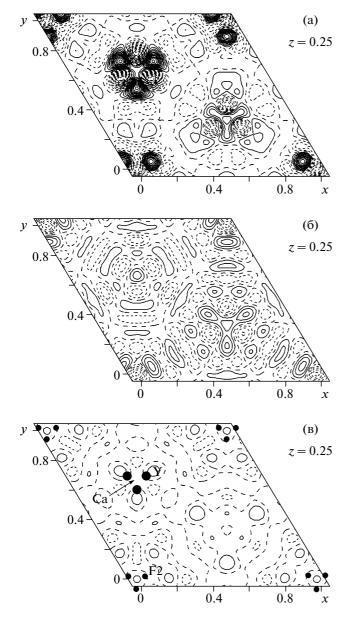

Этап 1. Все атомы стартового набора занимают частные позиции на осях симметрии, поэтому

Рис. 3. Дифракция от кристалла $Y_{0.285}Ca_{0.715}F_{2.715}$ в двух взаимно перпендикулярных сечениях: а — плоскость гексагональных сеток обратной решетки на высоте l=2; б — плоскость содержит векторы $\mathbf{a}^*+\mathbf{b}^*,\mathbf{c}^*$ и нулевой узел решетки. Два слабых сателлита обведены кружками; элементарная ячейка обратной решетки выделена сплошными линиями.

уточнялись только *z*-координата атома F1 и анизотропные параметры атомных смещений (тепловые параметры). Значения факторов расходимости по 296 независимым рефлексам составили R = 9.18, $R_w = 5.35\%$; по 152 значимым рефлексам с интенсивностями $I > 3\sigma(I)$ R = 3.93, $R_w = 4.65\%$. Карта разностного синтеза Фурье (рис. 4а) содержит остаточные пики электронной плотности

Рис. 4. Разностный синтез Фурье электронной плотности кристалла $Y_{0.715}$ Са $_{0.285}$ F $_{2.715}$, сечение элементарной ячейки плоскостью z=0.25: а — атомы на осях симметрии; б — атомы смещены с осей; в — позиция Y/Са расщеплена на Y и Ca; F2 расщеплена на F2 и F3. Позиции Y_{6h} и F2 (F_{6h}) обозначены большими и малыми кружками соответственно. Позиция Ca_{2c} центрирует треугольник с вершинами Y_{6h} . Шаг изолиний — 0.5 э/ A^3 .

вблизи позиций атомов Y/Ca (1/3, 2/3, 1/4) и F2 (0, 0, 1/4). Подобные пики наблюдались на других картах вблизи позиции атома F1.

Этап 2. Смешанная позиция Y/Са сдвинута из 2с в 6h (0.310(1), 0.620(1), 1/4), позиция F2 из 2b (0, 0, 1/4) в 6h (-0.034(2), -0.068(4), 1/4) и позиция F1 из 4f (1/3, 2/3, 0.57) в 12k (0.312(3), 0.625(5), 0.5717(4)). Факторы расходимости суще-

ственно понизились до R = 5.61, $R_w = 2.65\%$ по всем рефлексам; R = 1.96, $R_w = 2.12\%$ по значимым рефлексам. Карта Фурье для $\Delta \rho(xyz)$ заметно очистилась (рис. 46). Таким образом, сдвиг можно полагать доказанным.

Этап 3. Возникают сомнения, что катионы Y и Са ведут себя синхронно, получив степень свободы. Как отмечалось ранее, щелочноземельный катион M^{2+} выступает "симметризатором" твердого раствора $R_{1-y}M_yF_{3-y}$ в системах с теми RF_3 (R= Tb—Lu, Y), которые не имеют тисонитовых модификаций. В качестве эксперимента часть атомов Са вернули в позицию 2c и уточнили его вклад в заселенность позиций 2c и 6h. Суммарная заселенность по кальцию фиксировалась из расчета 0.285 Са на формульную единицу. В результате все атомы Са вернулись на ось симметрии в позицию 2c, а все атомы Y остались в 6h. Значения R-факторов снизились до R=4.42, $R_w=2.40\%$ (R=1.82, $R_w=2.06\%$ по значимым рефлексам).

Этап 4. Слабые остаточные пики наблюдались на оси выше и ниже первоначальной несмещенной позиции F2. Продолжая уточнение структуры, часть атомов фтора переместили из F2 в позицию 4e для F3 (F_{4e}) (0, 0, 0.25 ± 0.06). Значения R-факторов составили R = 4.07, R_w = 2.16% (R = 1.54, R_w = 1.80% по значимым рефлексам). Карта разностного синтеза Фурье приведена на рис. 4в. Структура депонирована в базу данных ICSD (N Φ 424694).

Этап 5 (альтернативный этапу 4). Не добавляя F3, переместили F2 из 6h в другую правильную систему точек 12k (x, 2x, z), связанных по координате $z=0.25\pm\delta$. Более высокие значения факторов расходимости R=4.20, $R_w=2.26\%$ (R=1.69, $R_w=1.92\%$ по значимым рефлексам) заставили вернуться к результатам предыдущего этапа.

Заселенности анионных позиций F1 и F2, а затем F1 (F_{12k}), F2 (F_{6h}) и F3 (F_{4e}) уточнялись на каждом этапе (суммарная заселенность по фтору фиксировалась из расчета 2.715 атомов фтора на формульную единицу). По результатам уточнений в пяти моделях позиция F1 заселена на 86—88%; позиции F2 и F3 заселены в сумме на 96—98%.

Структура уточнялась также по данным нейтронной дифракции последовательно в каждой из рассмотренных выше моделей. Значения *R*-факторов по нейтронным данным заметно выше. Причина, по всей вероятности, в особенностях нейтронного эксперимента. Ограничения снизу по длине волны излучения уменьшают объем доступного обратного пространства. Учет анизотропной экстинкции помог частично компенсировать различия в интенсивностях эквивалентных рефлексов, но проблема качества эксперимента осталась и требует технических решений. Результаты уточнения структуры сохраняли тенденцию к сниже-

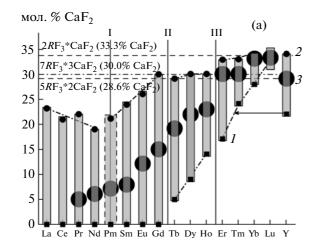
	Атомы	n	p	x/a	y/b	z/c	U, Å ²
I	Y	6 <i>h</i>	0.2383	0.3006(4)	0.6012(7)	0.25	0.0124(5)
II				0.2981(6)	0.5962(12)		0.012(2)
I	Ca	2c	0.285	1/3	2/3	0.25	0.0064(8)
II							0.002(10)
I	F1	12 <i>k</i>	0.295(2)	0.312(2)	0.624(4)	0.572(1)	0.075(3)
II			0.2858	0.300(2)	0.600(5)	0.5720(4)	0.057(5)
I	F2	6 <i>h</i>	0.21(5)	-0.042(6)	-0.083(11)	0.25	0.032(5)
II			0.19(6)	-0.034(12)	-0.07(2)		0.048(10)
I	F3	4 <i>e</i>	0.16(8)	0	0	0.188(3)	0.031(7)
II			0.22(9)			0.199(12)	0.035(8)

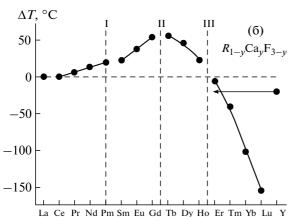
Таблица 2. Координаты, заселенность (p) и кратность (n) позиций, эффективные параметры тепловых колебаний (U) атомов в структуре $Y_{0.715}$ Са $_{0.285}$ F $_{2.715}$ по результатам рентгеновского (I) и нейтронного (II) экспериментов

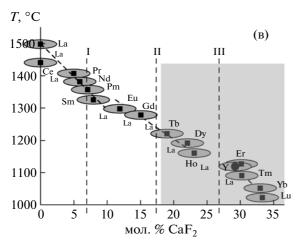
нию R-факторов, наблюдавшуюся для рентгеновских данных.

Подтвердились результаты о распределении вакансий по позициям фтора, полученные рентгендифракционным методом. Координаты атомов, уточненные по рентгеновским и нейтронным данным, различаются несущественно (табл. 2). Итоговые значения *R*-факторов уточнения по рентгеновским и нейтронным данным представлены в табл. 1. Нейтронные данные не усреднялись по группам эквивалентов, чтобы не искажать параметры анизотропной экстинкции.

предложенной модели структуры $Y_{0.715}$ Ca_{0.285}F_{2.715} атомы фтора F1 образуют симметричное окружение кальция, фиксированного в позиции 2c (1/3, 2/3, 1/4). Позиции F1 слегка смещены с оси и расщеплены на тройки, о которых можно рассуждать как об одной позиции, благодаря их равной удаленности от атома Са. В окружении 2с насчитывается восемь расщепленных позиций F1. Две из них локализуются выше и ниже атомов Са вдоль оси z на расстояниях 2.256 Å, три на расстояниях 2.710, 2.522, 2.522 Å выше атома Са и три ниже. Расстояния 2.256 Å короткие для Са-F, поэтому необходимая в присутствии Ca²⁺ вакансия по фтору наиболее вероятна в одной из соответствующих позиций. Три позиции F2 на одной высоте с атомами Са тоже расщеплены на тройки, но не равноудаленные от атомов Са. Три из девяти подпозиций реализуются на подходящих расстояниях 2.54 Å от атомов Са, остальные нереальны из-за слишком коротких расстояний Ca-F, как и все позиции F3. Катион Y в позиции 6h координирован менее симметрично и допускает в своем окружении различные комбинации анионов фтора в подпозициях F1, F2 и F3.


ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ


Работа открывает серию исследований структурных особенностей нестехиометрических тисонитовых фаз R_{1-y} Са $_y$ F $_{3-y}$ в зависимости от качественного (R), количественного (y) состава и термической обработки. Такой цикл необходимо предварить обсуждением физико-химических данных об образовании и положении всей совокупности фаз R_{1-y} Са $_y$ F $_{3-y}$ на фазовых диаграммах систем СаF $_2$ —RF $_3$ [19]. На этой основе строится выбор объектов исследований и постановка задач.


Стабилизация фаз R_{1-y} **Са**_y F_{3-y} вверх по температуре. Температуры плавления тисонитовых фаз меняются по ряду РЗЭ немонотонно, как и температуры плавления RF_3 . Эти изменения связаны, поскольку в тисонитовых фазах R_{1-y} Са_y F_{3-y} содержание RF_3 преобладает.

Термическая устойчивость RF_3 и морфотропные изменения их структуры определяются изменением по ряду РЗЭ ионных радиусов R^{3+} [20]. При уменьшении радиусов R^{3+} от La^{3+} к Lu^{3+} (лантаноидное сжатие) на 18% (к меньшему Lu^{3+}) наблюдаются три морфотропных смены структуры RF_3 . В это рассмотрение не включен фторид скандия, резко отличающийся от фторидов остальных РЗЭ химически и кристаллохимически. Изменения структуры в ряду RF_3 отражаются на положении фаз $R_{1-y}Ca_yF_{3-y}$ на фазовых диаграммах. Как видно из рис. 5а, морфотропия компонентов RF_3 прослеживается в фазах $R_{1-y}Ca_yF_{3-y}$ и делит их на четыре группы вертикалями I-III.

Первая группа включает в себя четыре фазы R_{1-y} Са $_y$ F $_{3-y}$ (R= La-Nd). Это твердые растворы на основе тисонитовых RF $_3$, устойчивых во всем интервале температур до плавления. Области гомогенности фаз R_{1-y} Са $_y$ F $_{3-y}$ близки (серые прямоугольники между точками I и I2 на рис. 5а), и

Рис. 5. Характеристики тисонитовых фаз R_{1-y} Са $_y$ F $_{3-y}$: а — области гомогенности (серые прямоугольники) и составы с максимальными температурами плавления (большие черные кружки); б — разности ΔT между максимальными температурами плавления тисонитовых фаз и RF $_3$; в — изменение координат максимумов (максимальных температур плавления фаз R_{1-y} Са $_y$ F $_{3-y}$ и содержания в них RF $_3$).

предельное содержание CaF_2 в них составляет 21 ± 2 мол. % (мольная доля y = 0.21). На кривых плавления тисонитовых фаз со всеми P3Э, кроме

La и Ce, наблюдаются аномалии — максимумы. На рис. 5а составы фаз с максимальными температурами плавления (составы максимумов) показаны большими черными кружками 3 в областях гомогенности. Размер кружков отвечает точности нахождения состава методом термического анализа ±2 мол. %. Большая ошибка связана с пологой формой кривых плавкости тисонитовых фаз. Наличие максимумов (конгруэнтный характер плавления) обеспечивает получение из расплава кристаллов с высокой однородностью. Максимумы – стабилизация тисонитовой структуры "вверх" по температуре. Превышение ΔT температур плавления максимумов тисонитовых фаз над температурами плавления компонента RF_3 приведено на рис. 5б. Точность оценивается как ±5°C.

Вторая группа из трех фаз R_{1-y} Са $_y$ F $_{3-y}$ образуется в системах с диморфными RF $_3$ (R=Sm-Gd) на основе тисонитовых высокотемпературных форм α -RF $_3$. Низкотемпературные модификации β -RF $_3$ этой группы имеют структурный тип β -YF $_3$. Твердых растворов на основе β -RF $_3$ не обнаружено. Величина $\Delta T > 50$ °C достигается на границе этой и третьей группы фаз, отмеченной пунктирной вертикалью II (рис. 5б).

Фазы R_{1-y} Са $_y$ F $_{3-y}$ третьей группы (R = Tb—Ho) отделены от ромбических β -RF $_3$ двухфазными областями. При эвтектических температурах фазы этих двух типов структуры находятся в равновесии. Значения ΔT проходят через максимум при переходе от фаз второй группы к третьей. Границы третьей группы фаз отмечены вертикальными пунктирами II и III. Они приходятся на границы морфотропной смены структуры в ряду RF $_3$.

Фазы четвертой группы R_{1-y} Cа_yF_{3-y} (R = Er-Lu, Y) в отличие от предыдущей при температурах эвтектик находятся в равновесии не с ромбическими β - RF_3 , а с высокотемпературными тригональными формами α - RF_3 (тип α - UO_3).

Фаза Y_{1-y} Са $_y$ F $_{3-y}$ относится к четвертой группе, располагаясь на границе с третьей группой. Для всех фаз четвертой группы величина ΔT отрицательна. Падение величины ΔT связано с ростом температур плавления α -RF $_3$ в ряду P3 Θ от E до Lu и Y при одновременном понижении температур полиморфных превращений α -RF $_3 \leftrightarrow \beta$ -RF $_3$. Θ то сопряжено и со скачкообразным ростом содержания Cа F_2 в составах максимумов (рис. 5а).

Несмотря на близкую к монотонной зависимость радиусов ионов R^{3+} от атомного номера P39, зависимости составов максимумов (рис. 5а) и разницы температур плавления ΔT тисонитовых фаз и RF_3 (рис. 5б) немонотонны и отражают морфотропные структурные изменения в ряду RF_3 .

Изменение координат максимумов (максимальных температур плавления фаз $R_{1-\nu}$ Са $_{\nu}$ $F_{3-\nu}$

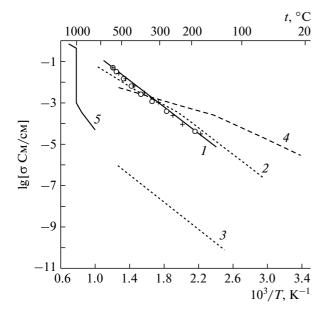
и содержания в них RF_3) представлено на рис. 5в. Зависимость разбивается на четыре участка с разным наклоном, которые охватывают группы P39, отвечающие морфотропным группам у компонентов RF_3 . Наиболее отчетливое изменение в ходе зависимостей приходится на участок между Gd и Tb (так называемый "гадолиниевый скачок", обусловленный особенностью электронной структуры гадолиния).

Стабилизация фаз R_{1-y} Са $_y$ F $_{3-y}$ вниз по температуре проявляется в понижении температур полиморфных превращений у RF $_3$ (R = Sm—Gd) при введении Ca^{2+} . Следствие — образование тисонитовых фаз в системах, компоненты которых не имеют тисонитовых модификаций (R = Tb—Lu, Y). Эти фазы плавятся конгруэнтно, сохраняются при охлаждении в метастабильном состоянии в монокристаллической форме и потому представляют практический интерес. Области распада тисонитовых фаз R_{1-y} Cа $_y$ F $_{3-y}$ с P3Э второй половины ряда не изучались при построении фазовых диаграмм из-за заторможенности этого процесса [19].

Упорядочение фаз $R_{1-y}Ca_yF_{3-y}$. В системе CaF_2 — YF_3 [21] впервые наблюдалось образование упорядоченной фазы с областью гомогенности и производной от тисонита структурой. Предел существования такой фазы оказался близок к составу $2YF_3 \cdot CaF_2$ или Y_2CaF_8 ($Y_{0.67}Ca_{0.33}F_{2.67}$). Дальнейшее понижение содержания CaF_2 в системе приводит к образованию неупорядоченной тисонитовой фазы $Y_{1-y}Ca_yF_{3-y}$ с областью гомогенности. Химический анализ выращенных кристаллов дал состав $5YF_3 \cdot 2CaF_2$, или $Y_5Ca_2F_{19}$ ($Y_{0.714}Ca_{0.286}F_{2.714}$). Это состав неупорядоченной тисонитовой фазы с конгруэнтным плавлением.

Переход от упорядоченной фазы к неупорядоченной трактовался как концентрационный [21]. Это нашло подтверждение в работе [22], согласно которой состав $Y_{0.71}\mathrm{Ca}_{0.29}\mathrm{F}_{2.71}$ с тисонитовой структурой плавится конгруэнтно при $1135\pm5^\circ\mathrm{C}$. Упорядоченная фаза плавится инконгруэнтно при очень близкой температуре и отделена от тисонитовой узкой двухфазной областью в 0.7 ± 0.2 мол. %. Независимо к определению состава тисонитовой фазы $5\mathrm{ErF}_3\cdot 2\mathrm{CaF}_2$ пришли авторы [23] при кристаллизации расплавов системы $\mathrm{CaF}_2\mathrm{-ErF}_3$, обогащенных фторидом эрбия. Получены прозрачные кристаллы, состав которых определен химическим анализом как $\mathrm{Er}_5\mathrm{Ca}_2\mathrm{F}_{19}$.

Упорядоченные фазы синтезированы при 1100° С в системах $CaF_2 - RF_3$ с R = Dy-Tm, Y [24]. Позже [19] к ним добавили системы с R = Tb, Yb, Lu. На рис. 5в область РЗЭ в системах, с фторидами которых [19] наблюдались упорядоченные фазы, выделена серым прямоугольником. Также в [19] показано, что для систем с R = Tm-Lu при


этой температуре тисонитовые фазы плавятся. В результате они были получены в [24] не твердофазным отжигом, как пишут авторы, а быстрой кристаллизацией расплава.

Авторы [25] синтезировали упорядоченные фазы с R = Tb-Yb, Y выдержкой компонентов при 900-1100°C до двух-трех недель и резкой закалкой (менее 3 с). Для всех РЗЭ, кроме Үь, отмечается совпадение данных о фазовом составе с [24]. К температурным условиям получения фаз в этой работе относится сказанное выше о плавлении части составов. Длительная выдержка расплавов могла привести к изменениям состава в результате инконгруэнтного испарения. В [25] предложен состав упорядоченных фаз $R_{0.7}$ Ca_{0.3}F_{2.7} (R = Tb-Yb, Y) и приводятся параметры моноклинной сверхструктурной ячейки. Этот состав показан штрихпунктирной горизонталью на рис. 5а, и, как видно из рисунка, незначительно отличается от состава $5RF_3 \cdot 2CaF_2 (Y_{0.714}Ca_{0.286}F_{2.714})$ согласно [21]. Индицирование рентгенограмм порошка фаз $R_{0.7}$ Са_{0.3} $F_{2.7}$ в моноклинной сингонии привело к двум возможным пр. гр. Сс или C2/c. Обе не позволяют упорядоченно разместить все катионы и анионы. Таким образом, если состав и симметрия определены в [25] верно, то фазы $R_{0.7}$ Cа_{0.3}F_{2.7} нельзя назвать полностью упоря-

Авторы [25] предлагают необычную интерпретацию полученных результатов анализа фазового состава разными методами. Согласно ей, фазы $R_{1-\nu} \text{Ca}_{\nu} \text{F}_{3-\nu}$ во всей области гомогенности содержат микровростки упорядоченных фаз R_7 Ca₃F₂₇. При малой концентрации последних они не могут быть определены рентгенографически, но дают отчетливую картину при дифракции электронов. По мере роста содержания Са F₂ в твердом растворе растет доля упорядоченных областей. Наконец при $\sim 70\%$ RF₃ весь объем кристалла "захватывается упорядочением". Заметим, что такой же эффект может быть вызван малыми размерами зерен упорядоченной фазы. Микрогетерогенность более традиционно можно объяснить неравновесностью из-за неудачно выбранных [24, 25] условий синтеза.

Концепция микрогетерогенности нестехиометрических фаз привлекательна, но требует более строгих подтверждений.

Термическая устойчивость тисонитовых фаз R_{1-y} Са_y F_{3-y} . Как показало изучение фазовых диаграмм [19], тисонитовые фазы R_{1-y} Са_y F_{3-y} в отличие от флюоритовых нестехиометрических фаз $Ca_{1-x}R_xF_{2+x}$ более склонны к изменениям при понижении температуры, что существенно для использования тисонитовых фаз как суперионных проводников в устройствах, подверженных термическому циклированию. Поэтому проявления этой тенденции, в том числе в изменении

Рис. 6. Температурные зависимости ионной проводимости σ монокристаллов $Y_{0.715}Ca_{0.285}F_{2.715}$ (*I*) (\circ нагрев, + охлаждение), $Y_{0.73}Ca_{0.27}F_{2.73}$ (*2*) [30], YF_3 (*3*) [31], LaF_3 (*4*) [32] и закристаллизованного расплава YF_3 (*5*) [33].

кристаллической структуры, требуют детальных исследований и подробного обсуждения.

В исследовании систем CaF_2-RF_3 [19] информация об изменениях тисонитовых фаз при понижении температуры ограничена уровнем 700—800°С. В этом интервале термические эффекты наблюдались в системах с Yb и Lu (800—850°С). Для состава $Tm_{0.7}Ca_{0.3}F_{2.7}$ эффект при ~700°С идентифицирован методом высокотемпературной рентгенографии как упорядочение. Это наблюдение не соответствует гипотезе концентрационного упорядочения, о которой говорилось выше.

Неустойчивость тисонитовых фаз при изменении температуры может проявляться в измерениях различных свойств, связанных с нагревом и охлаждением. Наиболее систематическими являются исследования ионной проводимости. Высокотемпературные (до 800°C) измерения ионной проводимости кристаллов тисонитовых фаз $Gd_{0.83}Ca_{0.17}F_{2.83}$, $Sm_{0.94}Ca_{0.06}F_{2.94}$ $Tb_{0.8}Ca_{0.2}F_{2.8}$, $Dy_{0.78}Ca_{0.22}F_{2.78}$ и $Ho_{0.77}Ca_{0.23}F_{2.77}$ обнаружили ниже 450—550°С необратимый распад фаз $R_{1-\nu}$ Са $_{\nu}$ F $_{3-\nu}$. Однако образования упорядоченных тисонитовых фаз при распаде неупорядоченных не зафиксировано [26]. Приведенные отрывочные данные говорят о достаточно высокой по сравнению с флюоритовыми фазами $Ca_{1-x}R_xF_{2+x}$ склонности тисонитовых фаз $R_{1-\nu} \text{Ca}_{\nu} \text{F}_{3-\nu}$ к распаду и (или) упорядочению при понижении температуры.

Изученная в настоящей работе фаза $Y_{0.715}Ca_{0.285}F_{2.715}$ относится к четвертой группе фаз.

Состав находится на границе между неупорядоченной и упорядоченной фазами. На рис. 5в фаза $Y_{0.715}Ca_{0.285}F_{2.715}$ с иттрием попадает в середину участка и по ряду РЗЭ, и по составу, на котором наблюдалось упорядочение (R = Tb-Yb, Y).

Из рис. 5а видно, что по мере уменьшения размеров катионов от La^{3+} к Lu^{3+} область гомогенности фаз $R_{1-y}Ca_yF_{3-y}$ сужается до стехиометрического состава лишь в одной системе — у соединения $CaLu_2F_8$. Ему соответствует удаление из тисонитовой структуры 1/9 части ионов фтора с образованием анионных вакансий.

К стехиометрии BaR_2F_8 стремятся и тисонитовые фазы $R_{1-y}Ba_yF_{3-y}$ в системах BaF_2-RF_3 с наиболее крупным из ЩЗЭ Ba^{2+} и "мелкими" РЗЭ конца ряда (Dy—Lu, Y) [27]. Это первый морфотропный переход, зафиксированный для тисонитовых фаз в системах MF_2-RF_3 . Исследование $BaTm_2F_8$ [28] выявило структурный механизм этого перехода, состоящий в дифференциации заселения разновалентными катионами разных позиций. Переход от фазы $Dy_{1-y}Ba_yF_{3-y}$ к моноклинному соединению $BaDy_2F_8$ вызван разницей в размерах Ba^{2+} и Dy^{3+} , составляющей 38% по отношению к меньшему Dy^{3+} (ионные радиусы для координационного числа к.ч. = 8 составляют 1.42 и 1.027 Å соответственно [29]).

Для рассматриваемых здесь фаз R_{1-y} Са $_y$ F $_{3-y}$ с P3Э второй половины ряда такого фактора для упорядочения в катионном мотиве, как разница в размерах катионов, нет. Размеры ионов Cа $^{2+}$ (1.12 Å) и Y $^{3+}$ (1.019 Å) различаются всего на 10% по отношению к меньшему катиону для к.ч. = 8 согласно [29]. Изучение строения Са-содержащих упорядоченных фаз с производной от тисонита структурой и их соотношения с неупорядоченными фазами R_{1-y} Са $_y$ F $_{3-y}$ может дать кристаллохимическое основание трактовки упорядочения как второго морфотропного перехода, ограничивающего устойчивость фаз тисонитовой структуры в системах MF $_2$ -RF $_3$ (M = Ca, Sr, Ba).

Температурная зависимость ионной проводимости о кристаллов $Y_{0.715}Ca_{0.285}F_{2.715}$, дефектное строение которых изучено в настоящей работе, представлена на рис. 6 (прямая *I*). Видно отсутствие гистерезиса и хорошее совпадение с данными [30] (прямая *2*).

Проводимость компонента системы — стехиометрической ромбической фазы β -YF $_3$ (прямая 3 на рис. 6) [31] — на пять порядков (при \sim 120°C) ниже производной от нее нестехиометрической тисонитовой фазы $Y_{0.715}Ca_{0.285}F_{2.715}$. Этот эффект полностью связан с нарушением стехиометрии в кристалле $Y_{0.715}Ca_{0.285}F_{2.715}$, сопровождающимся образованием анионных вакансий.

Проводимости стехиометрических трифторидов со структурами ромбического β-YF₃ и тисонита (LaF₃) резко различаются (кривые β для β - YF_3 и 4 для LaF_3 соответственно). Проводимость стехиометрического LaF₃ (кривая 4 на рис. 6) [32] в области низких температур уже настолько высока, что превышает значения о для нестехиометрического $Y_{0.715}Ca_{0.285}F_{2.715}$. После (~140°С) кривой 4 проводимость LaF₃ и изучаемой тисонитовой фазы сближаются. Выше ~320°С о LaF₃ становится ниже о изучаемого кристалла. Следует отметить, что высокая проводимость в низкотемпературной области является одним из принципиальных критериев использования фторпроводящих твердых электролитов в таких твердотельных электрохимических устройствах, как батареи [33, 34] и аккумуляторы [35].

Кривая 5 на рис. 6 показывает, что реконструктивный полиморфный переход β -YF₃ в структуру типа α -UO₃ при \sim 1000°C сопровождается скачком σ на несколько порядков [36].

Рисунок 6 демонстрирует различия ионного транспорта в стехиометрических фазах RF_3 разных структурных типов (β -YF $_3$ и LaF $_3$). Наблюдающееся резкое увеличение проводимости σ кристалла $Y_{0.715}Ca_{0.285}F_{2.715}$ (по сравнению со стехиометрическим β -YF $_3$) связано не с реконструктивным полиморфным превращением, как в последнем случае, а со стабилизацией у этого состава структуры типа тисонита с образованием анионных вакансий и "симметризующей" ролью катионов Ca^{2+} , выявленной в настоящем структурном исследовании.

выводы

Структура кристаллов $Y_{0.715}$ Ca_{0.285}F_{2.715} "as grown" определена по данным рентгено- и нейтронографии в "малой" гексагональной ячейке (Z=2). Состав находится на границе предполагаемой концентрационной смены неупорядоченной (тисонитовой) фазы на упорядоченную с производной структурой при росте содержания CaF_2 .

Дополнительные к "малой" ячейке рефлексы малочисленны и слишком слабы для того, чтобы из них можно было извлечь информацию о структурных превращениях. Состав $Y_{0.715}Ca_{0.285}F_{2.715}$ находится в этом приближении в области гомогенности разупорядоченной тисонитовой структуры с "малой" ячейкой.

Вывод о вакансиях по фтору в позициях F1 (F_{12k}) для $Y_{0.715}Ca_{0.285}F_{2.715}$ отличается от выводов [7] о вакансиях в позициях F2 (F_{2b}) для $Gd_{0.8}Ca_{0.2}F_{2.8}$. Однако прямое сопоставление предшествующих данных о дефектной структуре фаз $R_{1-y}M_yF_{3-y}$ с данными, полученными для $Y_{0.715}Ca_{0.285}F_{2.715}$, не-

корректно ввиду различия состава изученных кристаллов.

Впервые в структуре тисонитовых фаз R_{1-y} Са $_y$ F $_{3-y}$ обнаружено, что позиции всех ионов, кроме Са локализованы вблизи осей симметрии и "расщеплены" этими осями на подпозиции, заселенные с равной вероятностью. Ионы Ca $^{2+}$ (Ca $_{2c}$) выступают в роли "симметризаторов", располагаясь на осях симметрии в центрах треугольников, образованных расщепленными подпозициями Y^{3+} (Y_{6h}). Они стабилизируют гексагональную (тисонитовую) решетку "срединных" фаз в системах CaF $_2$ -RF $_3$, компоненты которых RF $_3$ не имеют тисонитовых модификаций.

Стабилизация структурного типа тисонита у состава $Y_{0.715}Ca_{0.285}F_{2.715}$ сопровождается резким (на пять порядков при ~120°С) увеличением проводимости σ по ионам фтора (по сравнению с β -YF₃). Рост σ не связан с реконструктивным фазовым превращением, как у β -YF₃. Эффект вызван нарушением стехиометрии в кристалле $Y_{0.715}Ca_{0.285}F_{2.715}$ с образованием анионных вакансий и определяется содержанием CaF_2 . Это приводит к возможности получения высоких σ в низкотемпературной области, что является принципиальным критерием пригодности фторпроводящих твердых электролитов для твердотельных электрохимических устройств типа батарей и аккумуляторов.

Можно полагать, что рентгеноструктурные исследования кристаллов с более тяжелыми РЗЭ дадут возможность лучше выявить смещения в катионном мотиве тисонитовой структуры на ранних стадиях упорядочения. Такими кристаллами могут быть $\mathrm{Er}_{1-y}\mathrm{Ca}_y\mathrm{F}_{3-y}$. Эта фаза, как и изученная $\mathrm{Y}_{0.715}\mathrm{Ca}_{0.285}\mathrm{F}_{2.715}$, находится на границе перехода от третьей группы фаз к четвертой и содержит Er с более высоким атомным номером.

Работа выполнена с использованием оборудования ЦКП ИК РАН при поддержке Минобрнауки в рамках НИР № 01291153836 по теме "Новые кристаллические и функциональные материалы", Роснауки (Госконтракт № 16.518.11.7108) и при частичной финансовой поддержке ведущих научных школ (грант № НШ-2883.2012.5) и Российского фонда фундаментальных исследований (грант № 13-02-00105).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sobolev B.P.* The Rare Earth Trifluorides. Part I. The High Temperature Chemistry of the Rare Earth Trifluorides. Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona, Spain, 2000. 520 p.
- 2. *Соболев Б.П.* // Кристаллография. 2012. Т. 57. № 3. С. 490
- 3. *Vogt T.* // Neues Jahrb. Mineral. 1914. B. 2. № 1. S. 9.

- 4. *Александров В.Б., Гарашина Л.С.* // Докл. АН СССР. 1969. Т. 189. № 2. С. 307.
- 5. Cheetham A.K., Fender B.E.F., Steele D., et al. // Solid State Commun. 1970. V. 8. № 3. P. 171.
- Соболев Б.П., Голубев А.М., Эрреро П. // Кристаллография. 2003. Т. 48. № 1. С. 148.
- 7. *Отрощенко Л.П., Александров Б.П., Максимов Б.А. и др.* // Кристаллография. 1985. Т. 30. № 4. С. 658.
- 8. *Achary S.N., Tyagi A.K., Koehler J.* // Mater. Res. Bull. 2001. V. 36. P. 1109.
- Achary S.N., Patwe S.J., Tyagi A.K. // Mater. Res. Bull. 2002. V. 37. P. 2227.
- Радаев С.Ф., Кривандина Е.А., Мурадян Л.А. и др. // Кристаллография. 1991. Т. 36. № 2. С. 369.
- Дудка А.П., Лошманов А.А., Соболев Б.П. // Кристаллография. 1998. Т. 43. № 4. С. 605.
- 12. *Greis O., Cader M.S.R.* // Thermochim. Acta. 1985. V. 87. № 1. P. 145.
- 13. CrysAlisCCD CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.52, release 06-11-2009 CrysAlis171.
- Lehmann M.S., Larsen F.K. // Acta Cryst. A. 1974.
 V. 30. P. 580.
- Grant D.F., Gabe E.J. // J. Appl. Cryst. 1978. V. 11. P. 114.
- 16. Dudka A. // J. Appl. Cryst. 2007. V. 40. P. 602.
- 17. *Petricek V., Dusek M., Palatinus L.* Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic. 2006.
- 18. Schlyter K. // Arkiv Kemi. 1953. V. 5. № 1. P. 73.
- 19. *Sobolev B.P., Fedorov P.P.* // J. Less-Common Metals. 1978. V. 60. № 1. P. 33.
- Федоров П.П., Соболев Б.П. // Кристаллография. 1995. Т. 40. № 2. С. 315.

- 21. *Соболев Б.П., Ипполитов Е.Г., Жигарновский Б.М. и др.* // Изв. АН СССР. Неорган. материалы. 1965. Т. 1. № 3. С. 362.
- 22. *Seiranian K.B., Fedorov P.P., Garashina L.S., et al.* // J. Cryst. Growth. 1974. V. 26. № 1. P. 61.
- 23. *Devor D.P., Robinson M.* // Phys. Rev. Lett. 1969. V. 23. № 13. P. 704.
- 24. *Гарашина Л.С., Соболев Б.П.* // Кристаллография. 1971. Т. 16. № 2. С. 307.
- 25. *Bevan D.J.M.*, *Greis O.* // Rev. Chim. Miner. 1978. V. 15. № 4. P. 346.
- 26. *Сорокин Н.И., Соболев Б.П.* // Электрохимия. 2007. Т. 43. № 4. С. 420.
- 27. Tkachenko N.L., Garashina L.S., Izotova O.E., et al. // J. Solid State. Chem. 1973. V. 8. № 3. P. 213.
- 28. *Изотова О.Е., Александров В.Б.* // Докл. АН СССР. 1970. Т. 192. № 5. С. 1037.
- 29. *Shannon R.D.* // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
- 30. Nagel L.E., O'Keeffe M. // Fast ion transport in solids, solid state batteries and devices / Ed. Van Gool W. Amsterdam: North Holland Publ., 1973. P. 165.
- 31. *Трновцова В., Федоров П.П., Соболев Б.П. и др. //* Кристаллография. 1996. Т. 41. № 4. С. 731.
- 32. *Сорокин Н.И.* // Журн. физ. химии. 2002. Т. 76. № 3. С. 391.
- 33. *Потанин А.А. //* Журн. Всеросс. хим. общ. им. Д.И. Менделеева. 2001. Т. 45. № 5–6. С. 58.
- 34. *Potanin A.A.* Patent Application. WO 2006/112756.2006.
- 35. *Anji Reddy M., Fichtner M.* // J. Mater. Chem. 2011. V. 21. P. 17059.
- 36. O'Keeffe M. // Science. 1973. V. 180. № 4092. P. 1276.