КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 4, с. 567–573

УДК 548.736

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МОНОКРИСТАЛЛА $Md_5Mo_3O_{16}$ ПРИ T = 30 К

© 2013 г. О. А. Алексеева, И. А. Верин, А. П. Дудка, Н. Е. Новикова, А. М. Антипин, Н. И. Сорокина

Институт кристаллографии РАН, Москва E-mail: olalex@ns.crys.ras.ru Поступила в редакцию 06.08.2012 г.

Впервые на монокристаллах $Nd_5Mo_3O_{16}$ проведено прецизионное рентгеноструктурное исследование при температуре 30 К. Измерения в интервале температур от комнатной до 30 К показали, что изменение параметров и объема элементарной ячейки происходит без скачков. Структура кристалла при T = 30 К сходна со структурой при комнатной температуре. Подтверждена модель с расщеплением позиций атомов, полученная при комнатной температуре.

DOI: 10.7868/S0023476113040036

ВВЕДЕНИЕ

Высокая кислородная проводимость (0.06 См/см при 800°С) соединения с собственными кислородными вакансиями состава La₂Mo₂O₉ в системе La₂O₃-MoO₃ с соотношением окислов 1:2 была открыта группой Лакорре [1]. В системе Nd₂O₃-МоО3 подобное соединение отсутствует, но имеется соединение (предположительно Nd₂MoO₆) [2-4], состав которого в указанных работах различается. Детальное исследование фазообразования в системе Nd₂O₃-MoO₃ (25-50 мол. % Nd₂O₃) [5] подтвердило, что состав этого соединения может быть различным вследствие его существования в области гомогенности 43-47 мол. % Nd₂O₃. При изучении физических свойств поликристаллических образцов в этой системе с соотношением окислов 7:8 [5] обнаружена их высокая проводимость порядка 10⁻² См/см, а при исследовании образцов состава 5:6 - смешанная электронноионная проводимость; при этом на воздухе электронная составляющая проводимости не превышала 10% [6]. Были выращены монокристаллы состава $Nd_{10}Mo_6O_{33}$ (5:6) [5], рентгеноструктурным исследованием которых при комнатной температуре в рамках пр. гр. $Pn\overline{3}n$ установлено, что состав выращенных монокристаллов Nd₅Mo₃O₁₆, часть ионов Мо находится в образце в состоянии окисления меньше чем +6.0, МоО₄-тетраэдры в структуре не имеют ни общих вершин, ни общих граней, атомы структуры разупорядочены по нескольким позициям [7]. Уточнить координаты и заселенности дополнительных позиций по полученным при комнатной температуре данным не представлялось возможным в связи с их близостью к основным атомным позициям. Отметим, что присутствие в структуре $Nd_5Mo_3O_{16}$ ионов Мо в состоянии окисления меньше чем +6.0 согласуется с выявленной у этих образцов электронной составляющей проводимости [6].

Цель настоящей работы — изучение строения монокристалла $Nd_5Mo_3O_{16}$ в интервале температур от комнатной до 30 К и получение при T = 30 К наиболее полных и точных данных о структуре кристалла на основе прецизионного рентгеноструктурного эксперимента.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец для рентгеноструктурного исследования в форме сферы диаметром 0.26 мм приготовлен из однородного монокристалла состава $Nd_5Mo_3O_{16}$ и приклеен на стеклянную нить пчелиным воском. Измерения проведены на четырехкружном рентгеновском дифрактометре HUBER-5042 с криостатом DISPLEX DE-202 (APD Cryogenics inc). Криостат с двойным замкнутым циклом в области 20-250 К обеспечивает стабильность температуры на образце ±0.05 К. Точность установки угловых положений гониометра составляет 0.001°. Параметры элементарной ячейки монокристалла Nd₅Mo₃O₁₆ определены при *T* = 295, 200, 175, 150, 125, 100, 90, 65, 50 и 30 К методом наименьших квадратов по 32 дифракционным рефлексам в интервале $45^{\circ} < 2\theta < 46^{\circ}$. Полный набор интенсивностей дифракционных отражений получен при 30 К методом пошагового (дискретного) сканирования ω/2θ. Отметим, что в данной работе было проведено планирование съемки – составлено задание для сбора данных, в котором указано оптимальное время измерения каждого рефлекса в зависимости от его интенсивности. Для анализа распре-

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структуры $Nd_5Mo_3O_{16}$ при температуре 30 К

M	1265		
Сингония, пр. гр., Z	кубическая, <i>Pn</i> 3 <i>n</i> , 4		
<i>a</i> , Å	11.001(1)		
$V, Å^3$	1331.4(2)		
D_x , Γ/cm^3	6.309		
Излучение; λ, Å	$MoK_{\alpha}; 0.71069$		
μ, мм ⁻¹	21.938		
Диаметр образца, мм	0.26(1)		
Дифрактометр	Huber-5042		
Тип сканирования	ω/2θ		
Учет поглощения; T_{\min} , T_{\max}	Сфера; 0.00932, 0.02415		
θ_{max} , град	45		
Пределы h, k, l	$-19 \le h \le 0, -22 \le k \le 0, \\ -22 \le l \le 0$		
Число отражений: измеренных/независимых (N_1) , $R_{int}/c I > 3\sigma(I), (N_2)$	2464/554, 0.0194/546		
Метод уточнения	МНК по F^2		
Весовая схема	$1/\sigma^{2}(F^{2})$		
Число параметров	28		
Учет экстинкции, коэффи- циент	тип 1, по Лоренцу, 0.3190(80)		
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₁	2.53/3.69		
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₂	1.85/2.07		
S	1.19		
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.97/1.28		
Программы	ASTRA[8], JANA2006[12]		

деления рефлексов по интенсивностям (оценки интенсивностей рефлексов) использовались вычисленные структурные факторы, полученные по модели структуры Nd₅Mo₃O₁₆ из [7]. Таким образом, было сэкономлено время, которое обычно тратится на предварительное сканирование (до трети от общего). На дифрактометре HUBER сканирование выполняется по шагам, а не в непрерывном режиме, и нет возможности выделить необходимое время, чтобы промерить все рефлексы с достаточной точностью. Как следствие, приходится отбраковывать большое число слабых рефлексов, и время, затраченное на их измерение, теряется напрасно. Планирование съемки привело к сокращению времени эксперимента на 30-40%. Расчеты, необходимые для планирования съемки, интегрирования пиков и шкалирования интенсивностей, проведены по программе ASTRA [8]. Анизотропное шкалирование интенсивностей по [9] использовано для коррекции ошибок, связанных с систематическим искажением

измеренных интенсивностей рефлексов в зависимости от установочных углов гониометра [10]. К сожалению, значительная масса криостата и жесткость шлангов, подводящих хладагент к дифрактометру, затрудняют управление процессом выведения рефлексов в точное отражающее положение. Это проявляется как несимметричное положение рефлексов в границах интервала сканирования (вплоть до усечения пиков) даже при использовании матрицы ориентации формально высокой точности. Согласно примененной в данной работе методике, коррекция искаженных интенсивностей осуществляется в двухстадийной процедуре (метод межэкспериментальной минимизации или экспериментального сравнения [11]). С использованием полного неусредненного набора данных проводится шкалирование интенсивностей при структурной модели, фиксированной в значениях, полученных на предыдущем шаге. При этом уточняется только отклонение шкальных факторов от единицы: для 15 параметров по 2464 измерениям в данном случае. Затем данные усредняются по симметрии, и проводится обычное уточнение общего шкального фактора привязки к абсолютной шкале в кинематическом приближении, параметра экстинкции и структурных параметров. Такое чередование циклов уточнений по наборам неусредненных и усредненных данных согласует эквивалентные интенсивности между собой и заметно повышает достоверность результатов исследования в целом.

Детали сбора данных и уточнения структуры $Nd_5Mo_3O_{16}$ приведены в табл. 1. Без применения описанной выше процедуры шкалирования *R*-факторы усреднения эквивалентных рефлексов для 2464 интенсивностей составили R1(I)/wR2(I) = 7.00/8.89%, а после нее — R1(I)/wR2(I) = 3.25/4.26%. Полное число независимых рефлексов равно 554. После отбраковки 55 дефектных рефлексов *R*-факторы усреднения понизились до R1(I)/wR2(I) = 1.94/1.48%; 27 одиночных рефлексов были оставлены в наборе усредненных данных, который составил 546 рефлексов.

Структура уточнена по программе JANA2006 [12] методом наименьших квадратов в полноматричном анизотропном приближении по F^2 . Полученные значения координат, заселенностей позиций и эквивалентных тепловых параметров атомов приведены в табл. 2, межатомные расстояния – в табл. 3. Информация об исследованной структуре депонирована в Банке данных неорганических структур ICSD (CSD № 425845).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Измерение параметров элементарной ячейки монокристалла Nd₅Mo₃O₁₆ в интервале темпера-

Атом	x/a	<i>y/b</i>	z/c	q	$U^*_{_{ m ЭKB}}$
Nd1 (12e)					
T = 293 K	0.00931(3)	0.25	0.25	1	0.00729(5)
T = 110 K	0.00915(2)	0.25	0.25	1	0.00466(4)
T = 30 K	0.00912(2)	0.25	0.25	1	0.00354(5)
Nd2 (8 <i>c</i>)					
T = 293 K	0	0	0	0.925(10)	0.0106(1)
T = 110 K	0	0	0	0.927(7)	0.00683(9)
T = 30 K	0	0	0	0.952(5)	0.00610(8)
Nd2_1 (48 <i>i</i>)					
T = 293 K	0.009(2)	-0.032(2)	0.024(3)	0.013(2)	0.019(3)
T = 110 K	0.006(3)	-0.031(2)	0.022(2)	0.012(1)	0.018(2)
T = 30 K	0.002(3)	-0.046(3)	0.029(3)	0.008(1)	0.013(6)
Mo (12 <i>d</i>)					
T = 293 K	0	0.75	0.25	0.970(4)	0.0115(2)
T = 110 K	0	0.75	0.25	0.964(4)	0.0091(2)
T = 30 K	0	0.75	0.25	0.994(3)	0.0079(1)
O1 (16 <i>f</i>)					
T = 293 K	0.1197(1)	0.1197(1)	0.1197(1)	1	0.0106(2)
T = 110 K	0.1199(1)	0.1199(1)	0.1199(1)	1	0.0077(2)
T = 30 K	0.1202(1)	0.1202(1)	0.1202(1)	1	0.0059(2)
O2 (48 <i>i</i>)					
T = 293 K	0.5840(2)	0.3643(2)	0.8264(2)	0.975(10)	0.0180(5)
T = 110 K	0.5846(2)	0.3642(2)	0.8271(2)	0.952(9)	0.0120(4)
T = 30 K	0.5851(2)	0.3632(2)	0.8273(2)	0.995(6)	0.0124(6)

Таблица 2. Координаты атомов, заселенность позиций (q) и эквивалентные тепловые параметры $U_{_{3KB}}$ (Å²) в структуре Nd₅Mo₃O₁₆ при температурах 295 [7], 110 [7] и 30 К [настоящая работа]

* Тепловые поправки для атома Nd2_1 вычислены в изотропном приближении.

Расстояния	<i>T</i> = 293 K [7]	<i>T</i> = 110 K [7]	T = 30 K
Nd1-01	2.369(1) × 4	$2.366(1) \times 4$	2.360(2) × 4
-O2	$2.573(2) \times 4$	$2.567(2)\times 4$	$2.567(3)\times 4$
Nd2-O1	$2.287(1) \times 2$	$2.286(1) \times 2$	2.291(2) × 2
-O2	2.601(2) × 6	$2.595(2)\times 6$	$2.598(3)\times 6$
Nd2_1-O1	2.33(3)	2.31(3)	2.27(3)
	2.34(3)	2.34(3)	2.46(4)
-O2	2.17(3)	2.20(3)	2.08(3)
	2.41(3)	2.41(3)	2.29(3)
	2.43(3)	2.42(3)	2.40(3)
	2.83(3)	2.82(3)	2.91(4)
	2.86(3)	2.83(3)	2.99(3)
	3.04(3)	3.00(3)	3.14(3)
Nd2-Nd2_1	0.45(3)	0.43(3)	0.60(3)
Mo-O2	$1.777(2) \times 4$	$1.781(2) \times 4$	$1.775(3) \times 4$

Таблица 3. Межатомные расстояния (Å) в структуре $Nd_5Mo_3O_{16}$ при разных температурах

КРИСТАЛЛОГРАФИЯ том 58 № 4 2013

тур от комнатной до 30 К показало, что изменение параметров и объема элементарной ячейки происходит без скачков (рис. 1). Таким образом, структурный фазовый переход в этом интервале температур не обнаружен.

Рис. 2. Синтезы разностной электронной плотности вблизи атомов Nd1 для модели структуры (шаг изолиний 0.2 э/Å³), полученной на начальной стадии уточнения при 30 (a), 295 K [7] (позиция атома Nd2 не расщеплена, тепловые параметры атома Mo – в анизотропном приближении) (в) и заключительной при 30 (б), 295 K (позиция атома Nd2 расщеплена, тепловые параметры атома Mo – в ангармоническом приближении) [7] (г).

В качестве исходной модели для уточнения строения монокристалла $Nd_5Mo_3O_{16}$ были взяты координаты атомов, опубликованные в [7]. Уточнение структуры по усредненному в рамках пр. гр. $Pn\overline{3}n$ массиву в анизотропном приближении параметров атомных смещений привело к факторам расходимости R = 0.0235, $R_w = 0.0259$, S = 1.52. Разностные синтезы электронной плотности вблизи катионов (Nd1, Nd2 и Mo), построенные на данном этапе уточнения, представлены на рис. 2а–4а. При этом характер распределения остаточной электронной плотности близок к характеру распределения, полученному на началь-

ной стадии уточнения структуры $Nd_5Mo_3O_{16}$ при комнатной температуре (рис. 2в–4в) [7]. Отметим, что на рис. 2г и 3г приведены синтезы разностной электронной плотности вблизи атомов Nd1 и Nd2 для модели структуры $Nd_5Mo_3O_{16}$, полученной при комнатной температуре на заключительной стадии уточнения [7].

Следующим шагом уточнения структуры в рамках пр. гр. $Pn\overline{3}n$ стала проверка модели с расщеплением позиции атома Nd2 (рис. 3а) на две позиции. Уточнение расщепленной модели привело к понижению факторов расходимости до R = 0.0188, $R_w = 0.0210$, S = 1.20, при этом q(Nd2) =

КРИСТАЛЛОГРАФИЯ том 58 № 4 2013

Рис. 3. Синтезы разностной электронной плотности вблизи атомов Nd2 для модели структуры (шаг изолиний 0.2 у/Å^3), полученной на начальной стадии уточнения при 30 (a), 295 K [7] (в) и заключительной при 30 (б), 295 K [7] (г).

= 0.952(5), $q(Nd2_1) = 0.008(1)$ (рис. 36, табл. 2). Параметры смещений атома Nd2_1 уточнялись в изотропном приближении. На этом этапе уточнения существенно снизились высоты пиков, присутствующих на синтезах вблизи атома Nd1 (рис. 2a, 26).

Уточнение заселенности позиции атома Мо привело к значению q = 0.994(3). Факторы расходимости на этом этапе уточнения R = 0.0186, $R_w = 0.0208$, S = 1.19. На разностных синтезах электронной плотности найдены четыре пика на расстоянии 0.46 Å от атома Мо ($\Delta \rho_{max} = 1.01$ эÅ⁻³)

КРИСТАЛЛОГРАФИЯ том 58 № 4 2013

(рис. 4а, 4б), аналогичные пикам, обнаруженным при комнатной температуре (рис. 4в, 4г). Далее была предпринята попытка расщепить позицию Мо с использованием метода пошагового сканирования. Суммарная заселенность основной и дополнительной позиций атомов Мо принималась постоянной и равной 0.25 (с учетом кратности основной позиции). Заселенность дополнительной позиции варьировалась с шагом 0.01 в интервале от 0 до 0.25. Установлено, что учет расщепления позиции Мо приводит к падению факторов расходимости до R = 0.0147, $R_w = 0.0181$, S = 1.07, которые сохраняют свои значения в ши-

Рис. 4. Синтезы разностной электронной плотности вблизи атомов Мо для модели структуры (шаг изолиний $0.2 \Rightarrow /\text{Å}^3$): a – сечение x = 0.027 при 30 K; б – сечение x = -0.027 при 30 K; в – сечение x = 0.027 при 295 K [7]; г – сечение x = -0.027 при 295 K [7].

роком интервале заселенностей дополнительной позиции (от 0.04 до 0.20). Однако при этом изотропные параметры атомных смещений имели отрицательные значения. Таким образом, попытка расщепить позицию атома Мо не увенчалась успехом, как и в исследовании при комнатной температуре, несмотря на явное наличие дополнительных позиций. В ходе уточнения структуры при комнатной температуре [7] учет ангармонических параметров атомных смещений Мо разложением функции плотности вероятности смещения атомов из равновесного положения в ряд Грамма—Шарлье до четвертого порядка позволил снизить значение факторов расходимости и учесть дополнительные пики. Однако надежный учет ангармонической составляющей при структурных исследованиях требует получения набора данных с высоким разрешением по углу рассеяния. В данном случае полученный предел $\theta = 45^{\circ}$, обусловленный возможностями дифрактометра, не позволяет корректно применять подобное приближение.

В структуре $Nd_5Mo_3O_{16}$ атомы Мо окружены четырьмя атомами O2 (Mo–O2 1.775(3) Å) (рис. 5, табл. 3). Атом Nd1 окружен четырьмя атомами O1 на расстоянии 2.360(2) Å и четырьмя атомами O2 на расстоянии 2.567(3) Å. Атом Nd2 окружен двумя атомами O1 на расстоянии 2.291(2) Å и шестью

Рис. 5. Координационные полиэдры атомов Nd1, Nd2 и Mo.

атомами O2 на расстоянии 2.598(3) Å. Таким образом, в данном оксидном соединении присутствуют катионы (Mo и Nd) с большой разницей в значении их координационных чисел (4 и 8), а это значит, что при "флюоритовом" законе их размещения в кристаллической структуре двойных оксидных фаз для обеспечения свойственной этим металлам координации необходимы изменения в анионной подрешетке по сравнению со структурой флюорита. Такие изменения возможны за счет локальных смещений атомов структуры Nd₅Mo₃O₁₆, которые подтверждены анализом разностных синтезов электронной плотности и уточнением структуры методом наименыших квадратов по данным, полученным при 30 К.

Авторы выражают благодарность В.И. Воронковой и Е.П. Харитоновой за предоставленные

для исследования монокристаллы, за результаты изучения их состава и свойств.

Работа выполнена на оборудовании ЦКП "Структурная диагностика материалов" ИК РАН в рамках ФЦП "Исследования и разработки по приоритетным направлениям развития научнотехнического комплекса России на 2007–2013 годы" и при частичной финансовой поддержке Российского фонда фундаментальных исследований (грант №11-03-00243а), Программы фундаментальных исследований ОФН РАН и Ведущих научных школ (грант НШ-2883.2012.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Lacorre P., Goutenoire F., Bohnke O. et al. // Nature. 2000. V. 104. P. 856.
- 2. *Мохосоев М.В., Гетьман Е.И.* // Неорган. материалы. 1969. Т. 5. С. 908.
- 3. *Роде Е.И., Лысанова Г.В., Гохман Л.З. //* Неорган. материалы. 1971. Т. 7. С. 2101.
- Hubert P., Michel P., Thozet A. // Seances Acad. Sci. C. 1973. V. 276. P. 1779.
- Voronkova V.I., Kharitonova E.P., Belov D.A. // Solid State Ionics. 2012. V. 225. P. 654.
- 6. Воронкова В.И., Харитонова Е.П., Белов Д.А. и др. // XI Совещ. "Фундаментальные проблемы ионики твердого тела". 2012 г. Черноголовка. С. 132.
- Alekseeva O.A., Gagor A., Pietraszko A. et al. // Z. Kristallogr. 2012. V. 227. P. 869.
- 8. Dudka A. // J. Appl. Cryst. 2007. V. 40. P. 602
- 9. Shakked Z. // Acta Cryst. A. 1983. V. 39. P. 278.
- 10. Дудка А.П., Верин И.А., Молчанов В.Н. и др. // Кристаллография. 2005. Т. 50. № 1. С. 43.
- 11. Дудка А.П. // Кристаллография. 2002. Т. 47. № 1. С. 156.
- 12. *Petricek V., Dusek M., Palatinus L.* Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic, 2006.