ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ

УДК 539.231:535.016

СТРУКТУРНЫЙ ВКЛАД В ШЕРОХОВАТОСТЬ СВЕРХГЛАДКОЙ КРИСТАЛЛИЧЕСКОЙ ПОВЕРХНОСТИ

© 2013 г. А. В. Буташин, А. Э. Муслимов, В. М. Каневский, А. Н. Дерябин, В. А. Павлов, В. Е. Асадчиков

Институт кристаллографии РАН, Москва E-mail: amuslimov@mail.ru Поступила в редакцию 30.11.2012 г.

Развитие технологии обработки кристаллов (Si, сапфир α -Al₂O₃, SiC, GaN, LiNbO₃, SrTiO₃ и др.) как подложечных материалов и элементов рентгеновской оптики привело к получению сверхглад-кой поверхности, на которой проявляется периодичность, присущая строению кристаллов. Периодические структуры образованы атомно-гладкими террасами и ступенями нано- и субнанометровых размеров соответственно. Предложена модель поверхности с такими наноструктурами, и определены соотношения параметров ее шероховатости с высотой атомных ступеней. Рассчитанные по приведенным соотношениям параметры шероховатости практически совпадают с экспериментальными данными, полученными атомно-силовой микроскопией с участков площадью 1×1 и 10×10 мкм на поверхности сапфировых пластин со ступенями. На основе предложенного подхода рассчитаны минимальные параметры шероховатости вицинальных поверхностей кристаллов, которые обусловлены структурным вкладом. Проведено сравнение рельефа и параметров шероховатости поверхностей сапфировых пластин с различным качеством полировки и установлено существование размерного эффекта, заключающегося в том, что с уменьшением величины шероховатости поверхности распределение высоты рельефа меняется от стохастического к регулярному.

DOI: 10.7868/S0023476113030053

ВВЕДЕНИЕ

Развитие технологии обработки кристаллов (Si, сапфир α -Al₂O₃, SiC, GaN, LiNbO₃, SrTiO₃ и др.) как подложечных материалов и элементов рентгеновской оптики [1-6] привело к получению сверхгладкой поверхности, на которой проявляется периодичность, присущая строению кристаллов. Отчетливым проявлением регулярности является образование террасно-ступенчатых наноструктур (ТСН) на плоской сверхгладкой кристаллической поверхности, отклоняющейся от кристаллографической плоскости с высокой ретикулярной плотностью на небольшой угол $\alpha \leq 5^{\circ} [1-6]$, так называемой вицинальной поверхности. Периодические структуры образованы атомно-гладкими террасами и ступенями нано- и субнанометровых размеров соответственно. В [2] методом атомносиловой микроскопии (АСМ) исследованы террасно-ступенчатые структуры на атомно-гладких вицинальных поверхностях кристаллов лейкосапфира, подвергнутых после механической и химической обработки термическому отжигу. При этом открытым остается вопрос о вкладе ТСН в шероховатость поверхности.

В отличие от сверхгладкой поверхности таких аморфных материалов, как плавленый кварц или ситал [7], для кристаллической поверхности, например, сапфира характерна высокая степень упорядочения и регулярности (рис. 1), а минимальная наблюдаемая высота ступеней $h \approx 0.22$ нм совпадает с расстоянием между соседними слоями кислорода, параллельными плоскости (0001) [8], т.е. определяется метрикой кристаллической решетки (рис. 2). Визуализация поверхности проводилась с помощью АСМ (микроскоп Ntegra-Prima, НТ-МТД, Россия). Оценим шероховатость "идеальной" террасно-ступенчатой структуры на плоской поверхности, характеризующейся высотой ступени *h* и вицинальным углом α (рис. 3).

Каждой точке поверхности в плоскости (XY) присвоим значение высоты Z(XY) относительно средней плоскости, определяемой условием:

$$\frac{1}{S}\iint_{S} Z(XY) dx dy = \langle Z \rangle = 0, \qquad (1)$$

где S — площадь рассматриваемой поверхности; угловые скобки обозначают усреднение по поверхности. Тогда среднеквадратичное отклонение от средней линии профиля поверхности (среднеквадратичная высота шероховатости [7]) будет определяться формулой

$$R_q^2 = \frac{1}{S} \iint_{S} Z^2(XY) \, dx \, dy = \left\langle Z^2 \right\rangle. \tag{2}$$

В этом случае среднеарифметическая высота шероховатости будет определяться выражением

Рис. 1. АСМ-изображения вицинальной поверхности (0001) сапфировой пластины 2 с $\alpha = 0.1^{\circ}$ на участках 1 × 1 (a), 10 × 10 (б) и 80 × 80 мкм (в); профиль сечения поверхности на участке 1 × 1 мкм (г).

Рис. 2. Кристаллическая структура сапфира с фрагментом ступенчатой поверхности в проекции на плоскость ($11\overline{2}0$): бо́льшие кружки — O^{2-} , меньшие — Al^{3+} . Стрелки указывают смещение ионов Al^{3+} из положения "в объеме" в положение "на поверхности" согласно [9].

$$R_a = \frac{1}{S} \iint_{S} |Z(XY)| \, dx \, dy = \langle |Z| \rangle. \tag{3}$$

Поскольку Z(XY) на рис. 3 является периодической и кусочно-линейной по X функцией, легко посчитать, что для случая TCH $R_a = h \cos \alpha/4$ и

 $R_q = h\cos\alpha/2\sqrt{3}$. Учитывая, что рассматривается случай малых углов $\alpha \le 5^\circ$, пренебрегаем отличием соз α от единицы. Тогда для шероховатости кристаллической поверхности с ТСН получаются соотношения

$$R_a = h/4; \quad R_a = h/2\sqrt{3}.$$
 (4)

Рассчитанные по формулам (4) значения шероховатостей для сапфировых пластин 1 и 2 с ТСН приведены в табл. 1 вместе с R_a и R_q , полученными обработкой данных АСМ поверхности пластин на сканах 1 × 1, 10 × 10 и 80 × 80 мкм (рис. 1). Анализ показывает, что расчетные данные для шероховатостей практически совпадают с экспериментальными, полученными с АСМ-сканов 1 × 1 и 10 × 10 мкм. Значения шероховатости по-

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

верхности возрастают при увеличении размера скана [7] за счет проявления дефектов обработки (царапины, стохастичность распределения высот рельефа), а также деформаций пластины (коробление, прогиб). Эти дефекты отчетливо видны на рис. 1в.

Расчеты по формулам (4) дают минимальные возможные величины R_a и R_a для такой поверхности. Для вицинальных сапфировых (0001) пластин минимальная шероховатость $R_a = 0.055$ и $R_q = 0.064$ нм. В табл. 2 эти данные приведены наряду с рассчитанными по формулам (4) значениями минимальной шероховатости поверхности вицинальных пластин из других упомянутых кристаллов Si [1], SiC [3], GaN [4], LiNbO₃ и LiTaO₃[5], SrTiO₃ [6] на основе приведенных в указанных работах минимальных возможных значений высот ступеней h для конкретных ориентаций пластин. Таким образом, можно утверждать, что ступени, образующие ТСН, вносят заметный вклад в шероховатость сверхгладкой вицинальной кристаллической поверхности.

Полученные атомарно-гладкие участки [2] на сапфировых пластинах не превосходят 500 нм по ширине, что представляет значительные трудности для изучения таких поверхностей и процессов, проходящих на них.

Одной из возможностей получения сверхгладкой кристаллической поверхности является хруп-

Рис. 3. Схема "идеальной" террасно-ступенчатой структуры на плоской поверхности с высотой ступени *h* и вицинальным углом α.

кое разрушение (скол). Так, ТСН получили на поверхностях свежего скола кристалла СdТе по плоскости спайности (рис. 4). Здесь террасы образованы атомно-гладкими гранями ромбододекаэдра (110), а высота ступеней $h \approx 0.24$ нм близка к 1/2 межплоскостного расстояния d_{110} [10]. Поскольку ширина атомно-гладких террас приближается к 5 мкм (рис. 4), проведены измерения шероховатости поверхности пластины как на атомно-гладком участке (участок 1, рис. 4), так и на участке со ступенью (участок 2, рис. 4). На участке 2 $R_q \approx 0.07$ нм, а на атомно-гладком участке 1 $R_q \approx 0.02$ нм, что свидетельствует о существенном вкладе атомных ступеней в шероховатость. Одна-

Пластина	<i>R_a</i> расч., нм	<i>R_a</i> изм. ±0.03, нм	<i>R_a</i> изм. ±0.03, нм	<i>R_a</i> изм. ±0.05, нм	<i>R_q</i> расч.,	R_q изм. ±0.03, нм	R_q изм. ±0.03, нм	R_q изм. ±0.05, нм
		1 × 1 мкм	10 × 10 мкм	80 × 80 мкм	IIW	1 × 1 мкм	10 × 10 мкм	80 × 80 мкм
1	0.055	0.08	0.08	0.11	0.064	0.09	0.1	0.41
2	0.108	0.12	0.12	0.18	0.124	0.14	0.14	0.23
3		1.01	1.46	1.51		1.29	1.88	2.45

Таблица 1. Расчетные и измеренные значения шероховатости поверхности сапфировых пластин

Таблица 2. Минимальные шероховатости R_a и R_q вицинальной поверхности некоторых подложечных кристаллов

Кристалл	Ориентация подложки	<i>h</i> _{min} в долях пара- метра ячейки*	h_{\min} , нм	<i>R_{a min}</i> , нм	$R_{q\mathrm{min}}$, нм
Si	(111)	a/_/3	0.31	0.078	0.090
α -Al ₂ O ₃	(0001)	<i>c</i> /6	0.22	0.055	0.064
4H-SiC	(0001)	<i>c</i> /4	0.25	0.063	0.073
6H-SiC	(0001)	<i>c</i> /6	0.25	0.063	0.073
GaN	(0001)	<i>c</i> /2	0.26	0.065	0.075
LiNbO ₃	(0001)	<i>c</i> /6	0.25	0.063	0.073
LiTaO ₃	(0001)	<i>c</i> /6	0.25	0.063	0.073
SrTiO ₃	(111)	a/√3	0.24	0.060	0.069
CdTe	(110)	a/2_/2	0.24	0.060	0.069

* Приближенное значение из-за поверхностного эффекта.

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

Рис. 4. АСМ-изображение поверхности свежего скола кристалла CdTe по плоскости спайности (110) (а) и профиль сечения *L* поверхности (б). Отмечены атомно-гладкий участок (1) и участок со ступенью (2).

Рис. 5. АСМ-изображения поверхности (0001) сапфировой пластины 3 на участках 1×1 (а) и 10×10 мкм (б).

ко значение шероховатости $R_q \approx 0.02$ нм меньше точности ее измерения методом ACM ±0.03 нм (табл. 1). По этой причине ACM не пригодна для измерения параметров шероховатости атомногладкой кристаллической поверхности. Поэтому для определения шероховатости атомно-гладких кристаллических поверхностей требуется разработка методик, например, с использованием рентгеновского рассеяния [7] и привлечением расчетных данных о строении поверхности кристалла (для сапфира такие данные приведены в [9]).

Соотношения (4) и (5) устанавливают связь шероховатости сверхгладкой поверхности, на которой имеются ТСН, с высотой ступени *h* этой структуры и вполне применимы для характеризации реальной поверхности кристаллов (табл. 1). При этом величина *h* составляет доли соответствующего параметра ячейки (табл. 2), следовательно, шероховатость сверхгладкой кристаллической поверхности с регулярным рельефом TCH составляет доли параметра кристаллической решетки.

Рассмотрим в качестве примера кристаллическую поверхность (0001) сапфировой пластины 3 – после механической полировки. Изображения ее поверхности даны на рис. 5, измеренные значения шероховатости – в табл. 1. На скане 1 × 1 мкм не обнаруживаются признаки регулярного рельефа, в том числе и после отжига на воздухе при температуре 1400°С; распределение высоты рельефа поверхности пластины на всех сканах имеет случайный характер. Поскольку и в этом случае наблюдается зависимость величины шероховатости от размера скана (табл. 1), для характеризации шероховатости поверхности пластины 3 в целом возьмем значение $R_q = 2.45 \pm 0.05$ нм для скана 80×80 мкм в соответствии с [11]. В этом случае $R_q > c$, где c = 1.2892 нм — параметр гексагональной кристаллической решетки сапфира [8].

Сравнивая рельеф и шероховатость поверхностей сапфировых пластин 1–3, можно обнаружить, что имеет место размерный эффект, заключающийся в том, что с уменьшением величины шероховатости поверхности распределение высоты рельефа меняется от стохастического к регулярному. Количественным критерием этого эффекта, т.е. условием формирования на поверхности кристалла регулярного и периодического рельефа за счет дискретности и периодичности его структуры, может быть соотношение

$$R_a < a^*, \tag{5}$$

где R_q – среднеквадратичная шероховатость поверхности, a^* – соответствующий параметр ячейки кристалла (в направлении нормали к поверхности).

Соотношение (5) получено в результате анализа шероховатости поверхности плоских сапфировых пластин после механической и химико-механической полировки. Возможно, оно справедливо и для других кристаллических материалов. Отметим, что критерий (5) справедлив, когда с поверхности кристалла удален нарушенный после обработки слой.

Авторы выражают благодарность Ю.В. Грищенко и Ю.М. Иванову за помощь в работе.

Работа выполнена с использованием оборудования ЦКП ИК РАН и при финансовой поддержке Минобрнауки РФ (ГК №16.523.11.3013) и Президиума РАН (Программа фундаментальных исследований № 24 "Фундаментальные основы технологий наноструктур и наноматериалов").

СПИСОК ЛИТЕРАТУРЫ

- Dixson R.G., Orji N.G., Fu J. et al. // Proc. SPIE. 2001. V. 4344. P. 157.
- 2. Буташин А.В., Муслимов А.Э., Каневский В.М. и др. // Кристаллография. 2012. Т. 57. № 6. С. 927.
- 3. *Vicente P., Chaussende D.* // III-Vs Rev. Adv. Semicond. Mag. 2002. V. 15. № 4. P. 46.
- 4. *Sarziynski M.* // Symposium OPTO GaN materials and Devices VII. San Francisco. Jan. 23–26. 2012.
- 5. Lee G.H. // Opt. Express. 2002. V. 10. № 13. P. 556.
- Chang J., Park Y.-S., Kim S.-K. // Appl. Phys. Lett. A. 2008. V. 92. P. 152910.
- 7. Асадчиков В.Е., Муслимов А.Э., Каневский В.М. и др. // Мир измерений. 2012. № 7. С. 11.
- Maslen E.N., Streltsov V.A., Streltsova N.R. et al. // Acta Cryst. B. 1993. V. 29. P. 973.
- 9. Godin T.J., LaFemina J.P. // Phys. Rev. B. 1994. V. 49. № 11. P. 7691.
- 10. Рабаданов М.Х., Верин И.А., Иванов Ю.М. и др. // Кристаллография. 2001. Т. 46. № 4. С. 703.
- 11. ГОСТ 2789-73. Шероховатость поверхности.