КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 3, с. 469-472

ФИЗИЧЕСКИЕ СВОЙСТВА **КРИСТАЛЛОВ**

УДК 621.315.592

О СОВМЕСТНОМ ДЕЙСТВИИ МАГНИТНОГО ПОЛЯ И ЭЛЕКТРИЧЕСКОГО ТОКА НА ПЛАСТИЧНОСТЬ КРЕМНИЯ

© 2013 г. А. Р. Велиханов

Институт физики Дагестанского научного центра РАН, Махачкала E-mail: art677@mail.ru Поступила в редакцию 17.01.2012 г.

Исследованы особенности деформационного поведения в низкоомных монокристаллах кремния ртипа при нетрадиционных способах пластического деформирования. В условиях совместного действия слабого магнитного поля и постоянного электрического тока в процессе активного деформирования кремния обнаружено заметное снижение его пластичности по сравнению с деформированием в отсутствие магнитного поля. Обнаружено увеличение электропроводности образцов Si, подвергнутых активной пластической деформации, и проведено сравнение с данными, полученными ранее для монокристаллического Ge. Дано возможное объяснение наблюдаемым эффектам.

DOI: 10.7868/S0023476113030260

Электропластические эффекты исследуются в различных твердых телах около полувека и находят практическое применение [1–3]. Интенсивно исследуется и влияние магнитного поля (МП) на прочностные и пластические свойства немагнитных кристаллов. Первые эксперименты в немагнитных кристаллах Zn и Al выполнены в [4, 5]. В последнее время заметный интерес представляет комбинированное действие магнитного и электрического поля (ЭП) на объект как под воздействием нагрузки [6], так и без нее [7]. В [6] исследовалось совместное действие постоянного МП (B = 0.1 - 0.4 Тл) и ЭП (E = 0 - 5 кB/м) на макропластическую деформацию кристаллов NaCl при сжатии с постоянной скоростью относительной деформации $\dot{\epsilon}$ от 5 × 10⁻⁵ до 2 × 10⁻³ с⁻¹. Включение ЭП приводило к дополнительному разупрочнению с одновременным увеличением скорости деформационного упрочнения и плотности дислокаций.

В монокристаллическом кремнии в отсутствие внешней нагрузки обнаружено повышение электростимулированной подвижности дислокаций при включении МП с индукцией B = 0.05 - 1 Тл [8, 9]. В [9] магнитный эффект был выявлен методом акустической эмиссии, а позднее избирательным травлением [8]. Установлено, что при плотности тока $3 \times 10^5 \,\text{A/m}^2 \,\text{M}\Pi$ с индукцией 1 Тл пробеги дислокаций в n-Si увеличиваются до 40 раз. Предварительная магнитная обработка в [10] приводила к закреплению дислокаций и уменьшению скорости их движения в поле внешних механических напряжений. Пропускание электрического тока плотностью 10⁶ А/м² одновременно с механическим нагружением ($\sigma = 63.5 \text{ M}\Pi a$) необработанных кристаллов привело к росту скорости дислокаций в них в 15 раз, а в обработанных МП – только в 5 раз.

Цель настоящей работы – выяснение совместного влияния слабого постоянного МП и постоянного электрического тока на пластичность Si в процессе его деформации сжатием с постоянной скоростью нагружения.

Объектом исследования служили образцы монокристаллов *p*-Si с удельным сопротивлением $\rho = 10$ Ом см в форме параллелепипедов размером 9 × 7 × 4 мм, ребра которых совпадали с кристаллографическими направлениями [110], [111], [112] соответственно. Камера, в которой под вакуумом $p = 8 \times 10^{-2}$ мм рт. ст. деформировался образец, была размещена в установке прессового типа. Постоянное ЭП и ток, нагревающие образец, обеспечивались источником постоянного напряжения. Постоянное МП прикладывалось перпендикулярно оси нагружения, а электрический ток пропускался через образец вдоль направления оси нагружения. Деформация проводилась как в МП с индукцией B = 0.015 Тл, так и без него в условиях одновременного действия постоянного электрического тока и нагрева в печи в течение 10 мин. Ток включался до нагружения образца после его прогрева в печи. После термостатирования осуществлялась механическая нагрузка. Температура образца измерялась хромель-алюмелевой термопарой с точностью ±3°С. Образец сжимался при температуре испытания $T = 760^{\circ}$ C.

Механическая нагрузка Р прикладывалась вдоль кристаллографического направления [110] (рис. 1) и напряжение сдвига σ менялось от 0 до 80 МПа. Плотность тока составляла $i = 0.8 \times 10^{6} \, \text{A/m}^{2}$ при падении напряжения на образце U = 5 B и вы-

Рис. 1. Схема эксперимента: *1* – хромель-алюмелевая термопара, *2* – печь, *3* – образец, *4* – постоянные магниты, **P** – нагрузка, **E** – электрическое поле.

деляемой мощности электрического тока P = 110 Вт. Датчиком механического напряжения служил динамометр давления, линейная деформация є измерялась механическим микрометром, фиксировавшим деформацию с точностью ± 1 мкм. Изменение сопротивления вдоль образца фиксировалось цифровым прибором Щ300, входящим в комплектацию установки. Показания снимались до и после деформации Si методом прижима. Поверхности деформированных образцов после химического травления в течение 1-2 мин исследовались с помощью металлографического агрегатного микроскопа серии ЕС МЕТАМ РВ-23.

Для проведения деформации Si в МП и без него важно было подобрать нужную температуру деформирования. В связи с этим для начала была выбрана температура, близкая к температуре плавления кремния ($T_{пл} = 1400^{\circ}$ C). Любопытной особенностью в условиях одновременного нагрева в печи и действия постоянного электрического тока при сжатии Si явилось то, что деформация образца пошла под атмосферным давлением (~0.1 МПа). Эта деформация в режиме ползучести длилась в течение 3 мин при температуре $T = 1100^{\circ}$ C, плотности тока j = 220 A/см² и достигла величины $\varepsilon = 0.3\%$. В температуру образца

Таблица 1. Количественные параметры деформационного процесса

Образец	Температура деформации <i>T</i> , °C	Деформация при механиче- ском напряжении σ = 80 МПа ε, %	
		в магнитном поле	без магнитно- го поля
<i>p</i> -Si	760	2.2	2.3
<i>p</i> -Ge	590	1.5	2.1

при деформации вклад тока составлял 450°С, а печи – 650°С.

Детальное изучение влияния постоянного электрического тока показало, что температуру при деформации можно значительно понижать вплоть до $T = 0.5 \times T_{\text{пл}}$ в отличие от [11], где указывалось, что пластичность Si, близкая к металлической, наступала при температуре $T = 0.6 \times T_{\text{mm}}$. Новый цикл экспериментов в динамическом режиме состоял в проведении деформации Si в условиях совместного действия слабого MП и электрического тока при $T = 760^{\circ}$ С. Сходное совместное действие печи и тока на пластичность было изучено и на образцах *p*-Ge [12]. Нагрев только печью до той же температуры деформации $T = 760^{\circ}$ C с последующим сжатием Si при тех же механических напряжениях от 0 до 80 МПа показывает, что образец практически не деформируется. Поэтому данные для этого случая в табл. 1 не приведены.

Из табл. 1 видно, что дополнительное действие слабого МП заметно влияет на общую величину деформации Si и Ge – она уменьшается. Величина деформации є определялась по формуле

$$\varepsilon = \frac{\Delta L}{L} \times 100\%,\tag{1}$$

где L — первоначальная длина образца, ΔL — разница между первоначальной и конечной длиной образца.

Разница между величиной деформации Si в МП и без него составляет 0.1%, а для Ge – 0.6%. Такое сильное различие, вероятно, объясняется тем, что в монокристаллах полупроводников с более высоким удельным сопротивлением пластическая деформация протекает заметно эффективней [13].

Возможным объяснением наблюдаемым закономерностям изменения пластичности Si и Ge является следующее. Процесс захвата электронов (или дырок) дислокационными оборванными связями (**ДОС**) является спин-зависимым процессом. При этом вероятность захвата зависит от поляризации спиновой цепочки ДОС и направления спина электрона [14]. По-видимому, действие МП приводит к изменению поляризации парамагнитного спинового центра и к уменьшению вероятности захвата. В результате уменьшается рекомбинация носителей, что, видимо, должно приводить к эффектам упрочнения [9].

Другим объяснением снижения пластичности Si в МП может являться снос носителей заряда на поверхность образца вследствие эффекта Холла. Средняя часть образца тогда останется менее прогретой из-за того, что большая часть плотности тока будет идти по его краю.

Дополнительные измерения показали, что удельное электрическое сопротивление вдоль оси

сжатия в пластически деформированных полупроводниках по-разному уменьшается в сравнении с исходным (недеформированным, находящимся при комнатной температуре) кристаллом: в 45 раз у Si, деформированного в МП, и в 10 раз у Si, деформированного в отсутствие МП. Измерения, выполненные на германии, также обнаружили сходные закономерности. Сопротивление образца *p*-Ge после одноосного сжатия в условиях одновременного нагрева в печи и действия постоянного электрического тока оказывается значительно меньше, чем у исходного образца: в МП вдоль оси сжатия уменьшается в 11 раз, а в отсутствие МП оказывается в 5 раз меньше (табл. 2). Большее изменение удельного сопротивления Si по сравнению с Ge можно объяснить, по-видимому, тем, что в объеме монокристаллического Ge с более высоким исходным удельным сопротивлением имеется меньшее число неосновных носителей. После пластической деформации в обоих монокристаллах количество электрических активных центров акцепторного типа преобладает по сравнению с донорным. Это, вероятно, должно приводить к росту возникновения центров рекомбинаций в объеме полупроводникового кристалла, в результате чего в образце Ge число неосновных носителей будет уменьшаться быстрее, чем в образце Si. Поэтому эффект снижения удельного сопротивления сильнее проявляется у кремния, чем у германия. Как видно из табл. 2, дополнительно приложенное МП этот эффект усиливает, возможно, вследствие разной магнитной восприимчивости Si и Ge.

На рис. 2 показано формирование поверхностного рельефа исследуемых образцов. Поверхность образца монокристалла Si в условиях дополнительного воздействия МП покрыта упорядоченными системами полос скольжения следами плоскостей продольного скольжения Таблица 2. Сопротивление полупроводников, измеренное вдоль оси сжатия

471

Образец	Удельное сопротивление р, Ом см			
	исходный образец	деформированный образец		
		в магнитном поле	без магнит- ного поля	
p-Si	10	0.22	0.99	
<i>p</i> -Ge	39	3.5	8	

(рис. 2а). Морфология и характер распределения дефектной структуры образца монокристалла Si без дополнительного воздействия МП несколько иные. Здесь наблюдается наличие продольно-поперечных следов скольжения (рис. 2б), т.е. сдвиг в кристалле происходил по взаимно пересекающимся системам плоскостей. В обоих случаях видно и расположение дислокаций вдоль следов плоскостей скольжения, но их наибольшая плотность заметна на рис. 2а, что, вероятно, указывает на увеличение роста упрочнения кристалла.

Таким образом, закрепление дислокаций в МП вблизи стопоров, создаваемых в результате взаимодействия заряженных дислокаций и точечных дефектов, приводит к уменьшению скорости движения дислокаций в поле механических напряжений. В монокристаллах кремния в поперечном МП наблюдается заметное сопротивление пластическому деформированию, а в его отсутствие пластическая деформация протекает более эффективно. Комбинированное воздействие на структуру полупроводника привело к уменьшению его удельного электросопротивления по сравнению с недеформированным образцом. Различие в количественном изменении удельного электросопротивления между исходными и де-

Рис. 2. Травленные поверхности образцов кремния *p*-типа, полученные после их деформации в условиях совместного нагрева в печи и электрическим током (*I*) до $T = 760^{\circ}$ С в магнитном поле (а) и в отсутствие магнитного поля (б).

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

формированными в МП образцами Si и Ge можно по всей вероятности объяснить их различной магнитной восприимчивостью.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Зуев Л.Б.* Физика электропластичности шелочногалоидных кристаллов. Новосибирск: Наука, 1990. 120 с.
- Электронные свойства дислокаций в полупроводниках / Под ред. Осипьяна Ю.А. М.: Эдиториал УРСС. 2000. 320 с.
- Баранов Ю.В., Троицкий О.А., Авраамов Ю.С., Шляпин А.Д. Физические основы электроимпульсной и электропластической обработок и новые материалы. М.: МГИУ – ИМАШ РАН, 2001. 844 с.
- Альшиц В.И., Даринская Е.В., Гектина И.В., Лаврентьев Ф.Ф. // Кристаллография. 1990. Т. 35. Вып. 4. С. 1014.

- 5. Альшиц В.И., Даринская Е.В., Петржик Е.А. // ФТТ. 1992. Т. 34. Вып. 1. С. 155.
- Урусовская А.А., Альщиц В.И., Беккауэр Н.Н., Смирнов А.Е. // ФТТ. 2000. Т. 42. Вып. 2. С. 267.
- 7. Pinchook A.I. // J. Appl. Phys. 2002. V. 92. P. 2343.
- 8. *Скворцов А.А., Орлов А.И., Гончар Л.И. //* ФТТ. 2003. Т. 45. Вып. 9. С. 1603.
- 9. Скворцов А.А., Орлов А.М., Фролов В.А. и др. // ФТТ. 2000. Т. 42. Вып. 10. С. 1814.
- Макара В.А., Стебленко Л.П., Горидько Н.Я. // ФТТ. 2001. Т. 43. Вып. 3. С. 462.
- 11. Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и диэлектриков. М: Металлургия, 1988. 574 с.
- 12. Велиханов А.Р. // ФТТ. 2011. Т. 53. Вып. 3. С. 504.
- Велиханов А.Р. // Физика и техника полупроводников. 2010. Т. 44. Вып. 2. С. 145.
- 14. Кведер В.В., Осильян Ю.А., Шалыкин А.И. // ЖЭТФ. 1982. Т. 85. Вып. 2(8). С. 699.