КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 3, с. 416-425

- СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736:547.677.6

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА И ЭЛЕКТРОННОЕ СТРОЕНИЕ КОМПЛЕКСНОГО СОЕДИНЕНИЯ КОБАЛЬТА(II) С 10-(2-БЕНЗОТИАЗОЛИЛАЗО)-9-ФЕНАНТРОЛОМ

© 2013 г. Р. В. Линко, В. И. Сокол^{*}, Н. А. Полянская, М. А. Рябов, П. В. Страшнов, В. В. Давыдов, В. С. Сергиенко^{*}

Российский университет дружбы народов, Москва E-mail: rlinko@mail.ru * Институт общей и неорганической химии РАН, Москва Поступила в редакцию 04.07.2012 г.

Взаимодействием 10-(2-бензотиазолилазо)-9-фенантрола (HL) с ацетатом кобальта(II) получено координационное соединение $[CoL_2] \cdot CHCl_3$ (I). Методом РСА определена кристаллическая и молекулярная структура I. Координационный полиэдр атома Со в комплексе I — октаэдр. Анион L выполняет тридентатно-хелатную функцию и координирован к атому Со через атомы O1 фенантренхинонового, N1 бензотиазольного фрагментов L и атом N3 азогруппы с образованием двух пятичленных металлоциклов. В приближении теории функционала плотности определено молекулярное и электронное строение соединений HL, L и CoL₂. Показана хорошая сходимость результатов квантово-химического расчета с величинами, найденными методом PCA.

DOI: 10.7868/S0023476113030107

ВВЕДЕНИЕ

Гетероциклические азосоединения (ГАС) на основе 9,10-фенантренхинона являются объектами исследования в процессах комплексообразования с переходными металлами. В частности, они рассматриваются в качестве реагентов для фотометрического определения кобальта(II) [1] и цинка [2], а также для определения некоторых *d*-металлов в растительных объектах после их хроматографического разделения [3, 4].

В ходе систематических исследований ГАС на основе 9,10-фенантренхинона установлено, что 10-(2-бензотиазолилазо)-9-фенантрол (НL) в кристаллическом состоянии и в растворах находится в хиногидразонной форме s-mpanc-, цис-изомера [5]. Для (9*E*)-фенантрен-9,10-дион[(1*Z*)-3,3-диметил-3,4-дигидроизохинолин-1(2Н)-илиден]гидразона (HL"), отличающегося от HL только гетероциклическим фрагментом, характерна другая изомерная форма – цис-, транс- с локализацией "подвижного" атома Н у атома N гетероцикла [6]. Ранее было установлено, что именно в такой изомерной форме лиганд L" находится в составе комплекса [NiL']·CHCl₃ [7], выполняя функцию О, N, N-тридентатно-хелатного лиганда, и координирован в анионной форме к атому Ni через атомы О1 фенантренхинона, N1 дигидроизохинолина и N3 азогруппы с образованием двух пятичленных металлоциклов.

Настоящее исследование является продолжением работ [5–7] и посвящено синтезу и изуче-

нию кристаллического, молекулярного и электронного строения комплексного соединения HL с кобальтом(II). Кроме того, предпринята попытка исследования молекулярного и электронного строения молекулы HL, аниона L и комплекса $[CoL_2]$ с помощью неэмпирического квантовохимического метода — приближения теории функционала плотности и сравнения полученных результатов с данными PCA.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез $[CoL_2] \cdot CHCl_3$ (I). В делительной воронке смешивали 0.14 ммоль HL в 15 мл CHCl_3 и 0.42 ммоль ацетата Co(II) в 10 мл H₂O. Смесь встряхивали 15–20 мин с одновременной записью электронных спектров поглощения проб из органической фазы для контроля процесса комплексообразования. Водную фазу отделяли, а органическую выдерживали при комнатной температуре ~5 сут. Полученные кристаллы отфильтровали на стеклянный фильтр Шотта, из которых отобрали кристаллы соединения I для PCA.

Рентгеноструктурный анализ. Структура соединения I решена прямым методом и уточнена методом наименьших квадратов (по F^2) в полноматричном анизотропном приближении для неводородных атомов. Позиции атомов водорода при атомах углерода молекул комплекса рассчитаны геометрически (С–Н 0.96 Å) и включены в уточнение с фиксированными позиционными и тепловыми параметрами $U_{\rm H}$, на 0.1–0.3 Å² большими параметров U_j соответствующих атомов углерода. В соединении I сольватная молекула хлороформа оказалась статистически разупорядоченной. При анализе остаточных синтезов Фурье найдены дополнительные пики, отвечающие статистическому положению каждого из трех независимых атомов хлора в двух позициях. Кратности позиций атомов хлора были уточнены и зафиксированы. В заключительном варианте параметры атомов хлора уточнены в изотропном приближении. Параметры эксперимента и уточнения структуры приведены в табл. 1.

Кристаллографические данные депонированы в Кембриджском банке структурных данных (ССDС № 887771).

Квантово-химические расчеты молекулярной и электронной структуры молекулы HL, аниона L и комплекса [Co L_2] проводили в рамках приближения теории функционала плотности с использованием гибридного функционала B3LYP [9–11] и базисного набора def2-SV(P) [12]. В ходе расчета проводили полную оптимизацию геометрии. Для анализа электронной структуры молекул применяли подход естественных связывающих орбиталей (**NBO**) [13].

Все вычисления проводили средствами программного комплекса Firefly 7.1.G [14] на суперкомпьютере НИВЦ МГУ "Чебышев".

Длины связей и валентные углы, полученные методом PCA и квантово-химическим расчетом, приведены в табл. 2 и 3 соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В [5] установлено, что соединение HL сохраняет хинонгидразонное строение в протолитических и апротонных растворителях с достаточно широким диапазоном диэлектрической проницаемости, включая смеси этанола и ДМФА с водой в соотношении 3 : 2.

Согласно литературным данным, ГАС могут образовывать комплексные соединения состава 1:2, в которых тридентатно-хелатные лиганды

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры $[CoL_2] \cdot CHCl_3$ (I)

Сингония, пр. гр., Z	Триклинная, $P\overline{1}$, 2
<i>a</i> , <i>b</i> , <i>c</i> , Å	11.864 (2), 12.576 (3), 14.880(3)
$\alpha, \beta, \gamma,$ град	101.6(1), 95.8(1), 117.0 (1)
V, Å ³	1889.8(7)
$D_{\rm выч}, \Gamma/{\rm cm}^3$	1.538
Излучение, λ , Å	MoK_{α} , 0.71073
μ, мм ⁻¹	0.825
Размер образца, мм	$0.14 \times 0.14 \times 0.08$
Дифрактометр	Enraf-Nonius CAD-4
Тип сканирования	ω/2θ
θ _{max} , град	26.37
Пределы h, k, l	$-14 \le h \le 14, -15 \le k \le 15, \\ 0 \le l \le 18$
Число отражений: изме- ренных/независимых (<i>N</i> ₁), <i>R_{int}</i> /с <i>I</i> > 2σ(<i>I</i>) (<i>N</i> ₂)	8002/7696, 0.051/1085
Метод уточнения	МНК по <i>F</i> ²
Число уточняемых пара- метров	512
Весовая схема	$I/[\sigma^2(F^2) + (0.0442P)^2];$ $P = (F_o^2 + 2F_c^2)/3$
Факторы недостоверности:	0.524/0.131
R_1/wR_2 по $N_1, R_1/wR_2$ по N_2	0.045/0.058
S	0.873
$\Delta \rho_{max} / \Delta \rho_{min}$, $\Im / Å^{-3}$	0.364/-0.721
Программы	SHELXS97 [8], SHELXL97 [8]

координированы в анионной форме [7, 15–19]. Можно было предположить, что молекула HL также будет вступать в реакции комплексообразования в виде аниона и присоединяться к атому металла через атом кислорода, атом азота N3 азогруппы и атом азота N1 или серы S1 бензотиазольного фрагмента, образуя при этом пятичленные металлоциклы.

Связь		PCA		Расчет			
	<i>d</i> , H <i>L</i> [5]	$d,\mathbf{I}\left(L ight)$	$d, \mathbf{I}(L')$	<i>d</i> , H <i>L</i>	<i>d</i> , <i>L</i>	<i>d</i> , [Co <i>L</i> ₂]	
Co1-O1		2.092(7)	2.076(7)			2.094	
Co1-N1		2.105(8)	2.075(8)			2.141	
Co1-N3		2.042(9)	2.045(9)			2.106	
S1-C1	1.736(3)	1.715(10)	1.743(11)	1.773	1.813	1.760	
S1-C7	1.752(3)	1.742(12)	1.751(1)	1.759	1.748	1.756	
O1-C21	1.237(3)	1.274(11)	1.241(12)	1.240	1.228	1.258	
N1-C1	1.296(3)	1.354(11)	1.298(11)	1.293	1.307	1.325	
N1-C2	1.398(3)	1.365(11)	1.374(12)	1.380	1.367	1.380	
N2-C1	1.362(3)	1.354(11)	1.386(11)	1.377	1.358	1.357	
N2-N3	1.337(3)	1.324(9)	1.319(9)	1.311	1.304	1.307	
N3-C8	1.317(3)	1.330(11)	1.340(11)	1.316	1.338	1.338	
C2–C3	1.395(4)	1.399(14)	1.381(14)	1.406	1.410	1.406	
C2–C7	1.385(4)	1.394(13)	1.430(13)	1.422	1.431	1.420	
C3–C4	1.369(5)	1.376(12)	1.404(13)	1.393	1.395	1.393	
C4–C5	1.358(5)	1.404(13)	1.376(13)	1.408	1.407	1.407	
C5–C6	1.380(5)	1.341(14)	1.382(15)	1.397	1.400	1.396	
C6-C7	1.388(4)	1.415(13)	1.352(13)	1.398	1.398	1.298	
C8–C9	1.477(4)	1.461(14)	1.487(14)	1.474	1.473	1.464	
C8-C21	1.454(4)	1.434(12)	1.487(12)	1.480	1.482	1.463	
C9-C10	1.381(4)	1.381(12)	1.379(12)	1.410	1.421	1.416	
C9–C14	1.411(4)	1.415(13)	1.406(13)	1.421	1.435	1.430	
C10-C11	1.390(5)	1.375(13)	1.403(13)	1.389	1.390	1.391	
C11–C12	1.367(5)	1.394(13)	1.359(13)	1.402	1.400	1.399	
C12–C13	1.360(5)	1.361(12)	1.345(12)	1.391	1.391	1.391	
C13–C14	1.400(4)	1.388(13)	1.464(14)	1.411	1.410	1.409	
C14–C15	1.462(4)	1.455(13)	1.458(13)	1.478	1.475	1.475	
C15-C16	1.414(4)	1.400(12)	1.402(12)	1.411	1.416	1.413	
C15-C20	1.393(4)	1.395(13)	1.382(13)	1.418	1.413	1.419	
C16-C17	1.352(5)	1.349(13)	1.394(13)	1.393	1.391	1.391	
C17–C18	1.362(5)	1.401(14)	1.400(15)	1.403	1.404	1.404	
C18-C19	1.372(4)	1.366(12)	1.341(13)	1.389	1.389	1.388	
C19-C20	1.394(4)	1.382(12)	1.409(13)	1.408	1.407	1.410	
C20-C21	1.467(4)	1.502(14)	1.471(13)	1.477	1.501	1.466	

Таблица 2. Основные длины связей d (Å) в соединениях HL и I по данным PCA и молекул HL, [CoL₂] и аниона L по данным расчета (нумерация атомов по рис. 1)

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

VEOT	PCA			Расчет			
УГОЛ	ω, HL [5]	$\omega, \mathbf{I}(L)$	$\omega, \mathbf{I}(L')$	ω, H <i>L</i>	ω, L	ω, [Co <i>L</i> ₂]	
N3-Co1-O1		76.5(4)	78.0(3)			76.4	
N3-Co1-N1		76.9(4)	76.2(4)			76.0	
01-Co1-N1		153.4(3)	154.1(3)			152.4	
C1-S1-C7	87.71(14)	90.4(6)	90.0(6)	87.4	88.8	89.1	
C21-O1-Co1		112.7(8)	115.1(7)			114.5	
C1-N1-C2	109.3(2)	110.7(10)	110.0(9)	110.5	112.0	112.2	
C1-N1-Co1		108.0(7)	109.0(7)			108.3	
C2-N1-Co1		140.7(9)	141.0(8)			139.5	
N3-N2-C1	118.7(3)	109.1(10)	105.1(9)	120.4	114.4	110.9	
N2-N3-C8	119.1(2)	120.8(10)	122.4(10)	121.5	121.6	124.6	
N2-N3-Co1		120.1(7)	121.6(7)			118.3	
C8-N3-Co1		119.1(8)	116.0(8)			117.0	
N2-C1-N1	122.0(2)	125.5(10)	128.0(10)	122.3	132.7	126.5	
N2-C1-S1	120.2(2)	120.2(11)	115.6(9)	120.3	113.2	118.8	
N1-C1-S1	117.9(2)	114.1(9)	116.3(8)	117.3	114.1	114.7	
N1-C2-C7	115.2(2)	115.6(12)	117.1(11)	115.2	116.3	114.4	
N1-C2-C3	124.5(3)	125.3(12)	123.7(12)	125.5	125.3	126.3	
C2-C7-S1	109.9(2)	108.8(10)	106.5(9)	109.6	108.7	109.6	
C6-C7-S1	129.3(3)	129.1(11)	132.0(11)	128.8	129.8	128.8	
N3-C8-C21	124.3(2)	109.5(12)	112.1(11)	122.5	111.6	110.6	
N3-C8-C9	115.7(3)	130.2(12)	127.6(11)	117.4	128.6	128.7	
O1-C21-C8	121.0(2)	122.0(12)	118.7(11)	121.2	124.1	121.5	
O1-C21-C20	120.5(3)	118.4(12)	124.4(12)	121.1	118.8	119.8	
N3-Co1-N3'		177.5(4)				175.1	
N3-Co1-O1'		100.8(3)				100.1	
N3-Co1-N1'		105.1(4)				107.4	
N3'-Co1-O1		105.6(3)				100.1	
O1'-Co1-O1		89.1(3)				91.9	
N1'-Co1-O1		95.4(3)				93.2	
N3'-Co1-N1		101.0(4)				107.4	
Ol'-Col-Nl		95.9(3)				93.2	
N1'-Co1-N1		91.4(3)				94.8	

Таблица 3. Валентные углы ω (град) в соединениях Н*L* и **I** по данным РСА и молекул H*L*, [Co*L*₂] и аниона *L* и по данным расчета (нумерация атомов по рис. 1)

Рентгеноструктурное исследование I (рис. 1) показывает, что в процессе комплексообразования молекулы HL действительно переходят в анионную форму и меняют изомерную форму. При потере протона у молекулы HL разрывается

внутримолекулярная водородная связь (**BBC**) (N2–H…O1), азогруппа меняет свою ориентацию относительно связи N2–C1 из *транс*-в *цис*-, а относительно связи N3–C8, наоборот, из *цис*-в *транс*-позицию.

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

Рис. 1. Молекулярная структура соединения І.

Соответственно в комплексе I лиганд L в отличие от HL в свободном состоянии находится в *sцис*-, *s*-*mpaнс*-изомерной форме. Именно в такой форме лиганд может, присоединяясь к атому Со в I в виде аниона, выполнять функцию N,N,Oтридентатно-хелатного лиганда. Такое присоединение характерно для подобного рода молекул, состоящих из двух циклических фрагментов с донорными центрами, соединенных между собой азогруппами. Например, в комплексе $[Ni(L_2^n)] \cdot CHCl_3$ (II) [7] молекула HL" выполняют такую же, как у HL, структурную функцию. Как и в II, в комплексе I координационным полиэдром (KII) кобальта является несколько искаженный октаэдр, в котором аксиальные вершины заняты атомами N3 и N3' азогрупп двух независимых лигандов L и L'. Как линейные, так и угловые искажения в КП I имеют закономерный характер. В наибольшей степени угловые искажения проявляются в тетраэдрически искаженном экваториальном основании КП, вершины которого заняты атомами N1, N1' бензотиазольных (A, A') и O1, O1' фенантреновых (B, B') фрагментов лигандов, при присоединении которых в комплексах у каждого из них замыкаются по два пятичленных металлоцикла, сочлененных между собой по связям Co1-N3 и Co1-N3' и имеющих разный состав CoC2NO и CoN3C. Из-за стянутости хелатными металлоциклами противолежащие связи в основании КП Со-О и Со-N1 с лигандами L и L' заметно изогнуты. Углы OMN1,N1' между ними в комплексе Со (средн. 154°), как у Ni в II (средн. 155.8°), почти на 30° меньше идеального значения 180°. В результате таких искажений в заметно неплоском экваториальном основании КП от средней плоскости в І $\Delta_{cp} = \pm 0.473$ Å, атомы O1,O1' и N1,N1' отклоняются на ±0.480 и ± 0.467 Å. В то же время противолежащие аксиальные связи M-N3,N3' в КП I подобно II почти неизогнуты. Углы N3MN3' в I 177.5(4)° и в II 168.6° близки к 180°. В октаэдрах внутрициклические углы O1MN3 — наименьшие $(76.5(4)^{\circ} - 78.0(3)^{\circ})$, межциклические – наибольшие (100.8(4)°-105.6(3)°). Величины этих углов отличаются от идеального значения (90°). Таким образом, угловые искажения в КП Со в I почти не отличаются от найденных ранее в комплексе Ni структуры II.

Линейные искажения в октаэдре Со проявляются в меньшей степени: если в I подобно II октаэдр немного сплющен – самыми короткими в нем являются связи Со–N3 (средн. 2.043(9) Å) в основании октаэдра, связи Со–O1,O1' (средн. 2.084(7) Å) и Со–N1,N1' (средн. 2.09(9) Å) заметно удлинены. Лиганды L и L' в комплексе I подобно молекуле HL имеют уплощенное строение. В то же время геометрические характеристики фрагментов A, B и A', B' в лигандах L и L' комплекса I не совсем одинаковы. Так, Δ_{cp} циклических фрагментов A и B в I ±0.017 и ±0.067 Å; а двугранные углы A/B 11.2°; A'/B' 5.1° имеют разные значения.

Поскольку все связи в каждом из лигандов находятся примерно в одной плоскости, их торсионные углы близки в *цис*-позициях к 0° и в *транс*позициях к 180° (табл. 4). Из-за такого уплощенного строения лигандов *L* и *L*' в комплексе I подобно найденным в H*L* имеются P_{π} - D_{π} -взаимодействия типа *PD* (*parallel-displaced*) [20] между двумя соседними молекулами комплексов, размноженных центрами инверсии.

Молекула комплекса в I расположена у центра симметрии таким образом, что в π , π -взаимодействиях участвуют бензотиазольные фрагменты только одного из двух независимых лигандов – L.

Таблица 4. Основные торсионные углы τ (град) в структурах I и HL

VEOT]	H <i>I</i> [5]	
91001	L	Ľ	11L [5]
N1C1N2N3	2.8	1.8	-178.8
S1C1N2N3	178.5	179.5	1.4
C1N2N3C8	-177.9	180.0	179.5
N2N3C8C21	-175.6	-179.7	-0.1
N3C8C21O1	-1.4	-2.1	-1.0
C19C20C21O1	1.4	0.7	-1.5
C8C21C20C19	-176.0	-175.5	179.6
C1N1C2C7	-0.7	-0.8	0.4
C1N1C2C3	-177.6	-179.2	-178.4
C9C8N3N2	8.4	-0.5	-179.9
C10C9C8N3	-4.0	2.8	4.1
	•	•	•

При этом плоскопараллельные фрагменты B и B(A) имеют заметное перекрывание и находятся на оптимальном для такого рода взаимодействий расстоянии 3.35 Å. В результате этих взаимодействий в кристаллах соединения I образуются димерные ассоциаты (ДА) (рис. 2).

В ДА молекулы комплекса Со дополнительно скреплены между собой двумя центросимметричными ВС, образованными между атомами кислорода лигандов *L*' и атомами С6 бензотиазольных фрагментов L_A – в I O1'···H6A 2.94, O1'···C6A 3.574(9) Å, угол O1'H6AC6A 126°; в II O1'···H6A 2.83, O1'···C6A 3.427(9) Å, угол O1'H6AC6A 122°.

Образованные в результате описанных выше взаимодействий ДА являются основными структурными единицами кристаллов соединений I и II.

Длины аналогичных связей С-С в циклических фрагментах А и В лигандов L и L' комплексов Со и Ni имеют близкие друг к другу и к обычным для таких связей значения [21]. В то же время изза участия в центросимметричных ДА в І и ІІ в π,π -взаимодействиях только L (одного из двух независимых лигандов) характер распределения πэлектронной плотности по связям N–C и N–N в цепочке связей от атома N1 фрагмента А к C8 фрагмента В N1=C1-N2=N3-C8 в лигандах L в I немного отличается от такового в L' (табл. 2). В лигандах L π-электронная плотность делокализована по этим связям, в результате чего все они по своему значению близки к полуторным. В лиганде L' двойные связи N1'=C1' (в I 1.298(11) Å и в II 1.323(9) Å) и N2'=N3' (в I 1.319(9) Å и в II 1.316 (8) Å) остаются существенно короче, чем в *L*. Длина связи C=O в I (средн. 1.265(12) Å) из-за участия атома кислорода в донорно-акцепторном взаимодействии с атомом металла становится заметно длиннее, чем в HL (1.237(3) Å) [5].

Рис. 2. Димерные ассоциаты в соединении І.

Как уже упоминалось, структурными единицами кристаллов комплекса I являются ДА (рис. 2). Кроме того, между молекулами ДА в кристаллах размещаются сольватные молекулы растворителя — хлороформа. Упаковка структурных единиц в кристаллах комплекса I в проекции на плоскость *ху* показана на рис. 3.

Объемная громоздкая молекула ДА, находясь у центра симметрии 1/2; 1/2; 0, занимает в триклинной кристаллической ячейке практически все пространство. Димерные ассоциаты у центра симметрии расположены таким образом, что фенантренхиноновые фрагменты L и L', находящиеся во взаимно перпендикулярных плоскостях, направлены в противоположные друг от друга стороны и повернуты к центрам инверсии 0; 0; 0 и 1/2; 0; 1/2. Такое расположение ДА в ячейке дает возможность возникновению дополнительных, но более ослабленных межмолекулярных π,π-стекинг-взаимодействий между плоскопараллельными циклами (С9-С14) В и В' фрагментов соседних ДА. При этом расстояния между их плоскостями у центра симметрии 0; 0; 0 3.83 Å и у центра симметрии 1/2; 0; 1/2 3.93 Å существенно увеличены по сравнению с имеющимися внутри ДA.

В результате ДА, объединенные между собой этими взаимодействиями в двух направлениях (вдоль осей *x* и *y*), формируют объемные, рыхлые из-за выступающих в разные стороны фрагментов B и B' слои, параллельные координатной плоскости xy. В этих слоях из-за контактов между выступающими фрагментами соседних ДА возникают крупные пустоты, в которых расположены статистически разупорядоченные сольватные молекулы хлороформа. Наиболее укороченные контакты в кристаллах комплекса I имеются между атомами S1…N1A 3.432, S1'…C19A 3.647 и S1…C13 3.574 Å.

В настоящей работе выполнен квантово-химический расчет молекулярного и электронного строения молекулы HL, аниона L и молекулы CoL_2 (рис. 4). Рассчитанные длины связей с неводородными атомами и некоторые валентные углы приведены в табл. 2 и 3 соответственно, где они сравниваются с результатами, полученными методом РСА для кристаллов HL [5] и соединения I. Заряды на атомах молекул, рассчитанные в рамках метода NBO, приведены в табл. 5.

Из приведенных в табл. 2, 3 результатов следует, что рассчитанные для молекулы HL в газовой фазе длины связей и валентные углы удовлетворительно согласуются с данными РСА, полученными для кристаллов HL. Среднее отклонение рассчитанных длин связей от экспериментальных, приведенных в табл. 2, составляет 0.019 Å. Аналогично среднее отклонение рассчитанных валентных углов от экспериментальных, приведенных в

Рис. 3. Упаковка молекул в кристалле I (проекция на плоскость *xy*).

табл. 3, составляет 0.9°. Таким образом, можно констатировать, что использованный в данной работе расчетный подход (DFT/B3LYP/def2-SV(P)) пригоден для моделирования геометрии органических молекул.

Согласно данным PCA, строение лигандов L и L' в молекуле комплекса I неодинаково (табл. 2, 3). Так, среднее отклонение соответствующих длин связей в лигандах L и L' составляет 0.025 Å. Причины этого – образование ДА и иные межмолекулярные взаимодействия, описанные выше.

В рассчитанной молекуле $[CoL_2]$ оба лиганда одинаковы. Из табл. 2 следует, что рассчитанные длины связей в $[CoL_2]$ удовлетворительно согласуются с экспериментальными значениями. Так, средние отклонения рассчитанных длин связей в L от найденных экспериментально для лигандов L и L' в I равны соответственно 0.024 и 0.025 Å. Таким образом, различия в длинах связей между рассчитанными и экспериментальными значениями имеют тот же порядок величины, что и различия, найденные экспериментально для L и

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

L в I. Несмотря на то что наибольшие отклонения между рассчитанными и экспериментальными значениями наблюдаются для связей с участием атома Со (табл. 2), расчет правильно воспроизводит строение описанного выше КП.

Из табл. 3 видно, что различия в валентных углах между рассчитанными и экспериментальными значениями имеют тот же порядок величины, что и различия, найденные экспериментально для L и L' в I. Перечисленные в табл. 3 средние отклонения углов, рассчитанные для L, от найденных экспериментально для L и L' в I равны соответственно 1.8° и 2.4°. В то время как среднее отклонение соответствующих углов в лигандах L и L' по данным РСА составляет 1.9°. Таким образом, использованный в данной работе расчетный подход пригоден для моделирования геометрии координационных соединений.

Расчет аниона L представляет особый интерес, поскольку экспериментального изучения его строения не проводилось. Исходя из приведенной выше схемы перехода от молекулы HL к резонансной форме аниона L (схема 2), в которой от-

Рис. 4. Молекулярное строение, найденное методом *DFT*: a - молекула HL, b - анион L, $b - молекула [CoL_2]$.

рицательный заряд локализован на наиболее электроотрицательном атоме кислорода, можно предполагать удлинение связей C21–O1, C8–N3 и укорочение связей C8–C21, N2–N3. Из результатов расчета, приведенных в табл. 2, следует, что связь C8–N3 действительно незначительно удлинилась (с 1.316 до 1.338 Å), а связь N2–N3 несколько укоротилась (с 1.311 до 1.304 Å). При этом связь C8–C21 не укоротилась, а удлинилась (с 1.480 до 1.482 Å), а связь C21–O1 не удлинилась, а укоротилась (с 1.240 до 1.228 Å). Это указывает на то, что строение аниона L не соответствует его резонансной форме, приведенной на схеме 2. Более того, при переходе от HL к L заряд на атоме кислорода несколько уменьшается (с – 0.616 до –0.603) (табл. 5). Из табл. 5 следует, что отрицательный заряд аниона не локализован на атоме кислорода, а делокализован по всей молекуле. Уменьшение заряда на атоме кислорода в анионе L по сравнению с нейтральной молекулой HL может быть связано с разрывом BBC.

Изменение валентных углов при переходе от молекулы HL к аниону L связано с описанным выше изменением конформации молекулы. Так, угол N3C8C21 уменьшается с 122.5° в HL до 111.6° в L, приближаясь к значению данного угла 110.6°, рассчитанному для [CoL₂] (табл. 3).

Плоское строение аниона L делает возможным образование BBC N2···HC10 2.06 Å, при этом заряд на атоме HC10 (+0.25) оказывается больше, чем на других атомах водорода (от +0.20 до +0.23).

Расчет молекулы [CoL₂] показывает, что связи кобальта с лигандами имеют в значительной степени ионный характер — заряд на атоме Со найден равным +1.496 (табл. 5). При этом электронная конфигурация ковалентного уровня кобальта в молекуле [CoL₂] – $3d^{7.19}4s^{0.29}4p^{0.01}$.

Заряд на атоме кобальта, равный +1.496, означает, что при образовании [CoL₂] из Co²⁺ и 2L происходит перенос 0.252 электрона с каждого лиганда на катион металла. При этом предполагается, что существенную роль в этом переносе будут играть неподеленные пары атомов, координированных кобальтом. Однако из табл. 5 следует, что электронная плотность при переходе от L к $[CoL_2]$ на этих атомах увеличилась: на O1 с -0.603до -0.701, на N1 с -0.535 до -0.669, на N3 с -0.189 до -0.336. Взаимодействие с катионом кобальта привело к перераспределению зарядов во всей сопряженной системе аниона, в итоге электронная плотность на атомах O1, N1 и N3 увеличилась, а на атомах, непосредственно с кобальтом не связанных, уменьшилась. Так, при переходе от L к [CoL₂] заряд на S1 увеличился с +0.273 до +0.388 И Т.Л.

При переходе от аниона L к комплексу [Co L_2] расстояние C21-O1 увеличилось с 1.228 до 1.258 Å (табл. 2), что связано с координацией атома кислорода ионом кобальта. Удлинению связи С21-О1 при переходе от аниона к комплексу соответствует укорочением связей С21-С8 и С21-С20 (с 1.482 и 1.501 до 1.463 и 1.466 Å соответственно). Поскольку при переходе от аниона к комплексу конформация лиганда не меняется, то длины связей C1-N1, N2-N3, N3-C8 практически не изменились (табл. 2). В то же время при переходе от аниона к комплексу несколько изменились валентные углы: O1C21C8, N3C8C21, C1N2N3 и N1C1N2 уменьшились, а N2N3C8 увеличился (табл. 3). В результате расстояние O1-N1 уменьшилось с 4.58 Å в анионе L до 4.11 Å в молекуле

Атом	Заряд, ё			A	Заряд, ē		
	HL	L	[CoL ₂]	ATOM	HL	L	[CoL ₂]
Co1			+1.496	C9	-0.057	-0.060	-0.076
O 1	-0.616	-0.603	-0.701	C10	-0.178	-0.200	-0.188
S 1	+0.342	+0.273	+0.388	C11	-0.200	-0.218	-0.204
N1	-0.513	-0.535	-0.669	C12	-0.204	-0.240	-0.208
N2	-0.357	-0.438	-0.377	C13	-0.189	-0.200	-0.186
N3	-0.222	-0.189	-0.336	C14	-0.052	-0.061	-0.047
C1	+0.315	+0.356	+0.318	C15	-0.016	-0.031	-0.016
C2	+0.144	+0.161	+0.167	C16	-0.193	-0.205	-0.194
C3	-0.201	-0.233	-0.210	C17	-0.177	-0.216	-0.184
C4	-0.216	-0.237	-0.210	C18	-0.213	-0.234	-0.214
C5	-0.211	-0.249	-0.216	C19	-0.150	-0.172	-0.154
C6	-0.216	-0.230	-0.215	C20	-0.129	-0.107	-0.123
C7	-0.210	-0.227	-0.214	C21	+0.506	+0.506	+0.524
C8	+0.116	-0.055	+0.114	HN2	+0.439		

[CoL₂]. Подобные изменения связаны с образованием двух пятичленных металлоциклов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Okawa S., Kominami B., Kawase A. // Jpn. Analyst. 1982. V. 31. № 7. P. 373.
- Kominami B., Okawa S., Suzuki Y. // Jpn. Analyst. 1987. V. 36. № 10. P. 618.
- 3. *Yoshida T., Okawa S.* // Jpn. Analyst. 1993. V. 42. № 5. P. 311.
- 4. *Okawa S.* // Proc. of the Institute of Natural Sci., Nihon Unw. 2005. V. 40. P. 217.
- 5. Давыдов В.В., Сокол В.И., Полянская Н.А. и др. // Кристаллография. 2012. Т. 57. № 2. С. 312.
- 6. Давыдов В.В., Сокол В.И., Рычагина Н.В. и др. // Журн. неорган. химии. 2009. Т. 54. № 6. С. 958.
- 7. Давыдов В.В., Сокол В.И., Рычагина Н.В. и др. // Журн. неорган. химии. 2011. Т. 56 № 5 С. 728.
- 8. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 9. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.

- 11. Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. // J. Phys. Chem. 1994. V. 98. P. 11623.
- 12. Schaefer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. P. 5829.
- Glendening E.D., Badenhoop J.K., Reed A.E. NBO 5.G. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI. 2004. http: //www.chem.wisc.edu/~nbo5
- 14. *Granovsky A.*, Firefly version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html
- 15. *Kurahashi M.* // Bul. Chem. Soc. Jpn. 1974. V. 47. № 8. P. 2067.
- Kurahashi M., Kawase A. // Bul. Chem. Soc. Jpn. 1976. V. 49. № 1. P. 127.
- Kurahashi M., Kawase A. // Bul. Chem. Soc. Jpn. 1976.
 V. 49. № 5. P. 1419.
- 18. Kurahashi M. // Bul. Chem. Soc. Jpn. 1976. V. 49. № 11. P. 3053.
- Mochizuki K., Ito T., Fujimoto M. // Bul. Chem. Soc. Jpn. 1979. V. 52. № 2. P. 441.
- 20. *Janiak C.* // J. Chem. Soc. Dalton Trans. 2000. № 22. P. 3885.
- 21. Allen F.H. // Acta Cryst. B. 2002. V. 58. P. 380.