КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 3, с. 388–399

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736.6

УПОРЯДОЧЕНИЕ КАТИОНОВ В ПУСТОТАХ АНИОННОГО КАРКАСА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ КАТАПЛЕИТА

© 2013 г. О. В. Якубович^{1, 2}, О. В. Каримова², А. Г. Иванова³, В. О. Япаскурт¹, Н. В. Чуканов⁴, П. М. Карташов²

¹Московский государственный университет им. М.В. Ломоносова E-mail: yakubol@geol.msu.ru

²Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва

³Институт кристаллографии РАН, Москва

⁴ Институт проблем химической физики РАН, Черноголовка

Поступила в редакцию 14.05.2012 г.

Рентгенографически (дифрактометр XCalibur-S, R = 0.0346) исследована псевдогексагональная кристаллическая структура минерала катаплеита Na_{1.5}Ca_{0.2}[ZrSi₃(O,OH)₉] · 2(H₂O,F) из Жильной долины Центральной части Хибинского щелочного массива (Кольский п-ов, Россия): a = 20.100(4), b = 25.673(5), c = 14.822(3) Å, пр. гр. Fdd2, Z = 32, $\rho_{\rm выч} = 2.76$ г/см³. Методом микрозондового анализа в составе катаплеита впервые установлен F, частично замещающий молекулы H₂O в открытых каналах кристаллической структуры. Установленный характер распределения атомов Na и Ca в пустотах анионного каркаса смешанного типа из Zr-октаэдров и трехчленных колец из Si-тетраэдров объясняет наличие ярко выраженных псевдопериодов вдоль осей a и c псевдогексагональной элементарной ячейки и понижение симметрии кристалла до ромбической. Показано, что часть атомов водорода молекул воды статистически разупорядочена, а их распределение коррелирует с характером заполнения крупных восьмивершинников атомами Na и Ca.

DOI: 10.7868/S0023476113030284

ВВЕДЕНИЕ

Катаплеит Na₂Zr[Si₃O₉] · 2H₂O является довольно распространенным и типичным минералом гидротермально-измененных щелочных горных пород, содержащих первичные минералы группы эвдиалита. На территории СССР катаплеит был впервые отмечен в Хибинах в 1930 г. [1]. В 1931 г. в Жильной долине Центральной части Хибинского щелочного массива Э.М. Бонштедт-Куплетской был открыт крупный пегматит, необычно обогащенный катаплеитом. На следующий год этот пегматит детально изучил и описал отряд А.Н. Лабунцова [2]. Линзовидная жила нефелин-сиенитового пегматита размером 10 × 2 м залегает в фойяитах. Центральная зона жилы сложена блоковым агрегатом серого микроклина и розоватым шпреуштейнизированным нефелином. Лежачий бок жилы имеет амфибол-альбитовый состав, а висячий – амфибол-нефелин-микроклиновый. К последнему приурочено крупное ядро, сложенное белым плотным или шестоватым натролитом. Именно к натролитовому ядру пегматита и приурочена основная часть катаплеитовой минерализации. Здесь катаплеит образует крупные пластинчатые кристаллы до 15 см в поперечнике и до 1.5 см толщиной. Кроме натролита катаплеит непосредственно ассоциирует с лоренценитом, астрофиллитом, эгирином и микроклином; в центральной зоне жилы также отмечалось замещение катаплеитом масс раннего "эвколита". В ходе последующего изучения минералогии данного пегматита "эвколит" был переопределен как кентбруксит и феррокентбруксит. Кроме катаплеита в этой жиле был обнаружен целый "букет" ранних — циркон и паракелдышит, и поздних — келдышит и петарасит, цирконосиликатов.

В результате разведочных работ 1932 г. пегматит признали не имеющим промышленного интереса, однако в ходе отработки горных выработок на нем было отобрано 4 кг рудоразборного катаплеита. Этот материал впоследствии неоднократно служил предметом различных исследований. Так, первое определение кристаллической структуры катаплеита состава $Na_2ZrSi_3O_9 \cdot 2H_2O$ на основе монокристалла из этой пробы датируется 1936 г. [3]. Структура установлена и описана в рамках гексагональной элементарной ячейки (пр. гр. *P*6₃/*mmc*) с параметрами a = 7.40, c = 10.05 Å. Она образована Zr-октаэдрами и трехчленными кольцами Si₃O₉, делящими общие кислородные вершины. В пустотах такой постройки из октаэдров и тетраэдров расположены атомы Na (на осях 3) и молекулы H₂O (статистически на осях 2).

Данные оптического изучения минерала и анализа поведения при изменении температуры допускали существование нескольких его полиморфных модификаций [4, 5]. Моноклинная кристаллическая структура катаплеита определена и уточнена двумя группами авторов в рамках пр. гр. I2/c [6] и в стандартной установке B2/b [7]. Сопоставление гексагональной и моноклинной кристаллических построек катаплеита, описываемых формулой Na₂ZrSi₃O₉ · 2H₂O, показывает, что в обоих случаях их основой является тот же анионный каркас смешанного типа из октаэдров Zr и кольцевых группировок Si₃O₉. Основное различие состоит в "обратном" распределении атомов Na и молекул H_2O в пустотах каркаса. Так, в моноклинной элементарной ячейке молекулы Н₂О локализованы на псевдоосях 3, тогда как положения на осях второго порядка и в центрах инверсии заняты атомами Na статистически с одной и той же вероятностью в 67% [7]. Очевидно, что в экспериментальной работе 1936 г. [3] легко было ошибиться в распределении Na и H₂O в структуре, что косвенно подтвердилось исследованием К-замещенной формы катаплеита [8]. В близкой по размерам к [3] также гексагональной структуре этого соединения молекулы воды целиком занимают позиции 4f на осях третьего порядка, а атомы Na, Ca, К и вакансии статистически распределены в позиции 6g {1/2 0 0}. Таким образом, модель структуры минерала в рамках гексагональной элементарной ячейки с параметрами *a* = 7.40, *c* = 10.05 Å представляет собой, скорее всего, усредненный варикристаллической постройки, который, ант согласно [9], может реализоваться в результате обратимого фазового перехода при 155°С (температура обратной трансформации отвечает 145°С) и характеризуется симметризацией каркаса с одновременным выравниванием длин связей в Na подрешетке.

Кристаллическая структура Са-катаплеита CaZrSi₃O₉ · 2H₂O была решена и уточнена при исследовании "тройника", образованного в результате трехкратного двойникования ромбического псевдогексагонального кристалла с параметрами $a \approx 7.4, b \approx a\sqrt{3}$, $c \approx 10.1$ Å за счет псевдооси 3, параллельной [001][°]_{±120} [10]. В отличие от эквивалентного с точки зрения степени заселенности позиций распределения атомов Na в пяти структурных положениях моноклинной элементарной ячейки из [7] в ромбической элементарной ячейке кальциевой разновидности атомы Са заселяют две независимые позиции с различной долей вероятности – 0.8 и 0.2. Любопытно, что структура Са-катаплеита была также уточнена в рамках гексагональной псевдоячейки с параметрами а = = 7.378(1) и c = 10.096(1) Å. В результате, как и в случае Na-катаплеита, получили усредненную

Рис. 1. Срез зерна катаплеита размером 2.5 × 1.3 мм. Изображение в отраженных электронах.

модель распределения атомов Са в пределах одной правильной системы точек [10].

Настоящая работа посвящена описанию результатов анализа химического состава, спектроскопического, рентгеноструктурного и кристаллохимического исследования катаплеита из охарактеризованной выше пробы с горы Кукисвумчорр Хибинского щелочного массива (Кольский полуостров). Отметим, что кристаллические структуры катаплеита из [3] и [7] с большой долей вероятности были получены на образцах из того же пегматита, описанного в [2].

ХИМИЧЕСКИЙ СОСТАВ

Изучение особенностей химического состава катаплеита проводилось на сканирующем электронном микроскопе с вольфрамовым термоэмиссионным катодом "Jeol JSM-6480LV", оснащенном энергодисперсионным спектрометром "INCA Energy-350" (кристалл SiLi площадью 10 мм^2 , окно ATW-2, разрешение $129 \text{ >B} - \text{Mn}K_{\alpha}$) и четырехкристалльным волновым дифракционным спектрометром "INCA Wave-500".

Для исследований использовалась отполированная поверхность среза зерна катаплеита размером 2.5×1.3 мм, предварительно покрытая углеродной пленкой толщиной около 25 нм. Изображение в отраженных электронах (рис. 1), демонстрирующее контраст среднего атомного номера, получено при ускоряющем напряжении 20 кВ и силе тока электронного зонда 10 нА. На нем отчетливо проявляется химическая гетерогенность минерала, имеющая прожилково-блоковый характер. Изменение состава преимущественно контролируется двумя системами спайности, а также приурочено к редким трещинам.

Рис. 2. Волновой спектр фтора в диапазоне длин волн от 18 до 18.5 Å.

При этом между участками, различающимися по составу, нет резких фазовых границ. Таким образом, фрагменты с низкой интенсивностью эмиссии отраженных электронов (на снимке рис. 1 – более темные) можно рассматривать как реликтовые, а участки с более светлым фототоном интерпретировать как вторичные, сформированные при частичном замещении минерала вдоль ослабленных зон. В пределах исследованного сечения зерна фрагменты, сохраняющие реликтовый состав катаплеита, занимают около 47% площади, а на продукты замещения приходится около 53%.

Количественный микроанализ катаплеита сопряжен с рядом проблем, обусловленных неустойчивостью минерала при электронном облучении. Помимо дегидратации термоэлектрическое воздействие электронного зонда приводит к интенсивной миграции за пределы области взаимодействия низкозарядных катионов (прежде всего – натрия). Минимизация негативного воздействия электронного зонда на образец осуществляется снижением силы тока электронного зонда и уменьшением электрической нагрузки на единицу площади путем сканирования относительно больших участков поверхности в режиме быстрой развертки. В таких режимах энергодисперсионный метод анализа оказывается более предпочтительным в сравнении с волновым дифракционным. С другой стороны, используемые для анализа спектральные линии главных (Si, Zr, Na, Ca и O) и второстепенных (K, Mn, F) элементов исследуемого минерала надежно разрешаются энергодисперсионным спектрометром. Отсутствие в составах катаплеитов исследованного образца значимых концентраций других элементов (например, Nb, Ta, Hf) было подтверждено при

помощи волнового спектрометра путем сканирования соответствующих спектральных диапазонов.

Особое внимание уделялось фтору, который впервые зафиксирован в составе катаплеита. Несмотря на то что пик спектральных линий этого элемента надежно идентифицируется в энергодисперсионных спектрах, его присутствие в составе реликтовых участков проверено при помощи волнового дифракционного спектрометра. Спектр в диапазоне длин волн от 18 до 18.5 Å, полученный при ускоряющем напряжении 15 кВ и силе тока зонда 10 нА (кристалл ТАР, ширина коллимирующей щели 0.76 мм), приведен на рис. 2. Его статистическая обработка позволила идентифицировать пики, отвечающие основным спектральным линиям фтора с положениями максимумов $K_{\alpha} = 18.339$ и $K_{\alpha'/\alpha''} = 18.226$ Å и соотношением интенсивностей 100 : 34 соответственно.

Количественный энергодисперсионный анализ проводился при ускоряющем напряжении 15 кВ и силе тока электронного зонда 1.00 ± ± 0.005 нА, энергетическая шкала в интервале 0-10 кэВ с дисперсией 1024 канала. Эффективное время накопления спектральной информации -100 с. Скорость обработки импульсов подбиралась с таким расчетом, чтобы при нагрузке около 2.5-3 тыс. импульсов в секунду мертвое время не превышало 30%. Для оптимизации условий измерения использовался стандарт кобальта. Оптимизация профилей спектральных линий анализируемых элементов производилась по стандартам: О и Si – кварц, Zr (*L*-серия) – металлический Zr, Na – синтетический NaCl, Ca – диопсид, К – вадеит, F – синтетический MgF₂. Для стандартизашии использовались следующие эталоны: О. Si. Zr (*L*-серия) – циркон USNM 117288-3, Са – диопсид USNM 117732, Na – лоренценит, К – вадеит, F – синтетический MgF₂ (условия измерения стандартов и анализа были идентичными).

Локальные измерения составов реликтовых участков и вторичных прожилков в зерне катаплеита (по пять измерений для каждой группы) выполнялись путем сканирования площадей 50 мкм². Как видно из данных, приведенных в табл. 1, полученный разброс значений концентраций для всех элементов отвечает интервалу ±2 сигма. Это свидетельствует о химической гомогенности обеих генераций (в пределах относительной точности измерений).

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ

ИК-спектр порошковой пробы катаплеита, запрессованной в таблетку с КВг, получен с помощью двухлучевого спектрофотометра Specord 75 IR в диапазоне 400–3800 см⁻¹ при щелевой програм-

УПОРЯДОЧЕНИЕ КАТИОНОВ В ПУСТОТАХ АНИОННОГО КАРКАСА

		Релин	ктовые уч	астки	Втори	чные про	жилки	Валовый состав			
Элемент	сигма, мас. %	Среднее из 5-и измере-	Макси- мальное значе-	Мини- мальное значе-	Среднее из 5-и измере-	Макси- мальное значе-	Мини- мальное значе-	Среднее из 15-и измере-	Диспер- сия	Макси- мальное значе-	Мини- мальное значе-
		НИЙ	ние	ние	НИЙ	ние	ние	ний*		ние	ние
массовые % элементов											
0	0.35	44.75	45.07	44.51	45.62	45.94	45.31	44.97	0.34	45.72	44.48
F	0.12	0.98	1.25	0.75	0.26	0.40	0.08	0.65	0.20	1.06	0.34
Na	0.10	9.26	9.46	9.17	6.32	7.05	5.59	8.06	0.46	8.65	6.97
Si	0.12	20.97	21.12	20.86	21.17	21.25	21.05	20.95	0.13	21.18	20.71
Κ	0.05	0.12	0.17	0.06	0.13	0.22	0.09	0.13	0.03	0.19	0.05
Ca	0.06	0.56	0.76	0.42	2.97	3.39	2.53	1.97	0.35	2.85	1.47
Mn	0.09	-0.04	0.05	-0.13	0.17	0.30	0.03	0.07	0.07	0.20	-0.05
Zr	0.30	22.49	22.64	22.31	22.51	22.89	22.37	22.30	0.19	22.58	21.84
Total		99.08			99.15			99.09			
ľ		1	фо	рмула (ра	счет на че	тыре каті	иона Si +	Zr)	1	I	I
0		11.26	11.31	11.24	11.40	11.49	11.33	11.35	0.08	11.49	11.24
F		0.21	0.27	0.16	0.05	0.09	0.02	0.14	0.04	0.22	0.07
Si		3.01	3.02	3.00	3.01	3.02	3.00	3.01	0.01	3.02	3.00
Zr		0.99	1.00	0.98	0.99	1.00	0.98	0.99	0.01	1.00	0.98
Mn		0.00	0.00	-0.01	0.01	0.02	0.00	0.00	0.01	0.01	0.00
Ca		0.06	0.08	0.04	0.30	0.34	0.25	0.20	0.04	0.29	0.15
Na		1.62	1.66	1.60	1.10	1.22	0.97	1.42	0.08	1.51	1.24
K		0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.00	0.02	0.01

Таблица 1. Результаты энергодисперсионного электронно-зондового микроанализа катаплеита

* Измерения проводились в ходе сканирования электронным зондом участков площадью 0.017 мм².

ме 2. При записи спектра в пучок для сравнения помещалась таблетка из чистого КВг. В качестве эталонов волновых чисел использовались полистирол и газообразный аммиак.

На рис. 3 в ИК-спектре присутствует ряд сильных полос, относящихся к колебаниям колец Si₃O₉. Слабая полоса при 612 см⁻¹ обусловлена либрационными колебаниями молекул H₂O. Полосы в диапазоне 1200–3600 см⁻¹ связаны с колебаниями водородсодержащих групп. Наиболее сильные из них относятся к валентным (3575, 3502 см⁻¹) и деформационным (1646 см⁻¹) колебаниям молекул H₂O, образующих относительно слабые (более слабые, чем в жидкой воде) водородные связи. Полоса H–O–H деформационных колебаний с максимумом при 1646 см⁻¹ асимметрична и имеет точку перегиба при 1660 см⁻¹. Учитывая невырожденность этой моды (δ_{H_2O}), можно заключить, что молекулы воды локально разнотипны.

Плечи при 3280 и 3080 см⁻¹ относятся к слабокислотным гидроксильным группам, образующим прочные водородные связи. Слабые полосы при 2460 и 2430 см⁻¹ не могут быть отнесены ни к обертонам Si–O-валентных колебаний (так как

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

верхний предел допустимых волновых чисел последних, учитывая отрицательный знак ангармонического сдвига, равен $1016 \times 2 = 2032 \text{ см}^{-1}$), ни комбинационным модам $\delta_{\text{H}_{2}\text{O}} + v_{\text{Si}-\text{O}}$, так как соответствующие колебания относятся к различным, ковалентно не связанным группам. Поэтому единственно возможным является отнесение

Рис. 3. ИК-спектр катаплеита. По вертикали – поглощение, по горизонтали – волновое число.

Таблица 2. Кристаллографические характеристики, данные эксперимента и уточнения структуры катапле-ита $Na_{1.54}Ca_{0.16}[ZrSi_3(O,OH)_9] \cdot 2(H_2O,F)$

M	529.7
Сингония, пр. гр., Z	Ромбическая, Fdd2, 32
<i>a</i> , <i>b</i> , <i>c</i> , Å	20.100(4), 25.673(5), 14.822(3)
$V, Å^3$	7649(3)
D_x , г/см ³	2.760
Излучение λ, Å	$MoK_{\alpha}; 0.71069$
Размер кристалла, мм	$0.23 \times 0.15 \times 0.11$
μ , mm^{-1}	1.73
<i>Т</i> , К	293(2)
Дифрактометр	Xcalibur-S-CCD
Тип сканирования	ω/2θ
Учет поглощения	Эмпирический
T_{\min}, T_{\max}	0.771, 0.874
θ _{max} , град	26.34
Пределы h, k, l	$\begin{array}{l} -25 \leq h \leq 25, -32 \leq k \leq 32, \\ -18 \leq h \leq 18, \end{array}$
Число отражений: измеренных/независимых $(N_1)/c I > 1.96\sigma(I)(N_2)$	41511/3887/3382
Метод уточнения	по <i>F</i> ²
Число уточняемых пара- метров	350
Весовая схема	$1/[s^2(F_a^2) + (0.0400P)^2],$
	$P = (F_o^2 + 2F_c^2)/3$
$R_{\rm BH}, R_{\sigma}$	0.032, 0.012
<i>R</i> 1/ <i>ωR</i> 2 по <i>N</i> ₁	0.0396/0.1129
<i>R</i> 1/ <i>ωR</i> 2 по <i>N</i> 2	0.0346/0.1097
S	1.612
$\Delta \rho_{max}, \Delta \rho_{min}, \Im/Å^3$	0.490, -0.753

полос при 2460 и 2430 см⁻¹ к кислотным группам, находящимся в состоянии предиссоциации. Этот вывод хорошо согласуется с присутствием в ИКспектре катаплеита плеча при 1210 см⁻¹, которое может относиться либо к валентным колебаниям мостиков Si-O-Si с углом Si-O-Si, близким к 180° (но таковые отсутствуют в структуре катаплеита), либо к колебаниям изолированного иона Н⁺. Вывод о присутствии в изученном образце катаплеита протонов, которые могли бы образоваться в результате частичной диссоциации упомянутых выше гидроксильных групп, хорошо согласуется с наблюдающимися в ИК-спектре полосами образуемых этими группами прочных водородных связей (плечи при 3280 и 3080 см⁻¹). Аналогичный набор полос характерен для ИКспектров кислых (содержащих силанольные группы Si-OH) водных силикатов [11].

РЕНТГЕНОВСКИЙ ЭКСПЕРИМЕНТ И УТОЧНЕНИЕ СТРУКТУРЫ

Набор экспериментальных данных, необходимый для расшифровки и уточнения кристаллической структуры, был получен от кристалла катаплеита размером $0.23 \times 0.15 \times 0.11$ мм на монокристальном рентгеновском дифрактометре XCaliburS, оснащенном ССД-детектором. Учитывая имеющуюся к настоящему моменту структурную информацию для различных катаплеитов, был проведен детальный анализ распределения отражений вдоль основных направлений элементарной ячейки исследованного образца. Этот анализ показал наличие псевдопериодов вдоль осей a/2 == 7.405 и c/2 = 10.045 Å. "Вставные" рефлексы", увеличивающие вдвое размеры параметров гексагональной ячейки, были тщательно исследованы с целью исключения их обусловленности λ/2-эффектом. Соотношение интенсивностей соответствующих отражений нечетных и четных (определяющих псевдопериод) слоевых линий показало, что удвоение параметров элементарной ячейки является объективной реальностью. Зарегистрированные интенсивности отражений (полная сфера обратного пространства) скорректированы с учетом фактора Лоренца и поляризационного эффекта. Эмпирическая поправка на поглощение введена при моделировании формы исследованного монокристалла. Все расчеты по расшифровке и уточнению структуры осуществлены в рамках программного пакета winGX [12]. Использованы кривые атомного рассеяния и поправки на аномальную дисперсию из [13]. На первом этапе расчетов модель структуры была получена и уточнена в рамках гексагональной симметрии и элементарной ячейки с параметрами a = 14.822(2) и c = 20.100(4) Å, пр. гр. *P*6*c*2. Однако дальнейшие

исследования показали, что истинная симметрия кристалла – ромбическая. Найденная прямыми методами в рамках пр. гр. Fdd2 с помощью программы SIR92 [14] структурная модель уточнена на базе комплекса SHELXL [15] в анизотропном приближении до R = 0.0346. В процессе уточнения структуры было установлено, что исследованный образец представляет собой двойник рацемического типа (параметр двойникования 0.54(5)). Ромбическая структура характеризовалась лучшей точностью уточнения координатных и тепловых параметров, отсутствием "открытых" эллипсоидов тепловых колебаний атомов (которые имели место в случае гексагональной структуры) и более низкими значениями факторов недостоверности. Часть атомов водорода локализована на разностных синтезах электронной плотности и уточнено в изотропном приближении. Основные кристаллографические характеристики, данные рентгеновского эксперимента и уточнения структуры приведены в табл. 2. Полученные координаУПОРЯДОЧЕНИЕ КАТИОНОВ В ПУСТОТАХ АНИОННОГО КАРКАСА

Атом	x/a	y/b	<i>z./c</i>	$U_{ m _{ ЭКВ}}$
Zr1	0.00000(2)	0.25307(1)	0.98949(4)	0.0099(1)
Zr2	0.75	0.25	0.98690(4)	0.0099(3)
Zr3	0.25	0.25	0.99288(4)	0.0087(3)
Si1	-0.12660(5)	0.05079(6)	0.88547(12)	0.0154(3)
Si2	0.12392(5)	0.45151(6)	0.88761(12)	0.0158(3)
Si3	0.12598(5)	0.35026(4)	0.99571(12)	0.0084(3)
Si4	-0.12344(5)	0.15320(4)	0.98711(12)	0.0104(3)
Si5	-0.12483(5)	0.30175(4)	0.84064(11)	0.0089(3)
Si6	0.12470(5)	0.20362(5)	0.84152(11)	0.0065(3)
Na1	0.0000(3)	0.1274(4)	0.8627(11)	0.0377(3)
Na2	0.0	0.0	0.9944(4)	0.0195(6)
Na3	0.24753(10)	0.1258(2)	0.8702(4)	0.0200(9)
Na4	-0.00228(12)	0.3780(2)	0.8675(5)	0.0267(11)
Na5	0.24782(12)	0.5048(2)	0.9937(6)	0.0211(15)
Ca1	-0.2492(2)	0.3765(4)	0.8579(9)	0.038(2)
Ca2	0.0	0.5	0.0041(13)	0.036(6)
01	-0.13266(16)	0.02650(11)	0.9864(3)	0.0206(7)
O2	0.11854(16)	0.47739(11)	0.9869(3)	0.0210(7)
O3	0.05783(17)	0.46485(12)	0.8365(3)	0.0252(8)
O4	-0.13119(16)	0.36683(13)	0.8254(3)	0.0194(8)
O5	0.19082(15)	0.21663(16)	0.8986(2)	0.0297(11)
O6	-0.12541(14)	0.11294(15)	0.8980(2)	0.0226(8)
O7	0.11789(15)	0.13918(14)	0.8315(2)	0.0209(7)
O 8	-0.19156(15)	0.27860(16)	0.8875(3)	0.0310(11)
O9	-0.05888(14)	0.29117(13)	0.8976(2)	0.0230(7)
O10	0.05894(14)	0.22668(12)	0.8875(2)	0.0202(7)
O 11	0.19111(15)	0.31553(11)	0.9895(3)	0.0281(9)
O12	0.12555(14)	0.38946(15)	0.9044(2)	0.0212(8)
O13	0.05625(14)	0.32121(12)	0.0015(3)	0.0246(8)
O14	-0.05898(16)	0.18847(12)	0.9822(3)	0.0304(8)
O15	-0.19353(16)	0.18297(13)	0.9916(3)	0.0359(10)
O16*	0.2058(3)	0.0814(2)	0.0012(4)	0.0508(11)
O17*	-0.0451(2)	0.4180(2)	0.0010(3)	0.0461(10)
O18*	-0.2057(3)	0.4129(2)	0.9961(4)	0.0580(12)
O19*	0.0450(2)	0.0858(2)	0.9971(4)	0.0505(11)
O20	-0.05594(16)	0.03303(12)	0.8495(2)	0.0220(8)
O21	0.19446(17)	0.46576(14)	0.8488(2)	0.0262(8)
O22	-0.19166(18)	0.03546(13)	0.8370(3)	0.0292(8)
H1	-0.169(2)	0.414(3)	0.968(4)	0.05(2)**
H2	-0.079(2)	0.426(3)	0.970(4)	0.07(2)**
H3	0.081(3)	0.076(4)	0.971(6)	0.12(4)**
H4	0.171(2)	0.087(2)	0.970(3)	0.03(1)**

Таблица 3. Координаты базисных атомов и эквивалентные тепловые коэффициенты в структуре катаплеита

Примечание. Заселенности позиций в центрах восьмивершинников: Na1 0.379(10), Na3 0.843(9), Na4 0.777(10), Na5 0.579(10), Са1 0.252(6), Са2 0.136(7). * Атомы кислорода молекул H₂O. ** Изотропные тепловые коэффициенты.

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

Zr1-or	ктаэдр	Zr2-o	ктаэдр	Zr3-октаэдр				
Zr1-O10	2.036(3)	Zr2-08	2.022(4) × 2	Zr3–O5	2.026(3) × 2			
O14	2.042(3)	O15	$2.063(3) \times 2$	O11	$2.058(3) \times 2$			
O9	2.052(3)	O3	$2.085(3) \times 2$	O20	$2.117(3) \times 2$			
O13	2.090(3)							
O22	2.108(4)							
O21	2.124(4)							
Si1-те	граэдр	Si2-те	страэдр	Si3-те	Si3-тетраэдр			
Si1-O22	1.543(4)	Si2–O3	1.567(3)	Si3-O11	1.587(3)			
O20	1.584(3)	O21	1.573(4)	O13	1.590(3)			
O6	1.607(4)	O12	1.613(4)	O 7	1.623(4)			
O1	1.625(4)	O2	1.619(4)	O12	1.686(4)			
Si4-те	граэдр	Si5-те	страэдр	Si6-тетраэдр				
Si4-O14	1.582(3)	Si5-09	1.595(3)	Si6-O10	1.601(3)			
O15	1.604(3)	O8	1.623(3)	O5	1.610(3)			
O4	1.611(4)	01	1.682(4)	O 7	1.666(4)			
O6	1.677(4)	O4	1.691 (3)	O2	1.672(4)			
Na1-восьми	вершинник	Na2-восьми	ивершинник	Na3-восьми	ивершинник			
Na1-016	2.153(16)	Na2-019	2.382(4) × 2	Na3-017	2.281(8)			
O7	2.432(7)	O8	2.533(6) × 2	O16	2.404(8)			
O19	2.435(16)	O20	$2.568(6) \times 2$	O13	2.496(6)			
O6	2.602(7)	O1	$2.754(3) \times 2$	05	2.629(6)			
O14	2.646 (15)			O11	2.629(6)			
O20	2.680(11)	Са1-восьми	ивершинник	012	2.631(4)			
O11	2.695(15)	Ca1-O19	2.151(14)	O21	2.644(6)			
O10	2.833(11)	O18	2.416(14)	O7	2.690(4)			
		O4	2.434(6)					
Na4-восьми	вершинник	O22 2.572(9)		Na5-восьмивершинник				
Na4-018	2.284(9)	O6	2.603(6)	Na5-O18	2.277(7)			
O17	2.389(8)	O14	2.715(11)	O16	2.403(7)			
O9	2.544(6)	O15	2.754(11)	O 1	2.468(4)			
O3	2.575(6)	O8	2.802(10)	O10	2.523(9)			
O15	2.579(7)			O21	2.602(8)			
O12	2.643(4)	Са2-восьми	ивершинник	O2	2.694(4)			
O4	2.681(4)	Ca2-017	2.293(5) × 2	O22	2.737(9)			
O13	2.732(7)	O2	$2.466(4) \times 2$	O9	2.754(8)			
		05	2.595(16) × 2					
		O3	$2.887(17) \times 2$					

Таблица 4. Межатомные расстояния в структуре катаплеита

ты атомов и межатомные расстояния – в табл. 3 и 4 соответственно.

Мы также провели уточнение кристаллической структуры катаплеита в рамках гексагональной псевдоячейки с параметрами a = 7.4050(1) и *c* = 10.0446 (1) Å (пр. гр. *P*6₃/*mmc*). Аналогично результатам для Са-катаплеита [10], полученная структура в нашем случае отвечала усредненной

394

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

модели со статистическим характером заселения одной правильной системы точек (позиция 2/m) атомами Na и Ca. Отмеченная ранее [10] и подтвержденная в настоящей работе возможность получения усредненной структуры катаплеита с использованием части экспериментального материала, свидетельствует о наличии для этих структур симметрийных взаимоотношений типа группа подгруппа. Такая связь действительно существует и может быть описана следующей нисходящей цепочкой пространственных групп симметрии: $P6_3/mmc \rightarrow P\overline{6}m2 \rightarrow P\overline{6}c2 \rightarrow Ama2 \rightarrow Pnn2 \rightarrow$ \rightarrow Fdd2. Параметры ромбической элементарной ячейки катаплеита, определенные нашим исследованием, и моноклинной ячейки из [7] связаны матрицей перехода 010/220/002.

В структуре ромбического катаплеита (рис. 4) с параметрами элементарной ячейки: a = 20.100(4), b = 25.673(5) и c = 14.822(3) Å, – имеется семь кристаллографически независимых позиций "крупных" катионов в пустотах анионного каркаса смешанного типа из октаэдров циркония и тетраэдров кремния. Для выявления характера распределения атомов Na и Ca в структуре на первом этапе расчетов мы использовали кривые атомного рассеяния натрия, ввиду его значительного преобладания в составе минерала. Уточнение структуры показало, что одна из частных позиций на оси второго порядка целиком заселена атомами натрия: она не содержит ни вакансионных, ни изоморфных дефектов, тогда как в остальных шести позициях присутствуют вакансии. Учитывая данные анализа химического состава катаплеита, который фиксирует существенное преобладание натрия над кальцием, а также близкие величины их ионных радиусов, предполагаем неупорядоченное распределение этих катионов в шести дефектных позициях. Последующие вычисления проводились в рамках этой гипотезы, которая, однако, не подтвердилась. Единственная модель кристаллической структуры в рамках пр. гр. *Fdd*2, которая с одной стороны имела физический смысл, характеризуясь "закрытыми" эллипсоидами тепловых колебаний атомов Na и Ca, a с другой - отвечала данным химического состава минерала, оказалась моделью упорядоченного распределения этих атомов в пустотах каркаса. Так оказалось, что две позиции, одна из которых частная на оси 2, заняты атомами Са, а четыре оставшиеся - атомами Na; при этом все шесть позиций содержат вакансии. Установленный характер распределения атомов Na и Ca (табл. 3) объясняет наличие ярко выраженных псевдопериодов вдоль осей а и с псевдогексагональной элементарной ячейки, и понижение симметрии кристалла до ромбической.

В результате проведенных исследований установлена следующая кристаллохимическая фор-

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

Рис. 4. Кристаллическая структура катаплеита в проекции уг. Здесь и далее: в октаэдрах – атомы Zr, в тетраэдрах – атомы Si, маленькие шарики – атомы кислорода молекулы H₂O.

мула минерала: Na_{1.54}Ca_{0.16}[ZrSi₃(O_{8.72}OH)_{0.28}] · $\cdot 2(H_2O_{0.93}F_{0.07})$. Она хорошо согласуется со средней из 15 микрозондовых анализов бруттоформулой, рассчитанной на четыре атома (Zr + Si): Na_{1.43}Ca_{0.20}K_{0.01}Zr_{0.99}Si_{3.01}O_{11.35}F_{0.14}. Дефицит суммы катионов Na⁺ и Ca²⁺ относительно 2-х единиц в формуле катаплеита с усредненной структурой в рамках "маленькой" гексагональной ячейки, компенсируется формированием небольшого количества гидроксильных групп, подтвержденных результатами спектроскопического исследования, а также частичным замещением молекул воды в каналах структуры анионами F⁻. Последние впервые зафиксированы микрозондовым анализом в составе минерала. Анализ баланса валентности (табл. 5) демонстрирует небольшое отклонение суммы валентных усилий, передаваемых катионами на часть атомов кислорода, от двойки, что допускает возможность формирования ОНгрупп, статистически распределенных в структуре. Из данных, представленных в табл. 5, следует также, что средние значения валентных усилий катионов Na⁺ и Ca²⁺ на молекулах воды с учетом

Катион Анион	Zr1	Zr2	Zr3	Si1	Si2	Si3	Si4	Si5	Si6	Na1	Na2	Na3	Na4	Na5	Cal	Ca2	Σ
01				0.99				0.85			$0.07 \downarrow_2$			0.10			2.01
O2					1.00				0.89					0.06		$0.02 \downarrow_2$	1.97
O3		$0.64_{\Downarrow 2}$			1.18								0.10			$0.01_{\downarrow 2}$	1.93
O4							1.04	0.83					0.07		0.07		2.01
O5			$0.76_{\Downarrow 2}$						1.05			0.10				$0.01 \Downarrow_2$	1.92
O6				1.05			0.86			0.04					0.04		1.99
O 7						1.00			0.89	0.07		0.08					2.04
O 8		$0.77 \Downarrow_2$						1.02			$0.15 \Downarrow_2$				0.03		1.95
O9	0.72							1.08					0.11	0.05			1.96
O10	0.75								1.06	0.02				0.09			1.92
011			$0.71 \Downarrow_2$			1.11				0.04		0.09					1.95
O12					1.03	0.84						0.09	0.08				2.04
013	0.64					1.10						0.13	0.07				1.94
O14	0.73						1.13			0.04					0.03		1.93
015		$0.70 \Downarrow_2$					1.06						0.10		0.03		1.89
016**										0.14		0.18		0.12			0.44
O17**												0.23	0.16			$0.03_{\Downarrow 2}$	0.42
O18**													0.20	0.17	0.08		0.45
019**										0.07	$0.21 \Downarrow_2$				0.15		0.43
O20			$0.60 \Downarrow_2$	1.12						0.04	$0.13 \Downarrow_2$						1.89
O21	0.59				1.15							0.09		0.07			1.90
O22	0.62			1.24										0.05	0.05		1.96
Σ	4.05	4.22	4.14	4.40	4.36	4.05	4.09	3.78	3.89		1.12						

Таблица 5. Локальный баланс валентностей в кристаллической структуре катаплеита

* Для расчетов использованы алгоритм и эмпирические параметры из [16].

** Атомы кислорода молекул воды.

статистического заселения позиций атомами натрия и кальция — около 0.45. При этом укороченных расстояний, не допускающих одновременное заселение полиэдров в структуре, нет. Значит, можно допустить одновременное без вакансий заселение всех трех "крупных" полиэдров, сходящихся на одном анионе, — локальный баланс в этом случае будет около единицы. Такая ситуация отвечает замещению анионом F⁻ молекул воды. В более общем виде формула изученного катаплеита может быть записана следующим образом: Na_{1.5}Ca_{0.2}[ZrSi₃(O,OH)₉] · 2(H₂O,F).

АНАЛИЗ МЕЖАТОМНЫХ РАССТОЯНИЙ, ОПИСАНИЕ СТРУКТУРЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Межатомные расстояния Zr–O в октаэдрах Zr2 и Zr3 с симметрией C_2 изменяются в пределах от 2.022(3) до 2.117(3) Å, а в октаэдрах Zr1 с симметрией C_1 – от 2.036(3)(2) до 2.124(3) Å при близ-

ких средних значениях расстояний в полиэдрах (табл. 4).

Шесть независимых атомов кремния в общих положениях формируют сильно искаженные кремнекислородные тетраэдры. Значительные вариации длин связей Si-O (табл. 4) являются следствием неэквивалентного окружения атомов кислорода анионной подрешетки структуры катионами. Два минимальных значения расстояний Si-O в каждом независимом полиэдре обусловлены валентными вкладами двух катионов (одного сильного Si и одного "среднего" Zr)¹ в соответствующие атомы кислорода. Расстояния Si-O до мостиковых атомов кислорода, поделенных между двумя Si тетраэдрами, в каждом полиэдре закономерно увеличены (табл. 4). "Крупные" низкозарядные катионы Na⁺ и Ca²⁺ в пустотах каркаса имеют в ближайшем окружении по 8 атомов кис-

¹ При данном анализе вклады Na и Ca не рассматриваются, ввиду их относительно равномерного распределения и небольших значений валентных усилий.

лорода. Средние значения межатомных расстояний в восьмивершинниках близки по величине и варьируют в интервале 2.550–2.560 Å. Наиболее сильные связи катион – кислород в каждом полиздре отвечают межатомным взаимодействиям между Na или Ca и молекулой H₂O (табл. 4).

Основа кристаллической структуры катаплеита — анионный каркас смешанного типа, образованный Zr-октаэдрами и трехчленными кольцами из Si-тетраэдров (рис. 4). Такая трехмерная постройка из октаэдров и тетраэдров пронизана пересекающимися открытыми каналами, вытянутыми вдоль направлений [001], [101] и [011]. В каналах располагаются атомы Na, Ca и координирующие их молекулы воды (рис. 5).

Основное отличие установленной данным исследованием кристаллической структуры катаплеита, от описанных ранее, состоит в характере распределения "крупных" катионов в пустотах Zr,Si,O-каркаса. Так, в структуре минерала, усредненной в маленькой гексагональной ячейке, присутствует лишь одна позиция, в которой может быть размещен атом Na или Ca (в той же позиции находит себе место и атом К по данным [8]). В кристаллической структуре моноклинного катаплеита атомы Na распределены в пяти независимых позициях, заселяя каждую с одинаковой вероятностью в 2/3 [7]. В ромбической элементарной ячейке Са-катаплеита атомы Са занимают две структурные позиции, при этом последние существенным образом различаются по степени занятости: 0.8 и 0.2. В [10] отмечено, что в случае гипотетического эквивалентного заселения Са восьмивершинников (факторы занятости обеих позиций равны 0.5), минерал сохранит ромбическую симметрию. В кристаллической структуре катаплеита, установленной данным исследованием, зафиксированы две важных особенности, существенным образом отличающие характер распределения "крупных" низкозарядных катионов в пустотах анионного каркаса. Первая из них состоит в упорядочении атомом Na в частном положении на оси 2; как мы показали выше, эта позиция не содержит точечных дефектов ни вакансионных, ни обусловленных частичным изоморфным "разбавлением" ее атомами другого сорта (Са). Вторая особенность состоит в распределении атомов Na и Ca по различным структурным позициям, содержащим вакансионные дефекты; все эти позиции характеризуются различной заселенностью в интервале от 0.07 (Ca2) до 0.84 (Na3) (табл. 3).

Одной из задач, связанных со структурой катаплеита, является проблема локализации атомов водорода. Четыре симметрически независимых позиции молекул воды в ромбической элементарной ячейке предполагают наличие восьми атомов водорода. Из разностных синтезов электронной плотности нам удалось локализовать, а затем и

Рис. 5. Атомы Na, Ca и молекулы H_2O в открытых каналах Zr/Si/O-каркаса кристаллической структуры катаплеита.

уточнить в изотропном приближении тепловых колебаний лишь четыре H атома (по одному на каждый атом кислорода четырех молекул H_2O). Расчет геометрических характеристик водородных связей, формируемых найденными H атомами, выявил довольно слабые связи длиной более 3 Å. Все четыре независимых атома кислорода молекул воды участвуют в водородных связях, как в качестве доноров, так и в качестве акцепторов. Кроме того, для молекул воды O17 и O18 характерны бифуркированные водородные связи как между атомами кислорода молекул воды, так и между атомами кислорода молекул воды и атомами кислорода каркаса (табл. 6).

Анализ синтезов разностной электролитной плотности показал, что остальные атомы водорода статистически разупорядочены в структуре, а их положение находится в прямой зависимости от заселенности Na/Ca позиций, либо наличия в них вакансий. Как было отмечено ранее [9], в кристаллической структуре катаплеита можно выделить плотноупакованные слои их полиэдров Zr и Na(Ca), расположенные перпендикулярно оси псевдогексагональности и скрепленные между собой трехчленными кольцами кремнекислородных тетраэдров. Молекулы H₂O, каждая из которых объединяет по три восьмивершинника Na(Ca), лежат в тех же слоях (рис. 6). Очевидно, что ориентация молекул воды должна отвечать ситуации максимального удаления протонов от катионов Na⁺ и/или Ca²⁺. Этому требованию отвечают позиции атомов водорода в межслоевом

D-H···A	<i>D</i> –Н, Å	H… <i>A</i> , Å	<i>D</i> … <i>A</i> , Å	Угол <i>D</i> -Н…А, град
···O4		2.55(6)	3.168(7)	131(5)
O18-H1	0.85(4)			
···O17		2.54(4)	3.232(7)	140(5)
···O2		2.59(7)	3.073(5)	116(6)
O17–H2	0.86(5)			
···O18		2.61(4)	3.232(7)	131(5)
O19-H3O16	0.85(7)	2.55(6)	3.235(9)	138(8)
O16–H4…O19	0.85(4)	2.58(3)	3.235(9)	135(4)

Таблица 6. Геометрические характеристики водородных связей в структуре катаплеита

Примечание. *D* – донор и *A* – акцептор водородной связи.

пространстве, которые и были установлены исследованием. Однако геометрия молекулы H_2O строго фиксирует угол H-O-H, делая необходимым положение второго атома водорода каждой из молекул вблизи плотноупакованного Zr/Na/Ca-слоя. Такую картину мы видим на разностных синтезах электронной плотности, где вероятные положения атомов водорода, достраивающие каждую молекулу H_2O , находятся вблизи плоскости плотноупакованных слоев на укороченных расстояниях от позиций Na и Ca, содержащих вакансионные дефекты. Именно с этими дефектами и связаны положения протонов, разупорядоченные между двумя или тремя позициями. Другими словами, прослеживается строгая корреляция между заселенностью восьмивершинников атомами Na и Ca в плотноупакованнх слоях и положением части атомов водорода молекул воды. Естественно, что уточнить позиции атомов водорода при таком характере их статистического распределения, не представляется возможным.

Намного более благоприятная картина имеет место в случае Са-катаплеита [10], где присутствие лишь двухвалентного катиона априори обеспечивает меньшее количество заселенных позиций в слое. Из сравнения рис. 6а и 6б хорошо видно, что часть атомов водорода имеет одинаковое положение в межслоевом пространстве в обеих структурах. В то же время пустующие позиции в части восьмивершинников Zr/Ca-слоя позво-

Рис. 6. Характер заселения катионами Zr^{4+} , Na^+ и Ca^{2+} позиций в центрах октаэдров и восьмивершинников плотноупакованного слоя, перпендикулярного оси псевдогексагональности кристаллической структуры катаплеита: a - Na, Ca-катаплеит; 6 - Ca-катаплеит.

ляют второй части атомов водорода найти себе место внутри этих пустот в Са-катаплеите, тогда как в структуре Na,Ca-катаплеита эти положения статистически неупорядочены.

В [9] приведены экспериментальные данные наличия ионной проводимости в синтетическом катаплеите, а также высказано предположение о возможности анизотропии ионно-транспортных свойств в направлениях вдоль оси псевдогексагональности и в перпендикулярной плоскости. Согласно [8], для минерала характерны ионно-обменные свойства при $T = 90^{\circ}$ С. Эти сведения, а также весьма широкий температурный интервал кристаллизации катаплеита от позднемагматического вплоть до низкотемпературного гидротермального [8] в совокупности с особенностями кристаллической структуры и возможностью участия атомов фтора в ее формировании, позволяют предположить варианты состава гипотетических разновидностей минерала. Если основываться на данных о существовании изоморфного ряда катаплеит – кальциевый катаплеит, а также принять во внимание максимально возможное количество внекаркасных катионов в кристаллической структуре, равное 3 (на формулу при Z = 32), то общая формула для изоморфного ряда может быть записана следующим образом: (Na, Ca, □)₃[ZrSi₃O₉](H₂O, F)₂. Тогда натриевый крайний член, не содержащий вакансий в восьмивершинниках, будет выглядеть как $Na_3[ZrSi_3O_9](H_2O)F$, а кальциевый, с обязательными вакансиями в потенциальных позициях внекаркасных катионов, как (Ca₂□)[ZrSi₃O₉]F₂. Внутри этого ряда возможны стехиометрические смешанные составы, например: (NaCa□)[ZrSi₃O₉](H₂O)F. Для проверки нашей гипотезы могут быть эффективны ионнообменные эксперименты в системах с активным участием фтора. Учитывая размеры внекаркасных ионов Na⁺ и Ca²⁺, типичных для катаплеита, перспективными видятся опыты по внедрению в структуру двухвалентных атомов с близкими величинами ионных радиусов, в частности токсичного тяжелого металла Cd, а также Sr, с целью разработки технологии их извлечения из сточных вод в регионах, эндемичных по избыточному содержанию Cd или Sr в почве и воде.

Авторы выражают благодарность В. Масса (Марбург, Германия) за плодотворное обсуждение данной работы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 10-05-01068а, 11-05-00407а). Рентгеновский эксперимент выполнен на оборудовании ЦКП "Структурная диагностика материалов" ИК РАН в рамках ФЦП "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007–2013 гг." и при финансовой поддержке гранта Ведущих научных школ НШ-2883.2012.5.

СПИСОК ЛИТЕРАТУРЫ

- Минералы Хибинских и Ловозерских тундр / Под ред. Ферсмана А.Е. М.; Л.: изд-во АН СССР, 1937. 305 с.
- Лабунцов А.Н. // Минералогическая съемка центральных частей Хибинского массива (месторождения циркона, катаплеита, ферсманита). Хибинские Апатиты. 1933. Т. 6. С. 202.
- 3. *Brunowsky B.* // Acta Physicochim. URSS. 1936. V. 5. № 6. P. 863.
- 4. *Бруновский Б.К.* // Тр. Ломоносовского Ин-та. АН СССР. 1935. № 6. С. 33.
- 5. Geochemistry and Mineralogy of Rare Elements and Genetic Types of Their Deposits. IGEM. / Ed. Vlasov K.A. Moscow (Russia). 1966. Israel Program for Scientific Translations. P. 367.
- Chao G.Y., Rowland J.F., Chen T.T. // Geol. Soc. Am. Annual Meeting. Abs. Prog. 1973. P. 572.
- 7. Илюшин Г.Д., Воронков А.А., Илюхин В.В. и др. // Докл. АН СССР. 1981. Т. 260. С. 623.
- 8. Зубкова Н.В., Пеков И.В., Турчкова А.Ги др. // Кристаллография. 2007. Т. 52. № 1. С. 68.
- 9. Илюшин Г.Д., Демьянец Л.Н. // Кристаллография. 1988. Т. 33. С. 650.
- Merlino S., Pasero M., Bellezza M. et al. // Can. Mineral. 2004. V. 42. P. 1037.
- 11. *Чуканов Н.В., Пеков И.В.* // Зап. Рос. минерал. о-ва. в печати
- Farrugia L.J. WinGX Program System // J. Appl. Cryst. 1999. V. 32. P. 837.
- 13. *Prince E. Ed.* International Tables. 2004 p. 3rd edth. Tables 4.2.6.8 and 6.1.14.
- Altomare A., Cascarno G., Giacovazzo C. et al. // J. Appl. Cryst. 1994. V. 27. P. 435.
- 15. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 16. *Brown I.D., Altermatt D.* // Acta Cryst. B. 1985. V. 41. P. 244.