КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 3, с. 380–387

УДК 538.9

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ИССЛЕДОВАНИЕ ИЗМЕНЕНИЙ СТРУКТУРЫ МОНОКРИСТАЛЛОВ К₉H₇(SO₄)₈ · H₂O ПРИ ПОВЫШЕНИИ ТЕМПЕРАТУРЫ

© 2013 г. И. П. Макарова, В. В. Гребенев, Т. С. Черная, И. А. Верин, В. В. Долбинина, Д. Ю. Чернышов*, М. В. Ковальчук

> Институт кристаллографии РАН, Москва, Россия E-mail: makarova@crys.ras.ru *Европейский центр синхротронного излучения, Гренобль, Франция Поступила в редакцию 06.08.2012 г.

оступила в редакцию 00.08.2012 г

Интерес к "суперпротонным" кристаллам $M_m H_n(XO_4)_{(m+n)/2}$ связан с решением фундаментальной проблемы современной физики конденсированных состояний – исследованием структурных фазовых переходов и стабилизацией фаз с высокой протонной проводимостью с целью создания новых функциональных материалов. Полученные ранее данные позволяют сделать вывод о возможном существовании в этих кристаллах различных структурных механизмов изменений физических свойств. Для выявления структурной обусловленности аномалий физических свойств проведены рентгеноструктурные исследования кристаллов $K_9H_7(SO_4)_8 \cdot H_2O$ в интервале температур 25–463 K, определена структура кристаллов в высокотемпературной фазе при температуре 418 K (пр. гр. *Pcan*). Полученные результаты свидетельствуют о том, что появление высокой проводимости в кристаллах $K_9H_7(SO_4)_8 \cdot H_2O$ при повышении температуры связано с диффузией кристаллизационной воды, перестройкой системы водородных связей и движением ионов К. Перестройка связей и затрудненная обратная диффузия воды в кристалл обусловливают стабилизацию высокотемпературной фазы и переохлаждение е до низких температур.

DOI: 10.7868/S0023476113030132

ВВЕДЕНИЕ

Кристаллы суперпротонных солей $M_m H_n(XO_4)_{(m+n)/2}$ $(M = K, Rb, Cs, NH_4; X = S, Se, P)$ являются перспективными материалами для создания различных электрохимических устройств и активно исследуются [1, 2] с целью выявления влияния водородной подсистемы на физико-химические свойства материалов и стабилизации фаз с высокой протонной проводимостью. "Суперпротонные" кристаллы представляют собой особый класс, в котором в отличие от других водородсодержащих соединений при фазовых переходах (ФП) меняется система водородных связей (ВС), приводя к радикальному изменению физико-химических свойств, в частности появлению протонной проводимости порядка 10⁻³-10⁻¹ Ом⁻¹ см⁻¹. Эти кристаллы являются уникальными в классе протонных проводников, так как суперпротонная проводимость связана со структурными особенностями данных соединений, а не с допирующими добавками.

Полученные данные о структуре кристаллов семейства $M_m H_n(XO_4)_{(m+n)/2}$ свидетельствуют о возможном существовании в них различных структурных механизмов изменений физических свойств. Появление аномально высокой суперпротонной проводимости в кристаллах $M_3 H(XO_4)_2$ связано с формированием качественно новой, дина-

мически разупорядоченной системы ВС. Впервые это было обнаружено при исследовании структурных $\Phi\Pi$ в кристаллах $Rb_3H(SeO_4)_2[3, 4]$ и подтверждено затем для других кристаллов M_3 H(XO₄)₂, в том числе для K₃H(SO₄)₂ [5], причины изменения физических свойств которого обсуждались достаточно длительное время. С повышением температуры при ФП в этих кристаллах происходит перестройка системы ВС – формируется новая сетка связей, в которой разупорядочены как положения центров ВС, так и их ориентация. В результате на один протон приходятся три кристаллографически эквивалентные, а значит, и энергетически эквивалентные позиции (что подразумевает вырождение по энергии для нескольких структурных конфигураций). Образовавшаяся сетка ВС позволяет протонам двигаться по вакантным позициям, что приводит к высоким коэффициентам диффузии водорода и суперпротонной проводимости.

Исследуемые водородсодержащие кристаллы $K_9H_7(SO_4)_8 \cdot H_2O$ в настоящее время являются единственным известным представителем подсемейства $M_9H_7(XO_4)_8$. Впервые они были выращены группой "Водораствор" в ИК РАН методом снижения температуры насыщенного раствора, а затем исследованы с целью выявления возможных ФП [6]. Отметим, что при выращивании мо-

нокристаллов наблюдается существенная анизотропия роста граней: соединение $K_9H_7(SO_4)_8\cdot H_2O$ кристаллизуется в виде игл.

В [7] определена и уточнена структура кристалла $K_9H_7(SO_4)_8 \cdot H_2O$ с учетом атомов водорода методом рентгеноструктурного анализа при температуре 295 К: моноклинная симметрия, пр. гр. $P2_1/c$, Z = 4, a = 7.059(1), b = 19.773(1), c = 23.449(1) Å, $\beta = 95.33(1)^\circ$, $R_1/wR_2 = 2.71/1.71$. Полученные при 295 К структурные данные свидетельствуют о том, что структурный механизм появления высокой проводимости в кристаллах $K_9H_7(SO_4)_8 \cdot H_2O$ при повышении температуры несомненно отличается от ранее обнаруженных в других кристаллах "суперпротоников" и, вероятно, связан с диффузией кристаллизационной воды и перестройкой системы BC.

Исследования кристаллов $M_m H_n(XO_4)_{(m+n)/2}$ при повышенных температурах показали, что в них наблюдаются сложные физико-химические процессы, обусловленные диффузией, и возникают многофазные состояния [8–11]. Несмотря на достигнутые успехи в изучении данного кристаллического семейства, до сих пор отсутствует информация об атомной структуре высокотемпературных фаз многих соединений.

Выявление структурной обусловленности ФП в кристаллах $K_9H_7(SO_4)_8 \cdot H_2O$ представляет несомненный интерес как для характеризации данного соединения, так и с точки зрения выяснения общих закономерностей и различий в семействе кристаллов $M_mH_n(XO_4)_{(m + n)/2}$.

ИССЛЕДОВАНИЯ ПРОВОДИМОСТИ МОНОКРИСТАЛЛИЧЕСКИХ ОБРАЗЦОВ

Исследования проводимости выполнялись методом импедансной спектроскопии, который обеспечивает высокую чувствительность уже к малым изменениям состояния объема образца, его поверхности и дает обширную информацию о структурных ФП.

Электрические измерения свойств образцов выполнены в диапазоне частот $42-10^6$ Гц в температурном интервале 290–450 К (LCR meter Hioki 3532-50) на установке Novoterm-1200 (Novocontrol, Германия). Для измерений образцы были ориентированы вдоль различных кристаллографических осей. В качестве электродов использовалась серебряная паста типа "Degussa". Выполненные исследования проводимости монокристаллов K₉H₇(SO₄)₈ · H₂O показали наличие ряда аномалий, в том числе существенное повышение проводимости при температуре 390 К. На рис. 1 представлена проводимость монокристаллов в направлении [001], измеренная на частоте 1 МГц

Рис. 1. Проводимость монокристаллов $K_9H_7(SO_4)_8 \cdot H_2O$ в направлении [001], измеренная на частоте 1 МГц при скорости нагрева 0.015 К/мин.

при очень медленной скорости нагрева 0.015 К/мин, позволяющей выделить вклад диффузии кристаллической воды из объема монокристаллического образца. Отметим, что проводимость кристалла в высокотемпературной фазе является анизотропной вне зависимости от скорости нагревания, причем $\sigma_{1001} > \sigma_{11001}$ [7].

РЕНТГЕНОСТРУКТУРНЫЕ ИССЛЕДОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ ОБРАЗЦОВ

Рентгеноструктурные исследования монокристаллов $K_9H_7(SO_4)_8 \cdot H_2O$ проведены на дифрактометре Xcalibur S фирмы Oxford Diffraction с двумерным CCD-детектором, оснащенным температурной приставкой Cryojet фирмы Oxford Instruments, в интервале температур 295–463 К.

При температуре ~412 К зарегистрирован структурный ФП из моноклинной в ромбическую фазу, углы $\alpha = \beta = \gamma = 90.00(3)^\circ$. Рентгенодифракционные данные для определения атомной структуры собраны при 418 К от монокристаллического образца размером 0.40 × 0.30 × 0.20 мм. В табл. 1 приведены основные кристаллографические характеристики, данные рентгеновского эксперимента и уточнения структуры кристалла при T = 418 К, а также для сравнения при T = 295 К.

Интенсивности дифракционных отражений пересчитаны в модули структурных амплитуд с учетом кинематического и поляризационного факторов. Анализ закономерных погасаний и эквивалентных по симметрии отражений позволил однозначно выбрать пр. гр. *Рсап*. Вычисления выполнялись по кристаллографическому комплексу

Химическая формула	$\mathrm{K_9H_7(SO_4)_8}\cdot\mathrm{H_2O}$	K ₉ H ₇ (SO ₄) ₈
Т, К	295	418
Размер образца, мм	Сфера <i>d</i> = 0.36	0.40 imes 0.30 imes 0.20
Пр. гр., Z	$P2_{1}/c, 4$	Pcan, 4
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.059(1), 19.773(1), 23.449(1)	7.178(4), 19.866(7), 23.343(7)
$\alpha, \beta, \gamma,$ град	90, 95.33(1), 90	90, 90, 90
<i>V</i> , Å ³	3258.95	3328.6
D_x , г/см ³	2.283	2.317
Излучение; λ, Å	$MoK_{\alpha}, \lambda = 0.7106$	$MoK_{\alpha}, \lambda = 0.7106$
Тип сканирования	ω	ω
θ_{max} , град	31.78	29.29
Пределы h, k, l	-4 < h < 9, -29 < k < 29, -34 < l < 34	-9 < h < 9, -27 < k < 26, -25 < l < 31
Число отражений: измеренных/не- зависимых с $I > 3\sigma(I)$, R_{int}	67112/7256, 1.71	83799/3202, 5.58
Метод уточнения	МНК по <i>F</i>	МНК по <i>F</i>
Весовая схема	$1/\sigma^2(F)$	$1/\sigma^2(F)$
Число уточняемых параметров	492	249
Коэффициент экстинкции (изотропная, тип 1)	0.0281(4)	0.23(9)
R_1/wR_2	2.71/1.71	6.62/6.85
S	2.03	6.20
$\Delta \rho_{max} / \Delta \rho_{min}$, $\Im / Å^3$	0.26/-0.28	0.77/-0.53
Программы	JANA 2000, JANA 2006 [12]	JANA 2006 [12]

Таблица 1. Основные кристаллографические характеристики, данные рентгеновского эксперимента и уточнения структуры кристаллов

программ JANA 2000 и JANA 2006 [12]. Уточнение структурных параметров кристалла проводилось методом наименьших квадратов в полноматричном варианте. При введении поправок на вторичную экстинкцию использовался формализм Беккера—Коппенса [13].

Модель атомной структуры кристалла получена методом Charge flipping по программе Superflip [12]. Уточнение параметров базисных атомов структуры без учета атомов водорода привело к фактору расходимости экспериментальных и вычисленных структурных амплитуд $R_1/wR_2 = 7.70/8.28$. Несмотря на завышенный фактор расходимости, связанный с ухудшением качества образца при ФП, анализ расстояний между атомами, параметров тепловых колебаний, разностных синтезов электронной плотности показал адекватность структурной модели.

Подключение к уточнению ангармонических параметров атомов показало наличие существен-

ного отклонения от гармонического приближения тепловых параметров только атома K5, причем лишь третьего порядка $C^{111} = -1.9(1)$, $C^{122} =$ = -0.0022(8), $C^{123} = 0.0011(6)$, $C^{133} = -0.0020(6)$, тогда как величины остальных ангармонических параметров не превышали стандартных отклонений. С учетом ангармонического приближения получены факторы $R_1/wR_2 = 6.62/6.85$. Позиции водородных атомов были установлены на основании анализа расстояний S–O в тетраэдрах и O–O между тетраэдрами SO₄.

Уточненные позиционные и эффективные изотропные параметры тепловых колебаний базисных атомов структуры кристалла приведены в табл. 2. В табл. 3 даны основные межатомные расстояния полученной структурной модели. В табл. 4 указаны расстояния и углы, характеризующие ВС в структуре кристалла.

Атомы	Позиция Уайкова	q	x/a	y/b	z/c	U
K1	8 <i>d</i>	1	0.5841(2)	0.83303(6)	0.15949(6)	0.048(1)
K2	8 <i>d</i>	1	0.2295(2)	0.16917(6)	0.15591(5)	0.045(1)
K3	8 <i>d</i>	1	0.9133(2)	0.99903(6)	0.08243(5)	0.046(1)
K4	8 <i>d</i>	1	0.6157(2)	0.16337(6)	0.01794(6)	0.047(1)
K5	4 <i>c</i>	0.469(5)	0.317(2)	0	0.25	0.219(6)
K6	4 <i>c</i>	0.362(5)	0.803(1)	0	0.25	0.148(3)
S 1	8 <i>d</i>	1	0.7298(2)	0.14808(7)	0.17967(6)	0.037(1)
S2	8 <i>d</i>	1	0.0860(2)	0.85215(7)	0.18085(6)	0.040(1)
S 3	8 <i>d</i>	1	0.4193(2)	0.99701(7)	0.10085(6)	0.040(1)
S4	8 <i>d</i>	1	0.1331(2)	0.15771(7)	0.99212(6)	0.032(1)
O1	8 <i>d</i>	1	0.8722(6)	0.1012(2)	0.1623(2)	0.073(2)
O2	8 <i>d</i>	1	0.6206(6)	0.1218(2)	0.2258(2)	0.066(2)
O3	8 <i>d</i>	1	0.6243(6)	0.1745(2)	0.1334(2)	0.081(2)
O4	8 <i>d</i>	1	0.3391(6)	0.2899(2)	0.2019(2)	0.066(2)
O5	8 <i>d</i>	1	0.9635(6)	0.9084(2)	0.1696(2)	0.085(2)
O6	8 <i>d</i>	1	0.2244(6)	0.8670(2)	0.2237(2)	0.071(2)
07	8 <i>d</i>	1	0.9684(6)	0.7940(2)	0.1982(2)	0.067(2)
O 8	8 <i>d</i>	1	0.1833(6)	0.8314(2)	0.1279(2)	0.080(2)
O9	8 <i>d</i>	1	0.3255(6)	0.9402(2)	0.0688(2)	0.061(2)
O10	8 <i>d</i>	1	0.5465(6)	0.9704(2)	0.1427(2)	0.054(2)
O11	8 <i>d</i>	1	0.2789(6)	0.0393(2)	0.1265(2)	0.066(2)
O12	8 <i>d</i>	1	0.5251(6)	0.0321(2)	0.0550(2)	0.068(2)
O13	8 <i>d</i>	1	0.0035(6)	0.1055(2)	0.0077(2)	0.062(2)
O14	8 <i>d</i>	1	0.2109(6)	0.1943(2)	0.0392(2)	0.054(2)
O15	8 <i>d</i>	1	0.2726(6)	0.1334(2)	0.9529(2)	0.063(2)
O16	8 <i>d</i>	1	0.0152(6)	0.2133(2)	0.9597(2)	0.063(2)
H1	8 <i>d</i>	1	0.864(9)	0.212(4)	0.246(4)	0.10
H2	8 <i>d</i>	1	0.297(9)	0.117(4)	0.405(4)	0.12
H3	8 <i>d</i>	1	0.041(9)	0.196(4)	0.416(4)	0.06

Таблица 2. Позиции, заселенность позиций (q), координаты, эффективные изотропные параметры тепловых колебаний (U, $Å^2$) базисных атомов структуры кристалла $K_9H_7(SO_4)_8$ при температуре 418 К

Примечание. Атомы водорода уточнены в изотропном приближении тепловых параметров.

1

0.5

0

ОБСУЖДЕНИЕ

4b

H4

Основные изменения в атомной структуре кристаллов $K_9H_7(SO_4)_8 \cdot H_2O$ при ФП связаны с диффузией кристаллизационной воды. На рис. 2 представлена атомная структура кристаллов при 295 К (а) и при 418 К (б). На основании структурных данных, полученных при 295 К [7], сделано заключение, что молекула H_2O (атом кислорода O33), координированная пятью атомами O из че-

тырех разных тетраэдров SO₄ на расстоянии 2.627(2)—3.100(2) Å, включая водородную связь O4—H7—O33, динамически разупорядочена, т.е. фактически уже при этой температуре колеблется в образовавшейся полости. С повышением температуры водородная связь O4—H7—O33 разрывается, кристаллизационная вода диффундирует из кристалла и образуется дополнительная позиция, которую может занимать атом K (K9 при

0.5

0.12

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

К1-полиэдр		К2-полиэдр		К3-полиэдр				
-O10	2.770(-	4)	-011	2.694(4)	-05		2.742(5)	
-07	2.807(-	4)	-O4	2.743(4)	-01		2.772(5)	
-O2	2.835(4)	-O14	2.774(4)	-013		2.818(4)	
-O15	2.895(4)	-03	2.884(5)	-011		2.930(4)	
-O8	2.970(5)	-06	2.902(4)	-O12		2.933(5)	
-O7	3.004(5)	-01	2.903(5)	-013		3.015(4)	
-06	3.060(5)	-O4	3.109(5)	-O10		3.038(4)	
-05	3.116(5)	-03	3.239(5)	-015		3.063(5)	
-O8	3.424(6)	-O2	3.381(5)	-09		3.198(4)	
Средн.	2.978		Средн.	2.959	Среди	н.	2.945	
К4-пс	К4-полиэдр К5-пол		олиэдр		К6-по	К6-полиэдр		
-03	2.705(5)	-O6 (×2)	2.793(6)	-O2 ((×2)	2.808(6)	
-O12	2.824(4)	-O11 (×2)	3.000(5)	-O5 ((×2)	2.857(6)	
-O16	2.894(4)		-O10 (×2)	3.056(8)	-O1 ((×2)	2.912(5)	
-09	2.917(4)	-O21 (×2)	3.305(9)	-O10	(×2)	3.164(6)	
-O14	2.950(4)						
-O15	2.954(5)						
-O14	3.011(-	4)						
-O13	3.021(4)						
-O16	3.325(5)						
Средн.	2.956		Средн.	3.039	Среди	н.	2.935	
			-K6	3.488(15)	-K5		3.488(15)	
S1-тетраэдр		S2-тетраэдр						
-03	-O3 1.4		1.420(5)				1.439(5)	
-02	-O2 1.432(5)		1.432(5)	-05			1.445(5)	
-01	1.440(5)		-08		1.479(5)			
-04			1.549(5)	-07			1.486(5)	
	S3-тетраэдр		S4-тетраэдр					
-O10			1.437(4)	-014	14 1.431(4)		1.431(4)	
-O11			1.441(4)	-013			1.440(4)	
-O12			1.485(4)	-015			1.440(4)	
-09			1.512(4)	-O16	1.584(4)		1.584(4)	

Таблица 3. Основные межатомные расстояния (Å) в структуре кристалла K₉H₇(SO₄)₈ при температуре 418 K

Таблица 4. Расстояния (Å) и углы (град) водородных связей О–H…О в структуре кристалла $K_9H_7(SO_4)_8$ при температуре 418 К

0–H…O	О–Н	Н…О	0…0	0–H…O
O4–H1…O7	1.047(4)	1.508(4)	2.513(6)	158.7(3)
O9–H2…O8	1.309(4)	1.516(5)	2.759(7)	155.2(3)
O16–H3…O8	1.155(4)	1.540(5)	2.644(6)	157.5(3)
O12-H4-O12	1.445(4)	1.445(4)	2.890(6)	180

295 К). В результате температурных изменений в высокотемпературной фазе имеются две позиции К5 и К6 с неполной заселенностью (рис. 3, табл. 2 и 3). Отметим, что на разностных синтезах электронной плотности между этими двумя позициями наблюдается дополнительный пик электронной плотности, что, возможно, свидетельствует о наличии еще одной дополнительной позиции атома К. Анализ тепловых колебаний атомов К5 и К6 выявил сильную анизотропию: тепловые колебания происходят главным образом вдоль оси *а*. Полученные структурные данные свидетельствуют о формировании канала вдоль оси *a*,

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

Рис. 2. Атомная структура кристаллов $K_9H_7(SO_4)_8 \cdot H_2O$ при 295 К (а) и $K_9H_7(SO_4)_8$ 418 К (б). Показаны координационные полиэдры атомов К9 при 295 К и соответствующих им при 418 К атомов К5 и К6, тетраэдры SO_4 и соединяющие их водородные связи, а также при 295 К молекулы H_2O с тремя возможными позициями атомов H.

по которому возможно движение атомов К (рис. 2).

Оптические наблюдения поведения монокристаллов при повышении температуры, дифракционные данные, включая температурную зависимость параметров элементарной ячейки, полученные на станции SNBL в Европейском центре синхротронного излучения (ESRF, Гренобль), подтверждают выводы о диффузии кристаллизационной воды из кристалла и происходящих при этом структурных изменениях. В частности, перед переходом в новую разупорядоченную фазу наблюдается скачкообразное уменьшение объема элементарной ячейки на ~3.3%. Таким образом, аномалии проводимости, наблюдаемые в диапазоне температур 360–390 К, отвечают выходу кристаллизационной воды из объема кристалла, и при ФП изменяется не только кристаллическая структура, но и состав: химическая формула кристаллов после фазового перехода $K_9H_7(SO_4)_8$. Данная информация должна быть учтена при анализе термодинамики перехода.

Рис. 3. Расположение атомов в структуре кристаллов $K_9H_7(SO_4)_8 \cdot H_2O$ при температуре 295 К вблизи плоскости y = 0.25 (а); при 418 К вблизи плоскости y = 0 (б). Стрелками указаны ряды $K9-H_2O-K9-H_2O-...$ при 295 К и K5-K6-K5-K6... при 418 К. Выделена элементарная ячейка.

Изменение симметрии элементарной ячейки при ФП

пр. гр. $P2_1/c$, $Z = 4 \rightarrow$ пр. гр. Pcan, Z = 4

приводит к тому, что независимая область элементарной ячейки содержит шесть неэквивалентных по симметрии атомов К и четыре тетраэдра SO_4 . Анализ расстояний S–O в тетраэдрах и O–O между тетраэдрами SO_4 позволил определить позиции всех водородных атомов: H1, H2, H3 и H4. Атом H4 занимает позицию на BC с двухминимумным потенциалом. Во всех тетраэдрах SO_4 расстояние от атома S до атома O больше, если он участвует в BC, причем величина удлинения больше для атома O– донора H-связи (табл. 4).

Важной особенностью $\Phi\Pi$ в исследуемых кристаллах является то, что в отсутствие молекул воды формируется новая система BC между тетраэдрами SO₄, ранее связанными с молекулами H₂O (рис. 2).

На основании полученных структурных данных можно сделать вывод, что при повышении температуры слабые BC, связывающие кристаллизационную воду, разрываются, вода диффундирует из кристалла, освобождая каналы для возможного движения атомов К при наложении электрического поля, и одновременно формируется новая система BC, что и обусловливает появление высокой проводимости.

Можно предположить, что при охлаждении кристалла $K_9H_7(SO_4)_8$ образовавшиеся новые BC между тетраэдрами SO₄ существенно затрудняют обратную диффузию воды, что, вероятно, приводит к стабилизации высокотемпературной фазы и ее переохлаждению до комнатной температуры. Эта переохлажденная фаза стабилизирована благодаря замедленной обратной диффузии молекул воды при низких температурах.

Авторы выражают благодарность В.П. Дмитриеву (SNBL, ESRF, Гренобль) за помощь в получении экспериментальных данных с использованием синхротронного излучения, а также ESRF за предоставленное время на станции BM1A.

Работа выполнена при финансовой поддержке Президента Российской Федерации (грант МК-1591.2012.3) и ОФН РАН (Программа фундаментальных исследований "Физика новых материалов и структур") с использованием оборудования ЦКП "Структурная диагностика материалов" ИК РАН.

КРИСТАЛЛОГРАФИЯ том 58 № 3 2013

СПИСОК ЛИТЕРАТУРЫ

- 1. *Иванов-Шиц А.К., Мурин И.В.* Ионика твердого тела. В 2 т. СПб.: Изд-во СПбГУ, 2010. Т. 2. 1000 с.
- 2. *Баранов А.И.* // Кристаллография. 2003. Т. 48. № 6. С. 1081.
- 3. *Макарова И.П., Верин И.А., Щагина Н.М. //* Кристаллография. 1986. Т. 31. Вып. 1. С. 178.
- 4. Баранов А.И., Макарова И.П., Мурадян Л.А. и др. // Кристаллография. 1987. Т. 32. Вып. 3. С. 682.
- Макарова И.П., Черная Т.С., Филаретов А.А. и др. // Кристаллография. 2010. Т. 55. № 3. С. 429.
- 6. *Якушкин Е.Д., Баранов А.И.* // ФТТ. 2000. Т. 42. № 8. С. 1474.

- 7. Макарова И.П., Черная Т.С., Гребенев В.В. и др. // Кристаллография. 2011. Т. 56. № 6. С. 1062.
- Cowan L.A., Morcos R.M., Hatada N. et al. // Solid State Ionics. 2008. V. 179. P. 305.
- 9. Baranov A.I., Grebenev V.V., Bismaer U., Ludwig J. // Ferroelectrics. 2008. V. 369. P. 108.
- Baranov A.I., Sinitsyn V.V., Vinnichenko V.Yu. et al. // Solid State Ionics. 1997. V. 97. P. 153.
- 11. Vrtnik S., Apih T., Klanjšek M. et al. // J. Phys.: Condens. Matter. 2004. V. 16. P. 7967.
- 12. *Petriček V., Dusek M., Palatinus L.* Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic. 2006.
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129.