_____ СТРУКТУРА ОРГАНИЧЕСКИХ __ СОЕДИНЕНИЙ

УДК 548.737

ВЛИЯНИЕ МЕЖМОЛЕКУЛЯРНЫХ ВОДОРОДНЫХ СВЯЗЕЙ НА ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА α-ЗАМЕЩЕННЫХ ЦИННАМОНИТРИЛОВ

© 2013 г. Я. А. Михлина, Б. М. Болотин, Б. М. Ужинов*, В. В. Волчков*, Л. Г. Кузьмина**

Научно-исследовательский институт химических реактивов и особо чистых химических веществ, Москва E-mail: bolotin 70@yandex.ru

* Московский государственный университет им. М.В. Ломоносова E-mail: uzhinov@light.chem.msu.ru ** Институт общей и неорганической химии РАН, Москва E-mail: kuzmina@igic.ras.ru Поступила в редакцию 26.12.2011 г.

В связи с разительным изменением спектрально-люминесцентных свойств α -(*n*-хлорбензоил)-4диэтиламиноциннамонитрила и α -этоксикарбонил-4-диметиламиноциннамонитрила при переходе от кристаллов к растворам методом рентгеноструктурного анализа исследованы кристаллы этих соединений. Обнаружены межмолекулярные водородные связи С–H…N и С–H…O, способствующие увеличению вклада хиноидной формы молекул, следствием которого является батохромное смещение спектров поглощения и флуоресценции. Спектрально-люминесцентным исследованием указанных соединений выявлено влияние температуры и полярности растворителя на положение максимумов поглощения и люминесценции: понижение температуры и полярности растворителя ведет к гипсохромному сдвигу.

DOI: 10.7868/S0023476113020173

ВВЕДЕНИЕ

Люминесцентные характеристики органических соединений в кристаллическом состоянии и растворах могут существенно различаться. Известно, что в растворах определяющую роль играют универсальные и специфические взаимодействия люминофора с растворителем [1]. В кристаллическом состоянии такие взаимодействия отсутствуют. Им взамен возникают новые взаимодействия, приводящие к образованию ассоциатов различного типа, а также существенным становится влияние кристаллического поля.

α-Ароилциннамонитрилы являются органическими люминофорами, т.е. веществами, обладающими люминесцентными свойствами:

II: $R_1 = N(Me)_2 -, R_2 = EtO -$

В [2] было показано, что спектры люминесценции этих соединений в растворах и кристаллическом состоянии существенно различаются. Так, α-(*n*-хлорбензоил)-4-диэтиламиноциннамонитрил (I) при 77 К в растворе диметилформамида имеет максимум флуоресценции при 542 нм, а в кристаллическом состоянии при 293 К - 630 нм, т.е. смещен в длинноволновую область на 88 нм. Аналогичными свойствами обладает и α -этоксикарбонил-4-диметиламиноциннамонитрил (II). Эти экспериментальные данные указывают, что в кристаллическом состоянии наблюдается иной тип взаимодействия молекул указанных люминофоров по сравнению с растворами.

Цель настоящей работы — исследование спектрально-люминесцентных свойств α-замещенных циннамонитрилов и установление природы межмолекулярных взаимодействий указанных люминофоров в кристаллическом состоянии, приводящих к радикальным изменениям их спектральных характеристик при переходе от растворов к кристаллу.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединений I и II

α-(*n*-хлорбензоил)-4-диэтиламиноциннамонитрил (I). 3.60 г (0.02 моль) 4-хлор-ω-цианацетофенона и 3.54 г (0.02 моль) *n*-диэтиламинобензальдегида кипятили в 75 мл этилового спирта с добавлением двух капель пиперидина. Выпавший на следующий день осадок отфильтровали и промыли 10 мл охлажденного этилового спирта. Про-

Кристалл	Ι	П	
М	326.82	244.29	
Сингония, пр. гр., <i>Z</i>	триклинная, <i>Р</i> 1, 2	триклинная, <i>Р</i> 1, 2	
<i>a</i> , <i>b</i> , <i>c</i> , Å	6.9754(13), 9.3928(13), 13.841(3)	7.5502(16), 8.3183(17), 11.547(2)	
α, β, γ, град	75.628(2), 83.790(3), 82.243(2)	107.800(3), 103.140(3), 102.342(3)	
<i>V</i> , Å ³	867.8(3)	640.3(2)	
D_x , г/см ³	1.297	1.267	
Излучение; λ, Å	$MoK_{\alpha};$	0.71073	
μ, мм ⁻¹	0.229	0.086	
Т, К	173		
Размер образца, мм, цвет	$0.52 \times 0.44 \times 0.42$, ярко-красные	$0.44 \times 0.36 \times 0.28$, ярко-желтые	
Дифрактометр	Bruker SMART-APEX-2		
Тип сканирования	ω	ω	
θ _{max} , град	29.00	30.00	
Пределы hkl	$-9 \le h \le 9, -12 \le k \le 12, -18 \le l \le 18$	$-10 \le h \le 10, -11 \le k \le 11, -16 \le l \le 16$	
Число отражений: измеренных/не- зависимых (N_1), $R_{int}/c I > 2\sigma(I)$ (N_2)	9607/4589, 0.0181/3901	7566/3705, 0.0188/2987	
Метод уточнения	МНК по <i>F</i> ²		
Число параметров	293	227	
R_1/wR_2 по N_1	0.0493/0.1203	0.0553/0.1218	
R_1/wR_2 по N_2	0.0419/0.1162	0.0433/0.1164	
S	1.067	1.067	
$\Delta \rho_{min} / \Delta \rho_{max}$	-0.260/0.627	-0.251/0.400	
Первичная обработка эксперимен- тальных данных	SAINT [3]		
Расшифровка и уточнение структуры	SHELXTL-Plus [4]		

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структур $C_{19}H_{19}ClN_2O(I)$ и $C_{14}H_{16}N_2O_2(II)$

дукт перекристаллизовали из 100 мл этилового спирта. Выход 5.21 г (77% от теории).

α-этоксикарбонил-4-диметиламиноциннамонитрил (II). 2.98 г (0.02 моль) п-диметиламинобензальдегида и 2.26 г (0.02 моль) этилового эфира цианоуксусной кислоты кипятили в течение трех часов в 50 мл этилового спирта с добавлением двух капель пиперидина. Выпавший после охлаждения осадок отфильтровали, промыли 5 мл охлажденного спирта. Продукт перекристаллизовали из 75 мл этилового спирта. Выход 3.56 г (73% от теории).

Рентгеноструктурные исследования

Монокристаллы I и II выращены из бензола. Характеристики рентгеноструктурных экспериментов и кристаллографические параметры приведены в табл. 1. Структуры расшифрованы прямым методом в анизотропном приближении. Атомы водорода найдены в разностном синтезе Фурье и в обеих структурах уточнялись в изотропном приближении.

Координаты атомов и другие экспериментальные данные депонированы в Кембриджском банке структурных данных под номерами (ССDС № 857942 (I) и 857943 (II)).

Спектроскопические исследования

Спектрально чистый этанол обезвоживали путем перегонки над CaH₂. Спектрально чистый бутиронитрил ("Merck") использовали без дальнейшей очистки. Спектры поглощения растворов измеряли на спектрофотометре Shimadzu UV-3100, спектры флуоресценции растворов при 293 К – на спектрофлуориметре Perkin-Elmer LS-55, спектры флуоресценции порошков и растворов при 77 К, а также спектры возбуждения флуоресценции при 293 и 77 К – на спектрофлуориметре Элюмин-2М.

Рис. 1. Строение молекулы I; тепловые эллипсоиды даны на уровне вероятности 50%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Предположим, что большие различия спектрально-люминесцентных свойств обоих соединений в растворах и кристаллическом состоянии обусловлены в первую очередь перераспределением электронной плотности внутри молекул. Такое перераспределение может быть вызвано межмолекулярными водородными связями (**MMBC**) между молекулами люминофоров в кристаллическом состоянии.

Рентгеноструктурные исследования

Молекулярная структура. Строение молекулы I показано на рис. 1. Молекула I неплоская, но в ней можно выделить плоский фрагмент, образованный бензольным кольцом С11...С16 (кольцо *A*) с системой связей атома N2 и фрагментом C10=C8−C9≡N1. Карбонильная группа C7=O1 вывернута из этой плоскости вокруг связи C7−C8 на угол 20.7°, а бензольное кольцо C1...C6 (кольцо *B*) образует с плоскостью указанного фрагмента двугранный угол 55.8°. Торсионные углы C9−

Таблица 2. Длины связей (d, Å) в молекуле I

		I	
Связь	d	Связь	d
C1–C2	1.397(2)	C8-C10	1.371(2)
C2–C3	1.385(2)	C10-C11	1.431(2)
C3–C4	1.387(2)	C11-C12	1.410(2)
C4–C5	1.384(2)	C12-C13	1.373(2)
C5-C6	1.386(2)	C13-C14	1.421(2)
C6-C1	1.394(2)	C14-C15	1.420(2)
C1–C7	1.495(2)	C15-C16	1.371(2)
C7-O1	1.222(2)	C16-C11	1.415(2)
C7–C8	1.490(2)	C14-N2	1.362(2)
C8–C9	1.431(2)	N2-C17	1.462(2)
C9-N1	1.146(2)	N2-C19	1.478(2)

С8-С7-С1 и С8-С7-С1-С6 соответственно равны 21.2° и 35.1°. Непланарность молекулы не является следствием внутримолекулярных стерических взаимодействий. Действительно, внутримолекулярный контакт атома С9 с атомом Н при С16 бензольного кольца, входящего в плоскую систему, (2.46 Å) короче, чем контакт атома C9 с атомом Н при С6 второго бензольного кольца, вывернутого из плоской системы (2.59 Å). Аналогично внутримолекулярный контакт атома О1 с атомом Н при С10 составляет 2.43 Å, а с атомом Н при С2 – 2.75 А. Эти особенности молекулярной геометрии указывают на наличие π-сопряжения в плоском фрагменте молекулы и выключенности бензольного кольца С1...С6 из этой системы сопряжения. Что касается карбонильной группы, то следует считать ее частично вовлеченной в сопряжение с π-электронной системой плоского фрагмента. Торсионный угол О1–С7–С8–С10 (угол ф) равен 21°. Если принять во внимание, что энергия сопряжения пропорциональна $\cos^2 \phi$, то участие карбонильной группы в сопряжении с плоской системой сохраняется на 86%.

К выводу о существовании указанного сопряжения приводит также анализ длин связей в молекуле I (табл. 2). Бензольное кольцо С11...С16 имеет отчетливую пара-хиноидную систему распределения связей. Связи С12-С13 и С15-С16 (средн. 1.37 Å) существенно укорочены по сравнению со связями С11-С12 и С11-С16 (средн. 1.41 Å), а также С13–С14 и С14–С15 (средн. 1.42 Å). Длина связи C14-N2 1.362 Å, распределение длин связей во фрагменте C11-C10=C8 1.431 и 1.371 Å, существенно отличается от аналогичных значений в тех стириловых производных, в которых сопряжение двойной связи с бензольным кольцом мало. К таким соединениям относятся стирилгетероциклы NHet-CH=CHAr и соответствующие им красители NHet⁺-CH=CHArX⁻ (NHet = N-coдержащий гетероцикл, X^{-} = противоион) [5, 6], в которых легко осуществляются фотохимические

Рис. 2. Строение молекулы II; тепловые эллипсоиды даны на уровне вероятности 50%.

превращения: *цис-транс*-изомеризация и/или реакция [2 + 2]-фотоциклоприсоединения. Длины связей во фрагменте С—С=С этих соединений изменяются в пределах 1.46—1.49 и 1.32—1.34 Å, что соответственно больше и меньше значений, полученных в молекуле **I**. В бензольном кольце С1...С6 распределение длин связей обычное. Полученные результаты согласуются с выводом о значительном π -сопряжении в планарном фрагменте **I** и исключении из системы сопряжения бензольного кольца A.

Строение молекулы **II** показано на рис. 2. Молекула фактически плоская. Двугранный угол между плоской диметиламиногруппой и бензольным кольцом равен 4.3°. Торсионные углы C6–C1–C9–C10, C1–C9–C10–C11 и C9–C10–C12–O1 равны 1.0°, 1.0° и 0.4° соответственно.

Распределение длин связей в бензольном кольце молекулы II (табл. 3), как и молекулы I, также указывает на значительный вклад *пара*-хиноидной структуры. Действительно, "боковые" связи C2–C3 и C5–C6 (средн. 1.37 Å) существенно короче связей C1–C2 и C1–C6 (средн. 1.41 Å) и C3–C4 и C4–C5 (средн. 1.42 Å). Заметно сокращены экзоциклические связи C4–N1 и C1–C9 и удлинена этиленовая связь C9–C10.

Таким образом, в молекуле **II** имеется сопряженный фрагмент, подобный найденному в молекуле **I** и имеющий аналогичное распределение длин связей.

На основании приведенных данных можно констатировать, что геометрия исследованных молекул в области сопряженной системы очень близка в обоих рассматриваемых соединениях.

Кристаллическая упаковка. Фрагмент кристаллической упаковки I показан на рис. 3. Молекулы объединены в бесконечные ленты вдоль оси c за счет слабых MMBC (рис. 3). Каждая пара соседних молекул связана центром симметрии. Базисная молекула (A) объединена с центросимметрично связанной с ней молекулой (B) за счет пары водородных связей между нитрильными группами и фрагментом H15–C15. Расстояние N1…H15 равно 2.50 Å при сумме ван-дер-ваальсовых радиусов атомов азота и водорода 2.7 Å; углы при атомах N1 и H15 близки к линейному (табл. 4.) Такая геометрия почти идеально соответствует перекрыванию *p*-орбитали неподеленной электронной пары атома азота с σ*-орбиталью связи C–H.

Другая пара соседних молекул (A и C), связанных центром симметрии, относящимся к другой кристаллографической системе, также объединена двумя слабыми MMBC с участием карбонильной группы одной молекулы и фрагментом C10— H10 этиленовой группы другой молекулы. Расстояние O1…H10 составляет 2.36 Å при сумме ван-дер-ваальсовых радиусов 2.6 Å. Углы при атомах H10 и O1 (табл. 4) характеризуют почти идеальную геометрию для взаимодействия *sp*²-орбитали неподеленной электронной пары атома кислорода с σ^* -орбиталью связи C—H.

Благодаря этим связям электроноакцепторная способность C=N и C=O групп увеличивается, что приводит к увеличению смещения электронной плотности в молекуле. Кроме того, поскольку

Таблица 3. Длины связей (d, Å) в молекуле II

Связь	d	Связь	d
C1–C2	1.408(1)	C10-C12	1.485(1)
C2–C3	1.373(1)	C11-N2	1.148(2)
C3–C4	1.416(1)	C12–O1	1.208(1)
C4–C5	1.422(1)	C12–O2	1.343(1)
C5-C6	1.375(1)	O2–C13	1.458(1)
C6-C1	1.412(1)	C13–C14	1.503(2)
C1-C9	1.436(1)	C4-N1	1.356(1)
C9-C10	1.359(1)	N1-C7	1.452(1)
C10-C11	1.430(1)	N1-C8	1.458(1)

Рис. 3. Фрагмент кристаллической упаковки І.

в данной упаковке в водородных связях участвуют атомные группы, вовлеченные в л-сопряжение, можно предположить определенный вклад эффекта резонансного усиления водородных связей (resonance assisted hydrogen bonding, RAHB), существенно стабилизирующих систему межмолекулярных взаимодействий [7–10]. Характеристики RAHB исследовались с помощью полуэмпирических и *ab initio* расчетов систем $H-Y-(C=C)_n-$ C = X(X, Y = O или N) [11], димеров муравьиной, уксусной, пиррол-2-карбоновой кислот и формамида [12]. По расчетным данным энергия водородной связи варьируется в зависимости от класса соединений в пределах от ~1 до ~10 ккал/моль. Энергия RAHB обычно оказывается на несколько ккал/моль выше энергии Н-связи, не стабилизированной π-резонансом в родственных соединениях [13]. Таким образом, в данном кристалле эффект влияния ММВС на перераспределение π-электронной плотности (увеличение вклада хиноидной формы) по сравнению с существующим в растворе может быть весьма значительным, что, по-видимому, и объясняет изменение зеленого цвета флуоресценции растворов на ярко-красный цвет флуоресценции кристаллов этого соединения.

Фрагмент кристаллической упаковки II показан на рис. 4. Центросимметрично связанные молекулы в кристалле попарно объединены в димеры слабыми водородными связями, за счет которых в кристалле формируются бесконечные ленты. В водородной связи между соседними молекулами A и C участвуют нитрильная группа и фрагмент C13–H13 каждой из этих молекул. Расстояние N2…H13 равно 2.61 Å. Углы при атомах N2 (101°) и H13 (146°) не соответствуют какой-то определенной схеме орбитальных взаимодействий, поэтому данное взаимодействие, скорее всего, имеет исключительно электростатическую природу, и его влияние на общую стабилизацию

Таблица 4.	Межатомные	расстояния и	углы в	кристаллических	упаковках	Iи	Π
------------	------------	--------------	--------	-----------------	-----------	----	---

I		II		
<i>d</i> (N1 <i>B</i> -H15 <i>A</i>)	2.502 Å	<i>d</i> (N2 <i>A</i> -H13 <i>C</i>)	2.613 Å	
<i>d</i> (O1 <i>C</i> -H10 <i>A</i>)	2.362 Å	<i>d</i> (O1 <i>A</i> -H8 <i>B</i>)	2.553 Å	
∠(C15 <i>A</i> −H15 <i>A</i> …N1 <i>B</i>)	163°	∠(C13 <i>C</i> −H13 <i>C</i> …N2 <i>A</i>)	146°	
\angle (C9 <i>B</i> -N1 <i>B</i> ···H15 <i>A</i>)	175°	∠(C11 <i>A</i> −N2 <i>A</i> …H13 <i>C</i>)	101°	
∠(C10 <i>A</i> −H10 <i>A</i> ···O1 <i>C</i>)	154°	∠(C12 <i>A</i> −O1 <i>A</i> ···H8 <i>B</i>)	126°	
∠(C7 <i>C</i> −O1 <i>C</i> ···H10 <i>A</i>)	134°	\angle (C8 <i>B</i> -H8 <i>B</i> ···O1 <i>A</i>)	169°	

Рис. 4. Фрагмент кристаллической упаковки II.

кристаллической упаковки, а также на перераспределение π -электронной плотности в молекуле не столь велико, как в **I**.

Между другой парой центросимметрично связанных молекул (А и В) существует пара слабых водородных связей с участием карбонильного атома О1 сложноэфирной группы и фрагмента С8-Н метильной группы каждой из молекул. Расстояние О1···Н равно 2.55 Å. Углы С12-О1···Н 126° и О1…Н-С8 169° соответствуют схеме взаимодействия с участием *sp*²-гибридной орбитали неподеленной электронной пары атома кислорода и σ^* -орбитали связи С–Н. Такая водородная связь с участием С-Н-фрагментов алкильных групп очень слабая, поэтому влияние эффекта RAHB следует исключить. Несмотря на это, кооперативное влияние слабых направленных взаимодействий на перераспределение электронной плотности в кристаллах II, по-видимому, оказывается достаточным для того, чтобы наблюдался сдвиг полосы поглощения соединения при переходе от растворов к кристаллическому состоянию. Зеленая флуоресценция растворов соединения II меняется на желтую в кристаллическом состоянии, что означает меньший сдвиг полосы поглощения, соответствующий кооперативному

эффекту более слабых межмолекулярных взаимодействий, чем в кристаллах I.

Спектральные исследования

После выявления на основании результатов рентгеноструктурного анализа роли MMBC в распределении молекулярной электронной плотности в кристаллах I и II исследовались их спектрально-люминесцентные свойства.

Спектральные характеристики соединений I и II приведены в табл. 5. Можно было предположить, что увеличение полярности растворителя будет способствовать поляризации молекулы люминофора, вызывая батохромное смещение максимумов длинноволновой полосы поглощения и флуоресценции. Действительно, при переходе от наименее полярного растворителя (CCl₄) к наиболее полярному (этиловому спирту) максимум поглощения соединения I смещается с 454 до 460 нм, а флуоресценции – с 490 до 523 нм. Для соединения II максимум поглощения смещается с 410 до 422 нм, а флуоресценции – с 446 до 481 нм. Одновременно увеличивается и стоксов сдвиг. При понижении температуры раствора от комнатной до 77 К максимумы спектров флуорес-

Условия	Ι	II
λ _{воз} , 293 К (порошок), нм	448	449
λ _{фл} , 293 К (порошок), нм	632	569
λ _{погл} CCl ₄ /C ₆ H ₆ / <i>Pr</i> CN/ <i>Et</i> OH, 293 К, нм	454/448/448/460	410/418/418/422
λ _{фл} CCl ₄ /C ₆ H ₆ / <i>Pr</i> CN/ <i>Et</i> OH, 293 K, нм	490/504/516/523	446/459/478/481
λ _{фл} <i>Pr</i> CN, 77 K, нм	484	464
λ _{фл} (293 K)–λ _{фл} (77 K) <i>Pr</i> CN, нм	32	14

Таблица 5. Спектральные характеристики соединений I и II

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

ценции обоих соединений претерпевают гипсохромный сдвиг (-32 нм для I и -14 нм для II). Вероятно, этот эффект связан с уменьшением поляризуемости молекул люминофора и растворителя.

Таким образом, проведенные рентгеноструктурные и спектрально-люминесцентные исследования α -(*n*-хлорбензоил)-4-диэтиламиноциннамонитрила и α -этоксикарбонил-4-диметиламиноциннамонитрила подтверждают наличие межмолекулярных водородных связей, влияющих на перераспределение электронной плотности и, как следствие, на спектрально-люминесцентные характеристики исследованных соединений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бахшиев Н.Г. Спектроскопия межмолекулярных взаимодействий. М.: Наука, 1972. 263 с.
- 2. Драпкина Д.А., Брудзь В.Г., Болотин Б.М. Химические реактивы и препараты. Труды ИРЕА, 1967. Вып. 30. С. 333.

- 3. SAINT. Version 6.02A. Bruker AXS Inc. Madison. Wisconsin, USA, 2001.
- SHELXTL-Plus. Version 5.10. Bruker AXS Inc. Madison. Wisconsin, USA, 1997.
- 5. Кузьмина Л.Г., Федорова О.А., Андрюхина Е.Н. и др. // Кристаллография. 2006. Т. 51. № 2. С. 299.
- Kuz'mina L.G., Vedernikov A.I., Lobova N.A. et al. // Nucl. J. Chem. 2007. V. 31. P. 980.
- Gilli P., Bertolasi V., Ferretti V., Gilli G. // J. Am. Chem. Soc. 2000. V. 122. P. 10405.
- Bertolasi V., Gilli P., Ferreti V., Gilli G. // Acta Cryst. B. 1998. V. 54. P. 50.
- 9. Mo Y. // J. Mol. Model. 2006. V. 12. P. 665.
- Viswanathan R., Asensio A., Dannenberg J.J. // J. Phys. Chem. A. 2004. V. 108. P. 9205.
- 11. *Mohajeri A.* // J. Mol. Struct.: THEOCHEM. 2004. V. 678. P. 201.
- Gora R.W., Grabowski S.J., Leszczynski J. // J. Phys. Chem. A. 2005. V. 109. P. 6397.
- 13. *Steiner T.* // Angew. Chem. Int. Ed. Engl. 2002. V. 41. P. 48.