КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 2, с. 296-301

ДИНАМИКА РЕШЕТКИ И ФАЗОВЫЕ ПЕРЕХОДЫ

УДК 548.736.539; 538.956

ТЕОРИЯ ОБРАЗОВАНИЯ УПОРЯДОЧЕННОЙ ФАЗЫ LiZn_{0.5}Mn_{1.5}O₄

© 2013 г. В. М. Таланов*, В. Б. Широков**

 Южно-Российский государственный технический университет, Новочеркасск E-mail: valtalanov@mail.ru
 ** Южный научный центр РАН, Ростов-на-Дону E-mail: shirokov-vb@rambler.ru Поступила в редакцию 05.09.2011 г.

Предложена теория структурного фазового перехода в катодном материале $LiZn_{0.5}Mn_{1.5}O_4$: проведено исследование симметрии параметра порядка, термодинамики и механизмов образования атомной структуры низкосимметричной упорядоченной кубической литий-цинк-марганцевой оксидной шпинели. Установлен критический параметр порядка, индуцирующий фазовый переход, показано, что расчетная структура $LiZn_{0.5}Mn_{1.5}O_4$ формируется в результате смещений и упорядочений атомов лития, цинка, марганца и кислорода. В рамках теории Ландау фазовых переходов показано, что смена фазовых состояний может осуществляться из высокосимметричной кубической неупорядоченной фазы Fd3m в низкосимметричную упорядоченную кубическую фазу $P2_13$ в результате фазовых переходов первого рода.

DOI: 10.7868/S0023476113020288

ВВЕДЕНИЕ

Одним из наиболее эффективных катодных материалов для литиевых источников тока является LiCoO₂, позволяющий получать напряжение 4 В. По сравнению с этим катодным материалом литий-марганцевая шпинель Li_rMn₂O₄ представляется наиболее привлекательной, так как этот материал более дешевый и нетоксичный [1]. Интеркаляция лития происходит при 3 В в интервале концентраций лития $1 \le x \le 2$, но при этом значительно ухудшается циклируемость материала из-за структурных изменений (превращения кубической шпинели LiMn₂O₄ в тетрагональную Li₂Mn₂O₄ в процессах заряда и разряда), обусловленных кооперативным эффектом Яна-Теллера [2, 3]. Этот эффект наблюдается, в частности, в веществах, содержащих Mn(III). Тетрагональное искажение шпиневлияет на геометрию трехмерных путей ЛИ движения ионов Li⁺. Поэтому искажение Яна-Теллера – одна из самых важных причин, обусловливающих исчезновение электрохимической активности шпинели LiMn₂O₄ [4].

Кубическая литий-марганцевая шпинель позволяет получать и более высокое напряжение 4 В при содержании лития $0 \le x \le 1$, если она не претерпевает структурных изменений, оставаясь при циклировании в кубической фазе [1]. Поэтому предпринимались многочисленные попытки подавить фазовый переход (**ФП**) и стабилизировать кубическую фазу, вводя различные добавки: Ni, Cu, Zn, Co, Cr, Al, Mn и др. [1, 5–10]. Эти катионы могут занимать как тетраэдрические позиции в структуре шпинели (например, Zn, Mg), так и ок-

таэдрические (например, Co, Cr). Для некоторых составов при определенных условиях синтеза замещение катионов сопровождается их упорядочением. Так, в шпинели $LiMg_{0.5}Mn_{1.5}O_4$ рентгеноструктурным исследованием установлено упорядочение катионов Mg и Mn в октаэдрических позициях, приводящее к понижению симметрии кристалла до Р4₃32 [11–13]. Такой же тип упорядочения катионов Ni и Mn в октаэдрических позициях отмечается и в шпинели $LiNi_{0.5}Mn_{1.5}O_4$ [14]. Необычное упорядочение катионов предложено для LiZn_{0.5}Mn_{1.5}O₄ [14]. В этом веществе атомы Zn находятся в тетраэдрических узлах (круглые скобки), а Mn – в октаэдрических позициях (квадратные скобки); структурная формула имеет вид $(Li_{0.5}Zn_{0.5})[Li_{0.5}Mn_{1.5}]O_4.$

Три схемы упорядочения катионов предложены в предыдущих работах для шпинели LiZn_{0.5}Mn_{1.5}O₄ [1]. В зависимости от условий получения образцов неупорядоченная шпинельная фаза с пр. гр. *Fd3m* наблюдалась в материалах, полученных при 750°C, упорядоченная структура с энантиоморфными пр. гр. *P*4₃32 и *P*4₁32 – в материалах, полученных при 600°C, и структура с катионным порядком в тетраэдрических и октаэдрических позициях и пр. гр. *P*2₁3 – в медленно охлажденных материалах. Именно эта структура является равновесной и изучается в данной работе.

Целью настоящего исследования является выявление симметрийных, структурных и термодинамических особенностей формирования упорядо-

Параметр порядка	G_D	V'/V	Параметр порядка	G_D	V'/V
η η η η η η 0	$R3m(D_{3d}^5)$	4	$\eta_1 \eta_2 \eta_1 - \eta_2 - \eta_1 - \eta_2 0$	$R32(D_3^7)$	4
$0 \ 0 \ 0 \ 0 \ \eta \ -\eta \ 0$	$Pcnm(D_{2h}^7)$	2	$\eta_1 - \eta_1 \eta_1 \eta_1 - \eta_1 \eta_1 \zeta$	$R3m(C_{3_V}^5)$	4
00000ζ	$P\overline{4}3m(T_d^2)$	1	$\eta_1\eta_2\eta_1\eta_2\eta_1\eta_2\zeta$	$R3(C_3^4)$	4
000η000	$P4_{1,3}22(D_4^{3,7})$	2	$\eta_1 0 0 \eta_2 0 0 \zeta$	$P222_1(D_2^2)$	4
$0 \eta 0 - \eta 0 \eta 0$	$P4_{3,1}32 (O^{6,7})$	4	$0000\eta_{1}\eta_{2}\zeta$	$P2_1(C_2^2)$	2
$\eta_10\eta_20{-}\eta_200$	$P4_{1,3}2_12(D_4^{4,8})$	4	$\eta_10\eta_10\eta_2\eta_30$	$C222_1(D_2^5)$	4
$\eta_1 \!-\! \eta_1 0 0 0 0 \zeta$	$Pmn2_1(C_{2v}^7)$	2	$\eta_1\eta_1\eta_2\eta_2\eta_3\eta_30$	$P\overline{1}(C_i)$	4
$00\eta_100{-}\eta_1\zeta$	$P\overline{4}2_1m(D_{2d}^3)$	4	$\eta_1 \eta_1 \eta_2 \eta_3 \eta_3 \eta_2 \zeta$	$Cm(C_s^3)$	4
$000\eta_{1}00\zeta$	$C222_1(D_2^5)$	2	$\eta_1\eta_2\eta_3\eta_4\eta_3\eta_40$	$C2(C_2^3)$	4
$\eta_1 \!-\!\! \eta_1 \eta_2 \eta_2 \!-\!\! \eta_1 \eta_1 0$	$C2/m(C_{2h}^3)$	4	$\eta_10\eta_20\eta_30\zeta$	$P2_12_12_1(D_2^4)$	4
$\eta_1 0 - \! \eta_1 0 - \! \eta_1 0 \zeta$	$P2_13(T^4)$	4	$0\eta_10\eta_2\eta_3\eta_4\zeta$	$P2_1(C_2^2)$	4
$0000\eta_1\eta_20$	$P222_1(D_2^2)$	2	$\eta_1 \eta_2 \eta_3 \eta_4 \eta_5 \eta_6 \zeta$	$P1(C_1^1)$	4

Низкосимметричные фазы, генерированные пересечением НП $k_{10}(\tau_1)$ и $k_{11}(\tau_4)$ группы *Fd3m* (O'_h)

Примечание. *V*'/*V* – изменение объема примитивной ячейки в результате фазового перехода; энантиоморфные модификации указаны через запятую.

ченной кубической фазы из неупорядоченной кубической фазы шпинели ($Li_{0.5}Zn_{0.5}$)[$Li_{0.5}Mn_{1.5}$]O₄.

СИММЕТРИЯ ПАРАМЕТРА ПОРЯДКА

Используя результаты теоретико-группового анализа фазовых превращений, происходящих по одному критическому неприводимому представлению (**HII**) в группе Fd3m [15–17], получим, что пр. гр. $P2_13$ (T^4) может быть индуцирована четырьмя различными представлениями группы Fd3m:

— шестимерным НП $k_{10}(\tau_2)$, стационарный вектор ($\eta \ 0 \ \eta \ 0 \ \eta \ 0$),

— двенадцатимерным НП $k_8(\tau_1)$, стационарный вектор (0 0 0 0 0 0 $\eta - \eta \eta - \eta \eta - \eta$),

— двенадцатимерным НП $k_8(\tau_2)$, стационарный вектор (0 0 0 0 0 0 $\eta - \eta \eta - \eta \eta - \eta$),

– пересечением шестимерного НП $k_{10}(\tau_1)$, по которому преобразуется шестикомпонентный параметр порядка (ПП) **\eta** и одномерного НП

 $k_{11}(\tau_4)$, по которому преобразуется однокомпонентный ПП ζ , стационарный вектор ($\eta \ 0 - \eta \ 0$ $-\eta \ 0 \ \zeta$) (таблица). Обозначения НП даны по Ковалеву [18].

Сопоставляя теоретические результаты (таблица), результаты проведенного расчета расслоения правильной системы точек (ПСТ) группы Fd3m в результате фазового превращения по соответствующим вышеуказанным НП с экспериментальными данными, полученными с помощью рентгеноструктурного анализа и нейтронографии [1, 19, 20] о занятых ПСТ в упорядоченной фазе *P*2₁3, однозначно установим симметрию ПП. Параметр порядка состоит из двух НП: шестикомпонентного, связанного с НП $k_{10}(\tau_1)$ пр. гр. *Fd3m* и однокомпонентного $k_{11}(\tau_4)$ ($\tau_4 = A_{2u}$). Эти НП образуют точечную группу порядка 192 в семимерном пространстве. Трансформационные свойства ПП задаются следующими матрицами генерато-DOB:

Здесь матрицы шестимерного представления выделены отдельной строкой, в столбец записана главная диагональ. Симметрия (1) допускает существование 24 фаз (таблица).

ТЕРМОДИНАМИЧЕСКАЯ МОДЕЛЬ ФАЗОВОГО ПЕРЕХОДА

Базис инвариантов для матриц (1) состоит из 21 монома со старшей десятой степенью. Ниже приведены инварианты базиса только до шестой степени, которые используются в дальнейшем анализе [21]. Для шестикомпонентного ПП имеется инвариант третьей степени, поэтому ФП с этим ПП будут только первого рода. Запишем потенциал шестой степени

$$F = a_{1}J_{1} + b_{1}J_{2} + v_{3}J_{3} + c_{11}J_{1}^{2} + c_{12}J_{1}J_{2} + c_{22}J_{2}^{2} + c_{4}J_{4} + c_{5}J_{5} + c_{6}J_{6} + d_{13}J_{1}J_{3} + d_{23}J_{2}J_{3} + d_{7}J_{7} + d_{8}J_{8} + f_{111}J_{1}^{3} + f_{112}J_{1}^{2}J_{2} + f_{122}J_{1}J_{2}^{2} + f_{222}J_{2}^{3} + f_{14}J_{1}J_{4} + f_{24}J_{2}J_{4} + f_{15}J_{1}J_{5} + f_{25}J_{2}J_{5} + f_{16}J_{1}J_{6} + f_{26}J_{2}J_{6} + f_{33}J_{3}^{2} + f_{9}J_{9} + f_{10}J_{10} + f_{11}J_{11}$$

Инварианты в (2) имеют вид:

$$J_{1} = \eta_{1}^{2} + \eta_{2}^{2} + \eta_{3}^{2} + \eta_{4}^{2} + \eta_{5}^{2} + \eta_{6}^{2},$$

$$J_{2} = \xi^{2},$$

$$J_{3} = \eta_{1}\eta_{3}\eta_{5} + \eta_{2}\eta_{4}\eta_{6},$$

$$J_{4} = \eta_{1}^{2}\eta_{2}^{2} + \eta_{3}^{2}\eta_{4}^{2} + \eta_{5}^{2}\eta_{6}^{2},$$

$$J_{5} = \eta_{1}^{2}\eta_{3}^{2} + \eta_{1}^{2}\eta_{5}^{2} + \eta_{2}^{2}\eta_{4}^{2} + \eta_{2}^{2}\eta_{6}^{2} + \eta_{3}^{2}\eta_{5}^{2} + \eta_{4}^{2}\eta_{6}^{2},$$

$$J_{6} = \eta_{1}^{2}\eta_{4}^{2} + \eta_{1}^{2}\eta_{6}^{2} + \eta_{2}^{2}\eta_{3}^{2} + \eta_{2}^{2}\eta_{5}^{2} + \eta_{3}^{2}\eta_{6}^{2} + \eta_{4}^{2}\eta_{5}^{2},$$

$$J_{7} = \eta_{1}\eta_{2}^{2}\eta_{3}\eta_{5} + \eta_{1}^{2}\eta_{2}\eta_{4}\eta_{6} + \eta_{1}\eta_{3}\eta_{4}^{2}\eta_{5} + \eta_{1}\eta_{3}\eta_{5}\eta_{6}^{2} +$$

$$+ \eta_{2}\eta_{3}^{2}\eta_{4}\eta_{6} + \eta_{2}\eta_{4}\eta_{5}^{2}\eta_{6},$$

$$J_{8} = \xi(\eta_{1}^{2}\eta_{4}^{2} + \eta_{2}^{2}\eta_{5}^{2} + \eta_{3}^{2}\eta_{6}^{2} - \eta_{1}^{2}\eta_{6}^{2} - \eta_{4}^{2}\eta_{5}^{2} - \eta_{2}^{2}\eta_{3}^{2})$$

$$J_{9} = \eta_{1}^{2}\eta_{2}^{2}\eta_{3}^{2} + \eta_{1}^{2}\eta_{2}^{2}\eta_{4}^{2} + \eta_{1}^{2}\eta_{2}^{2}\eta_{5}^{2} + \eta_{1}^{2}\eta_{2}^{2}\eta_{6}^{2} +$$

$$+ \eta_{2}^{2}\eta_{3}^{2}\eta_{4}^{2} + \eta_{2}^{2}\eta_{5}^{2}\eta_{6}^{2} + \eta_{3}^{2}\eta_{4}^{2}\eta_{5}^{2} + \eta_{3}^{2}\eta_{4}^{2}\eta_{6}^{2} +$$

$$+ \eta_{2}^{2}\eta_{3}^{2}\eta_{4}^{2} + \eta_{2}^{2}\eta_{5}^{2}\eta_{6}^{2} + \eta_{3}^{2}\eta_{4}^{2}\eta_{5}^{2} + \eta_{3}^{2}\eta_{4}^{2}\eta_{6}^{2} +$$

$$+ \eta_{2}^{2}\eta_{3}^{2}\eta_{6}^{2} + \eta_{1}^{2}\eta_{4}^{2}\eta_{5}^{2} + \eta_{1}^{2}\eta_{4}^{2}\eta_{6}^{2} + \eta_{2}^{2}\eta_{3}^{2}\eta_{5}^{2} +$$

$$+ \eta_{2}^{2}\eta_{3}^{2}\eta_{6}^{2} + \eta_{1}^{2}\eta_{4}^{2}\eta_{5}^{2} + \eta_{1}^{2}\eta_{4}^{2}\eta_{6}^{2} + \eta_{2}^{2}\eta_{3}^{2}\eta_{5}^{2} +$$

$$+ \eta_{2}^{2}\eta_{3}^{2}\eta_{6}^{2} + \eta_{1}^{2}\eta_{4}^{2}\eta_{5}^{2} + \eta_{2}^{2}\eta_{4}^{2}\eta_{5}^{2},$$

$$J_{10} = \eta_{1}^{2}\eta_{3}^{2}\eta_{6}^{2} + \eta_{1}^{2}\eta_{4}^{2}\eta_{5}^{2} + \eta_{2}^{2}\eta_{4}^{2}\eta_{5}^{2},$$

$$J_{11} = \eta_{1}\eta_{2}\eta_{3}\eta_{4}\eta_{5}\eta_{6}.$$

Фазовая диаграмма, описываемая потенциалом (2), сложна, она зависит от соотношения коэффициентов потенциала. Ниже приведена простейшая фазовая диаграмма для специального случая, когда все коэффициенты положительны,

кроме $c_{11} < 0$, и выполняется условие $c_{11}c_{22} - c_{12}^2 > 0$ (рис. 1).

СТРУКТУРНЫЙ МЕХАНИЗМ ФАЗОВОГО ПРЕВРАЩЕНИЯ И КРИСТАЛЛОХИМИЯ УПОРЯДОЧЕННОЙ КУБИЧЕСКОЙ ФАЗЫ LiZn_{0.5}Mn_{1.5}O₄

Из всех возможных структурных механизмов образования низкосимметричной $P2_13$ -модификации, связанных с различными возможными критическими представлениями группы Fd3m, механизм образования исследуемой низкосимметричной фазы по представлению $k_{10}(\tau_3) + k_{11}(\tau_4)$ оказывается самым сложным и включает в себя:

— бинарные упорядочения катионов типа 1 : 1 в тетраэдрических узлах 8*a* и типа 1 : 3 в октаэдрических позициях 16*d* шпинели;

– четверное упорядочение анионов типа 1 : 1 :
 : 3 : 3 в структуре исходной фазы;

- смещения всех типов атомов.

Отметим, что структурный механизм образования исследуемой фазы значительно сложнее, чем предполагалось ранее [1]: он не сводится только к упорядочению лития, цинка и марганца.

С помощью найденных скалярных и векторных базисных функций критического приводимого представления построена модель структуры низкосимметричной фазы (рис. 2–4).

Рис. 2. Полиэдрическая модель упорядоченной структуры в виде тетраэдров (Li(1)– O_4 , серый цвет) и (Zn(1)– O_4 , белый цвет), октаэдров (Li(2)– O_6 , серый цвет) и (Mn– O_6 , заштрихованные).

В низкосимметричной Р213-фазе должны произойти все смещения атомов, которые совместимы с ее симметрией, задаваемой только критическими смещениями. Вблизи точки ФП второго рода некритические смешения малы по сравнению с критическими. Однако по мере удаления от точки ФП некритические и критические смещения могут сравняться по порядку величины и должны учитываться при расшифровке кристаллической структуры. Более того, в тех случаях, когда критическими являются смещения легких атомов, трудно определяемые рентгеновскими методами, о них можно судить по набору некритических смещений атомов, обладающих большей рассеивающей способностью. Сравнительным анализом расчетных и экспериментальных координат атомов для упорядоченной кубической фазы литий-цинк-марганцевой шпинели, медленно охлажденной от 700°С до комнатной [1] температуры, определены интегральные (критические и некритические) величины смещений ионов из равновесных положений в неупорядоченной кубической ячейке шпинели. Величины

Рис. 3. Тетраэдры и гексаэдры в структуре упорядоченной фазы (разные атомы кислорода обозначены так же, как и на рис. 2).

смещений оказались равными для ионов Li(1) ($a \approx -0.008$ Å), Zn ($b \approx -0.029$ Å), Li(2) ($c \approx -0.016$ Å), Mn ($d \approx -0.053$, $e \approx 0.068$, $f \approx -0.573$ Å) и O(1) ($k \approx$ ≈ -0.220 , $l \approx 0.056$, $m \approx -0.152$ Å), O(2) ($n \approx -0.103$, $p \approx -0.103$, $r \approx 0.194$ Å), O(3) ($g \approx -0.061$ Å), O(4) ($h \approx -0.116$ Å). Из-за недостатка экспериментальных данных выделить некритические смещения невозможно. Значительные по величине смещения кислорода и марганца приводят к значительной деформации гексаэдров в структуре неупорядоченной шпинели (рис. 2, 3).

Приведем краткое описание упорядоченной фазы. В $P2_13$ -фазе бывшие тетраэдрические катионы Li и Zn находятся в моновариантной позиции 4a с локальной симметрией $3(C_3)$. Их ближайшее окружение различно: вокруг Li(1) расположены три кислорода O(2) и один O(4), а вокруг Zn – три кислорода O(1) и один O(3). Ось третьего порядка проходит соответственно вдоль связей Li(1)–O(4) и Zn–O(3). Марганец находится в трехвариантной позиции 12b в центре искаженного октаэдра, его локальная симметрия $1(C_1)$. Вокруг атома Mn расположены два атома O(1), два атома O(2), один атом O(3) и один атом O(4). Ка-

Рис. 4. Ближайшее окружение полиэдров в структуре $P_{2_1}^3$ -фазы: $a - Li(1) - O_4$, $6 - Zn - O_4$, $B - Li(2) - O_6$, $r - Mn - O_5$.

тионы Li(2) находятся в центре искаженного октаэдра в моновариантной позиции 4*a* с локальной симметрией $3(C_3)$. Ближайшим окружением Li(2) являются три атома O(1) и три атома O(2). Анионы О в упорядоченной фазе разбились на две группы, в каждой из которых имеется два разных типа ближайшего окружения. Атомы O(1) и O(2) занимают тривариантные двенадцатикратные позиции 12b с локальной симметрией $1(C_1)$, а атомы O(3) и O(4) – моновариантные четырехкратные позиции 4a с локальной симметрией $3(C_3)$. Атом O(1) окружен двумя атомами Mn, одним атомом Zn и одним атомом Li(1), атом O(2) окружен двумя атомами Mn, одним атомом Li(2) и одним атомом Li(1), атом O(3) окружен тремя атомами Mn и одним атомом Zn, атом O(4) окружен тремя атомами Mn и одним атомом Li(1).

Каждый тетраэдр ZnO_4 соединен вершинами с тремя октаэдрами Li(2)O₆ и девятью октаэдрами MnO₆ (у октаэдров есть общие вершинные атомы) (рис. 46). Такое же окружение имеет тетраэдр Li(1)O₄ (рис. 4а). Каждый октаэдр Li(2)O₆ окружен шестью октаэдрами MnO₆, тремя тетраэдрами ZnO₄ и тремя тетраэдрами Li(1)O₄ (рис. 4в). Каждый октаэдр MnO₆ окружен четырьмя такими же октаэдрами, соединенными с центральным по ребрам, двумя октаэдрами Li(2)O₆, тремя тетраэдрами Li(1)O₄ и тремя тетраэдрами ZnO₄, соединенными с центральным октаэдром вершинами (рис. 4г).

Таким образом, расчетная структурная формула $LiZn_{0.5}Mn_{1.5}O_4$ в $P2_13$ -фазе имеет вид $(Li(1)_{0.5}^{4a}Zn_{0.5}^{4a})[Li_{0.5}^{4a}Mn_{1.5}^{12b}]O^{12b}O^{12b}O^{4a}O^{4a}$ и полностью согласуется с нейтронографическими и рентгеноструктурными экспериментальными данными [1].

ЗАКЛЮЧЕНИЕ

Впервые в рамках единого подхода, основанного на феноменологической теории Ландау фазовых переходов, проведено исследование симметрии параметра порядка, термодинамики и структурных механизмов образования низкосимметричной фазы LiZn_{0.5}Mn_{1.5}O₄. Основываясь на гипотезе одного критического представления, установлена симметрия параметра порядка, рассчитано расслоение правильных систем точек 8а, 16*d* и 32*e* исходной фазы со структурой шпинели при переходе в низкосимметричную модификацию, показано, что расчетная структура кубической упорядоченной фазы LiZn_{0.5}Mn_{1.5}O₄ формируется в результате смещений атомов лития, цинка, марганца и кислорода, упорядочения атомов лития и цинка (по типу 1:1 в тетраэдрических узлах шпинели), лития и марганца (по типу 1:3 в октаэдрических узлах шпинели) и кислорода (по типу 1 : 1 : 3 : 3).

Теоретически изучены кристаллохимические особенности строения упорядоченной кубической модификации $LiZn_{0.5}Mn_{1.5}O_4$ и установлены структурные мотивы атомного и полиэдрического ближнего и дальнего порядка.

Глобальная картина изменения фазовых состояний рассмотрена в рамках модели, учитывающей в свободной энергии члены до шестой степени по компонентам параметра порядка теории Ландау фазовых переходов. Показано, что смена фазовых состояний может осуществляться между различными фазами в результате фазовых переходов как второго, так и первого рода. Существенно, что высокосимметричная кубическая фаза шпинели не граничит непосредственно с упорядоченной кубической фазой с симметрией Р2₁3. Переход в эту фазу возможен по различным термодинамическим путям, проходящим через другие упорядоченные кубические фазы (фазу с симметрией *F*43*m*, в которой реализуется порядок типа 1:1 в тетраэдрических узлах шпинели, и фазу с симметрией Р4₃32, в которой реализуется порядок типа 1:3 в октаэдрических позициях шпинели). Расчетная фазовая диаграмма позволяет понять экспериментальный факт образования Р2₁3-фазы из высокосимметричной Fd3m-фазы только через промежуточные F43m- и P4₃32-фазы. Кроме того, стало ясно, что небольшие изменения в термодинамической траектории движения по фазовой диаграмме (они связаны с различными температурными вариантами синтеза $LiZn_{0.5}Mn_{1.5}O_4$) из области существования *Fd3m*фазы приводят к полям кристаллизации фаз с симметриями $F\overline{4}3m$ и $P4_332$, непосредственно граничащими соответственно по линиям фазовых переходов второго и первого рода с высокосимметричной неупорядоченной фазой. Эти фазы, как и предсказывает предложенная теория, также наблюдаются экспериментально [1].

СПИСОК ЛИТЕРАТУРЫ

- Lee Y.J., Park S.H., Eng C. et al. // Chem. Mater. 2002. V. 14. P. 194.
- 2. Езикян В.И., Ерейская Г.П., Ходарев О.Н., Таланов В.М. // Электрохимия. 1988. Т. 24. Вып. 12. С. 1599.
- 3. *Таланов В.М.* // Изв. АН СССР. Неорган. материалы. 1989. Т. 25. № 6. С. 1001.
- 4. *Chung K.Y., Ryu C.-W., Kim K.-B.* // J. Electrochem. Soc. A. 2005. V. 152. № 4. P. 791.
- 5. Wakihara M. // Electrochemistry. 2005. V. 73. P. 328.
- Kim K.J., Lee J.H. // Solid State Commun. 2007. V. 141. P. 99.

- Molenda J., Palubiak D., Marzec J. // J. Power Sources. 2005. V. 144. P. 176.
- 8. Wolska E., Tovar M., Andrzejewski B. et al. // Solid State Sci. 2006. V. 8. P. 31.
- Takahashi M., Yoshida T., Ichikawa A. et al. // Electrochim. Acta. 2006. V. 51. P. 5508.
- 10. *Alcántara R., Jaraba M., Lavela P. et al.* // J. Electrochem. Soc. A. 2005. V. 152. № 1. P. 13.
- 11. Strobel P., Palos A.I., Anne M., Le-Cras F. // J. Mater. Chem. 2000. V. 10. P. 429.
- Hayashi N., Ikuta H., Wakihara M. // J. Electrochem. Soc. 1999. V. 146(4). P. 1351.
- 13. Blasse G. // J. Inorg. Nucl. Chem. 1964. V. 26. P. 1473.
- 14. Santhanam R. // J. Power Sources. 2010. V. 195. P. 5442.
- 15. Сахненко В.П., Таланов В.М., Чечин Г.М. Возможные фазовые переходы и атомные смещения в кристаллах с пространственной группой O_h[']. Томск, 1982. 25 с. Деп. в ВИНИТИ 11.02.82, № 638-82.

- 16. Сахненко В.П., Таланов В.М., Чечин Г.М. Возможные фазовые переходы и атомные смещения в кристаллах с пространственной группой О_h[']. 2. Анализ механического и перестановочного представлений. Томск, 1983. 62 с. Деп. в ВИНИТИ 30.11.83, № 6379-83.
- 17. Сахненко В.П., Таланов В.М., Чечин Г.М. // Физика металлов и металловедение. 1986. Т. 62. Вып. 5. С. 847.
- Ковалев О.В. Неприводимые представления пространственных групп. Киев: Изд-во АН УССР, 1961.155 с.
- Joubert J.C., Durif A. // C. R. Acad. Sci. 1964. V. 258. P. 4482.
- 20. *Chen J., Greenblatt M., Waszczak J.V.* // J. Solid State Chem. 1986. V. 64. № 3. P. 240.
- 21. Прохоров А.М., Гуфан Ю.М., Ларин Е.С. и др. // Докл. АН СССР. 1984. Т. 227. С. 1369.