КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 2, с. 289–295

ДИНАМИКА РЕШЕТКИ И ФАЗОВЫЕ ПЕРЕХОДЫ

УДК 536.421

О РОЛИ ПОРИСТОЙ ОБОЛОЧКИ ТВЕРДОГО ЯДРА ЗЕМЛИ В АНОМАЛЬНОМ ВЫНОСЕ ТЕПЛА И МАССЫ К МАНТИИ

© 2013 г. С.А. Пикин

Институт кристаллографии РАН, Москва E-mail: pikin@ns.crys.ras.ru Поступила в редакцию 07.06.2012 г.

В модели фазового перехода первого рода под давлением металлического расплава в состояние металлического стекла рассматривается термодинамически неравновесная пористая приповерхностная оболочка твердого ядра Земли, соприкасающаяся с циклоническими вихрями в жидком ядре. Вычислены аномальные потоки тепла и массы легкого вещества к мантии из твердого ядра в местах такого соприкосновения. Показано, что эти аномальные потоки сопоставимы с реально наблюдаемыми в предположении быстрого возрастания вязкости расплава при давлениях 1–10 Мбар, характерного для твердого ядра. При этом проницаемость пористого слоя может иметь очень малые значения.

DOI: 10.7868/S0023476113020215

ВВЕДЕНИЕ

Геофизические данные показывают, что потоки тепла и сравнительно легкого материала, исходящие из твердого ядра Земли к ее мантии, очень неравномерно распределены по поверхности мантии. Было обнаружено, что тепловой поток q больше (чем в среднем) примерно на величину $\delta q \approx 40 \text{ мBt/m}^2$ под Центральной Америкой, где потоки опускающейся мантии индуцируют аномальные потоки тепла в ядро Земли, и он ниже (чем в среднем) под центром Тихого океана, где мантия извлекает больше тепла из жидкого ядра Земли [1-3]¹. Тепловая неоднородность мантии существенно влияет на структуру магнитного поля в ядре, на течения в жидком ядре и ассиметричную структуру твердого ядра [1, 5]. При этом твердое ядро имеет тонкий пористый, так называемый кашеобразный, слой (толщиной около 100 км) [6-8], в котором сосуществуют твердые и жидкие области, термодинамически неравновесные, как результат относительно слабого фазового перехода первого рода растущее твердое ядро-уменьшающееся жидкое ядро. Остывание твердого ядра приводит к скорости его роста на 0.3-0.9 мм в год, что соответствует отвердеванию 100 км жидкого ядра за последние 100-300 миллионов лет [5].

В принятом подходе к проблеме [1, 9] рассматривается кооперативная или обобщенная концентрация $C (\partial C = \partial c + \beta \partial T)$, которая описывает тепловые и химические возмущения в ядре². На

границе ядро-мантия как на поверхности тела, не растворимого в жидкости, обычно предполагается нулевой химический поток массы ($\partial c / \partial r = 0$), так что здесь аномальный поток массы записывается в виде $i = -\rho D \partial C / \partial r$, где D есть эффективный коэффициент диффузии. Коэффициент D предполагается равным коэффициенту температуропроводности χ , причем в рассмотренной модели поток і связан с тепловым потоком q соотношением $i = (\beta/C_P)q$, где β – коэффициент теплового расширения, С_Р – теплоемкость при постоянном давлении жидкого ядра, $q = -\kappa \nabla T$, $\kappa - \kappa o \Rightarrow \phi \phi u$ циент теплопроводности [1, 6]. Таким образом, на указанной границе справедливо равенство $\partial C =$ $=\beta\partial T$. На границе твердого ядра величина *C* считается постоянной. Поскольку значение $\delta q \approx$ $\approx 40 \text{ мBt/m}^2$ по порядку величины совпадает с однородной частью аномального потока, соответствующего аномальному потоку массы i_0 , то в модельных расчетах обычно предполагается, что $\delta i/i_0 = 1$, где δi — амплитуда изменений аномального потока массы. На границе твердого ядра величина і зависит от конвективных потоков, что обусловливает пространственную неоднородность высвобождения тепла и легкой фракции. В модели [1] создается устойчивое магнитное поле с перемагничивающимися диполями, при этом устойчивое вращательное течение поддерживается с помощью баланса ("термохимического ветра") градиента давления, сил Кориолиса и плавучести.

В настоящей работе выясняется, какую роль могла бы играть упомянутая пористая оболочка как переходный слой между твердым и жидким

¹ По иным оценкам $\delta q \approx 10 \text{ мBt/m}^2$ [4].

² с – концентрация как отношение массы входящего в состав расплава легкого вещества к полной массе расплава в данном элементе объема.

ядром при аномальном выносе тепла и массы из твердого ядра. Эти аномальные потоки могут возникать неоднородно на поверхности твердого ядра в зависимости от степени взаимодействия конвективного течения с пористым слоем. Здесь проводятся качественные оценки диссипации энергии и соответствующих потоков при такого рода контактах и конвекции в жидком ядре.

290

О КЛАССИЧЕСКОЙ КОНВЕКЦИИ

Как известно [10], классическая конвекция присутствует, если температура растет к центру Земли достаточно быстро и превышает по абсолютному значению величину $\frac{gT}{c_P V} \left(\frac{\partial V}{\partial T} \right)_P$, где g – ускорение свободного падения, $g(r) \approx g_0 (r/R_{nucl})$, $g_0 \approx 9.8 \text{ м/c}^2$, r – расстояние до центра, R_{nucl} – радиус твердого ядра Земли, $\beta = V^{-1} (\partial V / \partial T)_p -$ ко-эффициент теплового расширения. С учетом значений $C_P \approx 10^3 \text{ Дж/(К·кг)}, \beta \approx 10^{-5} \text{ 1/K}, T_{nucl} \approx$ ≈ 4000 K, $g(R_{nucl})$ ≈ 2 м/с² получаем значение величины, равное 10-4 К/м, но этой $(\partial T/\partial r) \approx 0.3 - 0.5$ К/км по геологическим данным, т.е. производная $(\partial T/\partial r)$ по порядку сравнима с указанной величиной. Поэтому за конвективные потоки в жидком ядре Земли отвечает ее вращение, что требует специального рассмотрения [11].

ПОРИСТАЯ ОБОЛОЧКА ТВЕРДОГО ЯДРА И ВИХРИ В РАСПЛАВЕ

В [8] показано, что конвективные потоки, имеющие вид цилиндров и соприкасающиеся с пористым приповерхностным слоем твердого ядра, могут заходить в пористые области примерно на 100 км (толщину слоя), создавая дополнительную возможность для диссипации энергии, потоков тепла и легких элементов к поверхности жидкого ядра. В этом случае можно говорить о двух разных коэффициентах вязкости μ_m и μ_l , относящихся к разным субстанциям: тяжелому расплаву в жидком ядре и "легкой" жидкости в порах твердого ядра. Пористый слой можно характеризовать определенной проницаемостью К, причем проницаемость *К* и вязкость легкой фракции μ_l оказываются связанными, согласно закону Дарси [12], соотношением

$$u_l = -\frac{K}{\mu_l} \nabla P = \frac{K}{\mu_l} \frac{\Delta P}{L_l},\tag{1}$$

где u_l — макроскопическая скорость фильтрации, с которой легкая компонента проходит пористый слой, P — эффективное давление в пористом слое в рассматриваемых динамических условиях, L_l — длина пути фильтрации легкой фракции, ΔP – разность давлений на длине L_l . Оценки на основе различных геофизических данных [8] показывают, что вблизи границы твердого и жидкого ядра вероятнее ожидать значения $\Delta P \sim 10^{-1}$ Мбар, вязкость $\mu_{\rm m} \sim 10^{11}$ Па с, $L_l \sim 10^6$ м при толщине пористого слоя $h \approx (L_l^2 / 8R_{nucl}) \approx 100$ км, $\rho \sim 10^4$ кг/м³ – плотность ядра. Проницаемость К и пористость є этого слоя определяют в нем среднюю скорость потока легкого вещества $u_l = \varepsilon v_l$, т.е. макроскопическую скорость фильтрации, определяемую как объемный расход жидкости через единицу площади в пористой среде, здесь v_l – средняя скорость частиц жидкости в порах. Примем, что є ~ $\sim 10^{-1}$, $v_l \sim 10^{-4}$ м/с, тогда из (1) следует, что про-ницаемость *K* и вязкость легкой фракции μ_l при заданных параметрах оказываются связанными соотношением [8] $K/\mu_1 \sim 10^{-10} \text{ м}^2/(\Pi \text{ a c})$, где K измеряется в M^2 , μ_1 измеряется в единицах Па c^3 .

С другой стороны, разность ΔP оценивается по скачку давления на границе жидкого ядра и пористого слоя ядра [14]:

$$\Delta P = -2\mu_m \frac{1}{\text{Re}} \frac{\partial v_{mn}}{\partial x},\tag{2}$$

где Re = $\rho v_m L/\mu_m$ — число Рейнольдса, L — характерная длина порядка 1000 км, μ_m — коэффициент динамической вязкости многокомпонентного расплава в жидком ядре, v_m — скорость расплава $v_m \approx 10^{-4}$ м/с, v_{mn} — нормальная компонента скорости расплава. Производная $\partial v_{mn}/\partial x$ может быть большой из-за торможения тяжелых фракций на входе. Скорости для разных субстанций v_m и v_l могут сильно различаться, как и их вязкости μ_m и μ_l . Для некоторых оценок предполагается, что $v_m \sim v_l$.

ДИССИПАЦИЯ ЭНЕРГИИ В ПОРИСТОЙ ОБОЛОЧКЕ

Диссипация энергии в единице объема переходного пористого слоя за единицу времени из-за фильтрации через него вещества по закону Дарси есть $w_{Dar} = -\mathbf{u}\nabla P$ [15, 16]. Соответственно уравнения (1) и (2) приводят к выражению

³ Соотношение это сильно зависит от значения давления *P* в пористом слое, которое для металлических расплавов лежит в диапазоне 1–10 Мбар [13]. Здесь предполагается, что $\mu_l \sim 100$ Па с как некоторое промежуточное значение, относящееся к скорости жидкости в порах $v_l \sim 10^{-4}$ м/с. Однако μ_l может быть на порядки больше, чему соответствовали бы гораздо меньшие значения v_l .

$$w_{Dar} \approx \left(\frac{K}{\mu_l}\right) \left(\frac{\Delta P}{L_l}\right)^2 \approx \left(\frac{K}{\mu_l}\right) \left(\frac{\mu_m^2}{\rho L v_m} \nabla v_{mn}\right)^2 \frac{1}{L_l^2} \approx \\ \approx \left(\frac{K}{\mu_l}\right) \left(\frac{v_{mn}}{v_m}\right)^2 \frac{1}{\xi^2} \left(\frac{\mu_m^2}{\rho L}\right)^2 \frac{1}{L_l^2}.$$
(3)

Здесь ξ – длина, на которой сильно замедляется расплав перед пористым слоем: $\partial v_{mn}/\partial x \sim v_{mn}/\xi$, $v_{mn}/v_m \approx 2h/L_l$. Предполагаемая константа ξ имеет оценку $\xi \approx (L_l/4R_{nucl})(\mu_m^2/\rho L\Delta P)$, причем $\xi \approx 10$ м при $\mu_m \approx 10^{11}$ Па с и $\Delta P \approx 10^5$ бар. Из (3) следует, при данных характеристиках ядра $w_{Dar} \approx 10^8 K/\mu_1 \Pi a^2/M^2$, тепловой поток из области пористого слоя размера $L_l \approx 10^6$ м, которого касается цилиндрический вихрь, при $\Delta P \approx 10^{10}$ Па имеет порядок величины $\delta q_{Dar} \approx w_{Dar} L_l \approx 10^{14} \frac{K}{M}$ Па²/м ≈ 10^4 Вт/м². Поскольку при конечных L_l получа-

ем оценку $v_{mn}/v_m \approx L_l/4R_{nucl}$, то при $\xi \approx \text{const}$ величина $w_{Dar} \sim (\Delta P/L_l)^2$ не обращается в бесконечность, и $\delta q_{Dar} \sim w_{Dar} L_l$, т.е. аномальный поток обращается в нуль при исчезновении тонкой пористой оболочки ядра.

Уравнения (1) и (2) дают наблюдаемое значение $\delta q_{Dar} \approx 10^{-2}$ Вт/м² только в случае, если выполняются соотношения

$$\Delta P \approx \frac{1}{10^2 \varepsilon v_l} \operatorname{Br/m^2}, \quad K/\mu_l \approx 10^8 (\varepsilon v_l)^2 \operatorname{M^3} \operatorname{Br^{-1}}.$$
(4)

Тогда соотношение $K/\mu_l \sim 10^{-10} \text{ м}^2/(\Pi \text{a c})$, согласно (3), будет выполняться при $\Delta P \approx 10^7 \, \Pi a$, т.е. при гораздо меньшей разности давлений. Отсюда следует, что повышение величины ΔP , т.е. понижение отношения K/μ_{l} , возможно только за счет малых значений пористости є и скорости жидкости в пористой среде v_l. Например, то же значение $\delta q_{Dar} \approx 10^{-2}$ Вт/м² достигается при значительно меньшем отношении $K/\mu_l \sim 10^{-14} \text{ м}^2/(\Pi \text{ a c})$ (при этом $\Delta P \approx 10^9$ Па). Соответственно проница-емость *К* может быть значительно меньше: *К* ~ ~ 10^{-12} м² при μ_l ~ 100 Па с, $K \sim 10^{-14}$ м² при μ_l ~ ~ 1 Па с. Если $\Delta P \approx 10^{10}$ Па, то соответственно $K/\mu_l \sim 10^{-16} \text{ м}^2/(\Pi \text{ a c})$. Как замечено в [17] (ссылки в [17]), благодаря гравитации всякий кашеобразный слой не может сохраняться долго, если его проницаемость достаточно велика. Наблюдение такого слоя в настоящее время указывает на ограниченность его проницаемости с учетом медленного роста твердого ядра [6, 7].

Уменьшение отношения K/μ_l и соответствующее увеличение ΔP могут быть достигнуты, со-

КРИСТАЛЛОГРАФИЯ том 58 Nº 2 2013 гласно (4), за счет понижения произведения εv_l , т.е. при меньшей скорости жидкости v_l в оболочке твердого ядра с пористостью є. Например, при $\Delta P \approx 10^{10}$ Па и є ~ 10^{-2} получаем оценку $v_l \sim 10^{-10}$ м/с. Произведение є VI сильно зависит от вязкости среды. Вопрос о вязкости в обоих ядрах остается неясным и допускает большой произвол в оценках. Так, в [17] приводятся оценки вязкости от 10^{-3} Па с в жидком ядре до 10^{17} Па с в твердом ядре. Скорее всего, разумно принять концепцию существенного роста вязкости µ, и уменьшения скорости у, в металлическом стекле, состоящем из расплава на основе Fe, с приближением к центру Земли [13], так что используемые здесь эвристические оценки носят умозрительный характер. Всегда можно подобрать соответствующие значения K и μ_l так, чтобы удовлетворить величине $\delta q_{Dar} \approx 10^{-2} \mathrm{BT/M^2}.$

Вынос тепла к мантии Земли приводит к повышению ее температуры из-за фильтрации в пористом слое в зонах соприкосновения с конвективными потоками. Напомним, что наблюдаемые аномальные потоки тепла из некоторых участков ядра составляют $\delta q \approx (1-4) \times 10^{-2} \text{ Вт/м}^2$, т.е. эти величины могут быть сравнимы со сделанными оценками δq_{Dar}. В отсутствие пористого слоя тепловая конвекция $w_{conv} \approx \mu_m (\partial v_m / \partial x)^2 \approx \mu_m (v_m / L)^2$, обусловленная вращением жидкого ядра, приводила бы к тепловому потоку из зоны твердого ядра $\delta q_{conv} \approx \mu_m v_m^2 / L \approx 10^{-3} \text{ Вт/м}^2$, что также близко к δq . С другой стороны, оценка $w_{conv} \approx \kappa \Delta T / L^2$ сравнима с предыдущей оценкой при используемых параметрах ядра, где величина ΔT есть разность температур по толщине жидкого ядра. Не затрагивая вопрос об устойчивости вращающейся жидкости, скорость жидкости можно также грубо оценить из соотношения $v_m^2 \approx \frac{\rho c_P \chi}{\mu_m} \Delta T_{conv} \approx 10^6 \text{ м}^2/\text{c}^2$, что дает несколько завышенное значение скоро-

сти $v_m \sim 10^3 \text{ м/с.}$

Оценить время распространения тепла от твердого ядра к мантии можно с помощью уравнений теплопроводности и температуропроводности:

Ć

$$\frac{\partial T}{\partial t} + \mathbf{v}_m \nabla T = \chi \Delta T \quad \mathbf{u} \quad \mathbf{q} = -\kappa \nabla T \,, \tag{5}$$

где
$$\chi = \frac{\kappa}{\rho c_P}$$
 [10], $C_P \approx 10^3 \, \text{Дж}/(\text{K кг}), \, \rho \sim 10^4 \, \text{кг/м}^3,$

 $\kappa \sim 10^2 \, \text{Дж/(с м K)}, \chi \approx 10^{-5} \, \text{м}^2/\text{с} - \text{коэффициент}$ температуропроводности, к - коэффициент теплопроводности. Температура через время t, согласно (5), достигает значения

8*

$$\{T(\mathbf{r})\} = \frac{1}{(2\pi)^3} \left(\sqrt{\frac{\pi}{\chi t}}\right)^3 \int \{T_0(r')\} \exp\left[-\frac{(x-x'-v_{mx}t)^2 + (y-y'-v_{my}t)^2 + (z-z'-v_{mz}t)^2}{4\chi t}\right] dx' dy' dz'$$
(6)

при начальном распределении $T_0(\mathbf{r})$ на поверхности твердого ядра. Аналогично для концен-

трации легкого материала $c(\mathbf{r})$ имеем выражение

$$\{c(\mathbf{r})\} = \frac{1}{(2\pi)^3} \left(\sqrt{\frac{\pi}{Dt}}\right)^3 \int \{c_0(r')\} \exp\left[-\frac{(x-x'-v_{mx}t)^2 + (y-y'-v_{my}t)^2 + (z-z'-v_{mz}t)^2}{4Dt}\right] dx' dy' dz'$$
(7)

на основе уравнений

$$\frac{\partial c}{\partial t} = D\Delta c - \rho \mathbf{v}_m \nabla c \quad \mathbf{u} \quad \mathbf{i} = -\rho D (\nabla c)^4, \qquad (8)$$

где D – коэффициент диффузии. Предполагается [1], что $D = \chi$ благодаря длительному перемешиванию расплава. Если предположить, как в [1], что $\delta i = \beta \delta q/C_P$, то аномальный поток массы легкого вещества составит $\delta i_{Dar} \approx 10^{-10}$ кг м⁻² с⁻¹, что соответствует по порядку величины обнаруженной однородной части потока тепла в жидком ядре i_0 [18].

ОЦЕНКИ СКОРОСТИ РАСПЛАВА И ТЕПЛОПЕРЕДАЧИ

Приведем данные о движении расплава в жидком ядре [1]. Для оценки скорости расплава v_m в циклонических вихрях рассматривают модифицированное число Релея $\text{Ra}_{\chi} = g_0 i_0 / \rho \Omega^2 \chi$, не зависящее от вязкости расплава μ_m и связанное со скоростью v_m соотношением

$$v_m / \Omega L \approx \operatorname{Ra}_{\gamma} (\delta i / 2i_0) (\delta^* / L)^5.$$
 (9)

Эта связь вытекает из равенства роторов (завихренности) сил Кориолиса ω = rotv и плавучести (Ra_χ/L) · rot(Tr), соответствующего "балансу теплового ветра" [18]. Здесь размер δ* определяет толщину теплового пограничного слоя жидкого ядра, в котором происходит интенсивный теплообмен, т.е. теплопередача между мантией и ядром с коэффициентом теплопередачи

$$\alpha = q \left(T_{nucl} - T_{mantle} \right)^{-1} = \kappa / \delta^* [10]. \tag{10}$$

В зависимости от граничных условий в это соотношение может входить термическое сопротивление

$$R = \frac{1}{\alpha_1} + \frac{\delta^*}{\kappa} + \frac{1}{\alpha_2},\tag{11}$$

где α_1 и α_2 — соответственно коэффициенты теплопередачи горячей и холодной сред по обе стороны от тонкой прослойки материала толщиной δ^* с коэффициентом теплопроводности к. Тогда из (9)—(11) следует, что

$$v_m \approx \operatorname{Ra}_{\chi}(\delta i/2i_0)\Omega\kappa R = \frac{g_0 C_P R}{2\Omega}\delta i.$$
 (12)

В рассматриваемой модели $\delta i \approx i_0 \approx 2 \times 10^{-10}$ кг м⁻² с⁻¹, $\delta^* \approx 2$ м [1], Ra_{χ} ≈ 4 , что близко к оценкам [18]. Поэтому ожидаемое значение $v_m \approx 3 \times 10^{-4}$ м/с. Поскольку к ~ 10^2 Дж/(с м K), то $\alpha \approx 10^2/\delta^*$, что в единицах СИ составляет около 50 Дж/(с м² K). Если термическое сопротивление *R* играет существенную роль и превышает величину δ^* /к, то скорость расплава v_m , согласно (12), может превышать 10^{-4} м/с.

Числа Экмана $E_{\chi} = \chi/\Omega L^2 \approx 10^{-13}$ и $E_{\mu} = \mu_m/\rho\Omega L^2 \sim 10^{-1} - 10^{-2}$ при $\mu_m \approx 10^{11}$ Па с характеризуют роль тепловой диффузии и вязкого движения в жидком ядре. В [2] оценивается также толщина вязкого пограничного слоя вращающейся жидкости (слоя Экмана) $\delta \sim L E_{\mu}^{1/2},$ в котором мала вязкость жидкости (меньше, чем $\eta \approx$ $\approx 10^{-3}$ м²/с). В этом случае (при $\rho \sim 10$ кг/м³) $E_{\eta} <$ $< 10^{-12}$ и $\delta < 1$ м. Если учесть соотношение $Ra_{\chi} =$ $= \text{Ra}_{O} \text{Pr}/E_{\eta} \sim 1$, где $\text{Pr} = \eta/\chi -$ число Прандтля, $Ra_{O} = g_{0}i_{0}/\rho\Omega^{3}L^{2} \approx 10^{-13}$ – число Релея, основанное на конвективных потоках тепла, то число Pr оказывается порядка единицы в слое Экмана. Вне этого слоя вязкость расплава μ_m велика, и числа $E_{\mu}(E_{\eta})$ и Pr имеют гораздо бльшие порядки величин. В [1] величину $E_{\mu} = 3 \times 10^{-4}$ выбирали для численных расчетов, но в настоящей работе это безразмерное число определяется высокой вязкостью μ_m и больше, чем в [1]. В настоящей работе использовано значение б* толщины теплового

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

⁴ Имеются два потока массы: $\rho vc + i \mu \rho v(1 - c) - i$, которые дают сумму плотностей потоков обоих веществ v [10].

⁵ Оценивается среднеквадратичная скорость расплава в жидком ядре.

пограничного слоя жидкого ядра, найденное из модельных расчетов в [2].

ОЦЕНКИ МАГНИТНЫХ ХАРАКТЕРИСТИК

Приведенные значения потоков тепла и массы из твердого ядра свидетельствуют о значительной роли перемещений расплава во флуктуациях магнитного поля (магнитной адвекции), доминирующих над магнитной диффузией, что объясняет концентрацию магнитного поля в циклонах и антициклонах, возникающих при вращательном течении расплава [1–3, 19]. Так, среднеквадратичные значения магнитной индукции B_{mag} , измеряемые в единицах $\sqrt{\rho \chi_{mag}} \Omega L$, оцениваются из соотношения [1]:

$$\frac{B_{mag}}{\sqrt{\rho \chi_{mag}} \Omega L} \approx \operatorname{Ra}_{Q}^{1/3},\tag{13}$$

если доля мощности конвективного течения, диссипируемой посредством омических эффектов, равна единице. В выражении (13) $\chi_{mag} \sim 10^{-5} \, \text{м}^3/\text{кг}$ – магнитная восприимчивость. Отсюда при L = = 2200 км следует значение $B_{mag} \sim 1$ мТ [1]. Известно, что магнитное поле Земли менее 0.1 мТ, т.е. указанная доля мощности меньше единицы. Число Релея $\operatorname{Ra}_{\gamma} \approx 4$, полученное выше, достаточно мало, чтобы создать относительно сильный, но все-таки переключающийся магнитный диполь [20]. Коэффициент магнитной диффузии принимается равным $\lambda_{\textit{mag}} \sim 1 \ \text{m}^2/c,$ поэтому магнитное число Рейнольдса $\ddot{\text{Re}}_{mag} = vL/\lambda_{mag} \sim 500-1000$ в окрестности твердого ядра [21], если $v \approx 10^{-4}$ м/с согласно модели [1]. Заметим, что в этой области время магнитной диффузии $L^2/\lambda_{mag} \approx 10^{12} \text{ c} \sim 100$ тысяч лет.

ОЦЕНКА ВРЕМЕНИ ПОДХОДА ПОТОКА ТЕПЛА К МАНТИИ

Если поток по оси *х* много больше, чем в других направлениях (*y* и *z*), то $v_{mx} \ge (v_{my}, v_{mz})$. Время t_L , за которое потоки тепла и массы из твердого ядра достигнут мантии благодаря конвекции в вихрях, составляет $t_L \sim L/v_{mx} \sim 10^{10} \text{ c} \sim 1000$ лет, что много меньше времени магнитной диффузии (уравнения (5)–(8)). За это время диффузионное распространение тепла и массы в поперечном к потоку направлении составило бы $r_{\perp} \approx \sqrt{\chi t_L} \approx 1$ км, т.е. аномальный поток слабо размывается. При этом аномальные потоки выносятся из пятен (на поверхности твердого ядра) диаметром примерно 1000 км. Если подводится постоянный поток тепла $\delta q \approx 10 \text{ мBt/m}^2$ к поверхности (мантии с координатой x = 0), то на этой поверхности температура меняется со временем *t* качественно по закону

$$T(0, -t_{past}) \approx \frac{2\sqrt{\chi/\pi\delta q}}{\kappa} \sqrt{t_{past}},$$
 (14)

согласно [10], где t_{past} есть время, прошедшее с момента включения этого переноса тепла в прошлом. При используемых значениях параметров время t_{past} , необходимое для нагрева данной поверхности на 1 К, составляет 10¹³ с ~ 10⁶ лет, если не учитывается теплоотвод. При оценке (14) считается, что поток тепла проводится из жидкого ядра через плоскость x = 0, причем при положительных x температура равна нулю в момент $-t_{past}$.

Приведем использовавшиеся оценки всех материальных параметров в настоящей работе⁶:

− среднеквадратичное значение скорости расплава $v_m \approx 3 \times 10^{-4}$ м/с;

- скорость жидкости в порах $V_l < 10^{-4}$ м/с;

– аномальный поток массы в среднем по поверхности ядра $i_0 \approx 2 \times 10^{-10}$ кг м⁻² с⁻¹;

— амплитуда изменений аномального потока массы $\delta i \approx i_0$;

— характерная длина в пористой оболочке твердого ядра $L_l \sim 10^6$ м;

— характерный скачок давления в пористом слое $\Delta P \sim 10^{-4} - 10^{-1}$ Мбар;

— динамическая вязкость расплава $\mu_m \sim 10^{11} \text{ Па с;}$

– динамическая вязкость жидкой фракции в порах $\mu_1 \sim 1-10^2$ Па с;

- коэффициент температуропроводности расплава $\chi = \kappa / \rho C_P \approx 10^{-5} \text{ м}^2/\text{c};$

-коэффициент теплового расширения расплава β ≈ 10^{-5} 1/K;

— температура на границе твердого ядра $T_{nucl} \approx 4000$ K;

— теплоемкость жидкого ядра при постоянном давлении $C_P \approx 10^3 \, \text{Дж}/(\text{K кг});$

— разность температур на толщине жидкого ядра $\Delta T \sim 10^3$ K;

- плотность расплава $\rho \sim 10^4$ кг/м³;

-коэффициент теплопроводности расплава к $\sim 10^2\, \mbox{Дж/(с м K)};$

- характерная длина в расплаве $L \sim 10^3 - 2 \times 10^3$ км;

- проницаемость пористого слоя $K < 10^{-10}$ м²;

⁶ Имеют смысл порядки величин, хотя иногда встречаются некоторые уточнения, например в [23]: L = 2200 км, $\beta = 10^{-5}$ 1/K, $C_P = 800$ Дж кг K⁻¹, $\chi = 5 \times 10^{-6}$ м²/с.

- пористость $\varepsilon \sim 10^{-2} 10^{-1}$;
- число Релея $\operatorname{Ra}_{O} = g_{0}i_{0}/\rho\Omega^{3}L^{2} \approx 10^{-13};$
- число Релея Ra_{γ} = $g_0 i_0 / \rho \Omega^2 \chi \approx 4$;
- число Экмана $E_{\mu} = \mu_m / \rho \Omega L^2 \sim 10^{-1} 10^{-2}$,
- число Экмана $E_{\chi} = \chi / \Omega L^2 \approx 10^{-13};$
- число Экмана $E_{\eta} = \eta / \Omega L^2 < 10^{-12};$

− толщина теплового пограничного слоя жидкого ядра $\delta^* \approx 2$ м;

- толщина пограничного слоя Экмана $\delta < 1$ м;

– коэффициент теплопередачи пограничного слоя ядра $\alpha \approx 50 \text{ Дж/(с м}^2 \text{ K});$

— коэффициент магнитной диффузии $\lambda_{mag} \sim 1 \text{ м}^2/\text{c};$

— среднеквадратичное значение магнитной индукции $B_{mag} \sim 1$ мT;

- магнитная восприимчивость $\chi_{mag} \sim 10^{-5} \text{ м}^3/\text{кг};$ - число Рейнольдса $\text{Re}_{mag} = v H / \lambda_{mag} \sim 500-1000.$

выводы

Аномальные потоки тепла δq_{Dar} и массы δi_{Dar} , обусловленные касанием конвективных цилиндров (циклонов и антициклонов) с геликоидальными течениями и пористой оболочки твердого ядра Земли, определяются выражением

$$\delta q_{Dar} \approx w_{Dar} L_l \approx 10^8 \frac{K}{\mu_l} \Pi a^2 / M,$$
 (15)

в котором основную роль играют соотношения (4). Соотношение (15), пропорциональное проницаемости пористого слоя и обратно пропорциональное вязкости жидких включений, найдено в модели очень плотной и вязкой среды в окрестности границы твердого ядра. Если эта модель не верна, например при гораздо большей вязкости μ_l и меньшей пористости *K* (в [22] величина *K* оценивалась как 10⁻¹⁸ м²), тогда вклад δq_{Dar} пренебрежимо мал, что должно изменить представление о физических свойствах расплава в окрестности границы твердое ядро—расплав, на которой происходит отвердевание жидкого ядра как фазовый переход первого рода.

Хотя при обычных характеристиках расплава ΔT , L и $\mu_m \sim 10^{11}$ Па с оценки скорости v_m и q_{conv} без учета вращения расплава, примерно совпадают со значениями v_m и q_{Dar} с учетом этого вращения, вызывающего в жидком ядре вихреобразное движение, возникает вопрос о значениях этих величин при вязкости μ_m , много большей 10^{11} Па с. Это связано с сильной зависимостью $q_{Dar} \circ K/\mu_l$, что от-

личается от обычных оценок. Поскольку истинные значения μ_m , μ_l и *K* не известны, то можно утверждать, что то же значение q_{Dar} получается при μ_m и μ_l , на 1–2 порядка больших, и *K*, на несколько порядков меньшем, чем здесь предположено, т.е. проницаемость может оказаться гораздо меньшей, чем 10⁻¹⁰ м².

Фактически здесь рассматривался переход под давлением металлического расплава в состояние металлического стекла [13, 24]. Плотность расплава повышается вдоль кривой плавления в несколько раз при давлениях 1–10 Мбар, при этом вязкость расплава повышается гораздо быстрее, достигая в стекле уровня свыше 10^{14} Па с [13]. Поэтому величина q_{Dar} определяется главным образом поведением величины μ_m при таких высоких давлениях.

Если оценки аномального потока тепла q_{Dar} , вязкостей μ_m и μ_l , проницаемости пористого слоя K верны, то можно говорить о длительном сосуществовании флуктуационных областей твердой и жидкой фаз в приповерхностном слое твердого ядра [8, 24]. Эта пористая среда при соприкосновении с циклоническими вихрями в расплаве, возникающими во вращающемся жидком ядре, могла бы в этом случае обусловить аномальные потоки тепла и массы легких фракций из твердого ядра.

Работа поддержана грантом по Программе Президиума РАН "Вещество при высоких плотностях энергии. Секция 2 — Вещество в условиях высокого статического сжатия".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Aubert J., Amit H., Hulot G. et al.* // Nature Lett. 2008. V. 454. P. 758.
- Aubert J., Amit H., Hulot G. // Phys. Earth Planet. Int. 2007. V. 160. P. 143.
- 3. Van der Hilst R. et al. // Science. 2007. V. 315. P. 1813.
- 4. *Dziewonski A., Anderson D.* // Phys. Earth Planet. Int. 1981. V. 25. P. 297.
- Labrosse S., Poirier J.P., Le Mouel J.L. // Earth Planet. Sci. Lett. 2001. V. 190. P. 111.
- Cao A., Romanowicz B. // Earth Planet Sci. Lett. 2004. V. 228. P. 243.
- 7. *Yu W., Wen L.* // Earth Planet Sci. Lett. 2006. V. 245. P. 581.
- 8. *Пикин С.А.* // Кристаллография. 2012. Т. 57. № 3. С. 448.
- 9. *Braginsky S.I., Roberts P.H.* // Equations governing convection in Earth's core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 1995. V. 79. P. 1.
- 10. *Ландау Л.Д., Лифшиц И.М. //* Механика сплошных сред. М.: Госиздат, 1953. 788 с.
- Breuer M., Manglik A., Wicht J. et al. // Geophys. J. Int. 2010. V. 183. P. 150.

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

294

- Das D.B., Nassehi V. // Water Sci. Technol. 2002. V. 45(9). P. 301.
- 13. Бражкин В.В., Ляпин А.Г. // УФН. 2000. Т. 170. С. 535.
- Das D.B., Hanspal N.S., Nassehi V. // Hydrol. Process. 2005. V. 19. P. 2775.
- 15. *Panfilov M.* // Macroscale Models of Flow Through Heterogeneous Porous Media. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. 363 p.
- Nield D.A. // Transport Phenomena in Porous Media II / Eds. Ingham D.B., Pop I., Oxford: Pergamon, 2002. 742 p.
- 17. *Karato S.* // The Dynamic Structure of the Deep Earth: An Interdisciplinary Approach. Princeton; Chichester: Princeton University Press, 2003. 241 p.

- Christensen U., Aubert J. // Geophys. J. Int. 2006. V. 117. P. 97.
- Olson P., Christensen U., Glatzmaier G.A. // J. Geophys. Res. 1999. V. 104. P. 10383.
- 20. *Kutzner C., Christensen U. //* Phys. Earth Planet. Int. 2002. V. 131. P. 29.
- 21. Christensen U., Tilgner A. // Nature. 2004. V. 429. P. 169.
- 22. *Terasaki H., Kato T., Urakawa S. et al.* // Earth Planet. Sci. Lett. 2001. V. 190. P. 93.
- 23. *Stacey F.D.* // Physics of the Earth. Brookfield Press, Kenmore, Brisbane (Australia), 1992. 525 p.
- 24. Пикин С.А., Горкунов М.В., Кондратов А.В. // Кристаллография. 2010. Т. 55. № 4. С. 663.