УДК 548.73

_ СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ИК-СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ (CN₃H₆)₂[(UO₂)₂(C₂O₄)(CH₃COO)₄]

© 2013 г. Л. Б. Сережкина, Е. В. Пересыпкина*, Н. А. Неклюдова, А. В. Вировец*, В. Н. Сережкин

Самарский государственный университет E-mail: Lserezh@ssu.samara.ru *Институт неорганической химии СО РАН, Новосибирск Поступила в редакцию 18.08.2011 г.

Проведены синтез, ИК-спектроскопическое и рентгеноструктурное исследования монокристаллов $(CN_3H_6)_2[(UO_2)_2(C_2O_4)(CH_3COO)_4]$ (a = 8.5264(2), b = 13.8438(4), c = 10.7284(2) Å, $\beta = 103.543(1)^\circ$, пр. гр. $P2_1/n$, Z = 2, R = 0.0258). Основными структурными единицами кристаллов являются двухьядерные группировки состава $[(UO_2)_2C_2O_4(CH_3COO)_4]^{2-}$, относящиеся к кристаллохимической группе $A_2K^{02}B_4^{01}$ ($A = UO_2^{2+}$, $K^{02} = C_2O_4^{2-}$, $B^{01} = CH_3COO^-$) комплексов уранила. Координационный полиэдр атомов урана – гексагональная бипирамида UO_8 , в аксиальных позициях которой находятся атомы кислорода иона уранила. Урансодержащие группировки объединены за счет электростатического взаимодействия с катионами гуанидиния, а также системой водородных связей, в образовании которых участвуют атомы водорода катионов гуанидиния и атомы кислорода ионов уранила. Результаты ИК-спектроскопического исследования соединения хорошо согласуются с данными рентгеноструктурного анализа.

DOI: 10.7868/S0023476113020239

В литературе есть описание ацетатооксалатоуранилата гуанидиния $(CN_3H_6)_2(UO_2)_2(C_2O_4)(CH_3COO)_4 \cdot 2H_2O$ [1]. Синтезированный $(CN_3H_6)_2(UO_2)_2(C_2O_4)$ $(CH_3COO)_4$ (I) оказался безводным соединением. В связи с отсутствием данных о структуре I или его двухводного аналога [1] предприняты рентгеноструктурное и ИК-спектроскопическое исследования полученных кристаллов I.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. К нагретому на водяной бане водному раствору оксалата уранила (0.7 ммоль $UO_2C_2O_4$ · · 3H₂O в 7 мл воды) приливали концентрированные растворы ацетата аммония (1.7 ммоль NH₄CH₃COO в 2 мл воды) и нитрата гуанидиния (1.4 ммоль CN₃H₆NO₃ в 2 мл воды) и ледяную уксусную кислоту (0.7 ммоль). Мольное соотношение реагентов составляло 1:2.5:2:1. При выдерживании полученного прозрачного раствора на воздухе через 3-4 дня формировались желтые игольчатые кристаллы состава $(CN_3H_6)_2(UO_2)_2(C_2O_4)(CH_3COO)_4$ (I). Приведенная методика отличалась от описанной в [1] добавлением уксусной кислоты в качестве дополнительного реагента и использованием соли гуанидиния в виде нитрата. В методике [1] (CN₃H₆)₂(UO₂)₂(C₂O₄)(CH₃COO)₄ · 2H₂O выпадал в виде желтого осадка сразу после добавления соли гуанидиния.

Рентгеноструктурный анализ (РСА). Строение I установлено методом РСА монокристаллов. Кристаллографические характеристики, детали дифракционного эксперимента и уточнения структуры приведены в табл. 1. Структура расшифрована прямым методом и уточнена в анизотропном приближении для неводородных атомов. Атомы водорода найдены геометрически и уточнены в изотропном приближении в модели наездника с $U_{\rm изо}({\rm H}) = 1.2 U_{\rm экв}(X_i)$ для групп NH₂ и $U_{\rm изо}({\rm H}) = 1.5 U_{\rm экв}(X_{ii})$ для метильных групп, где $U_{\rm экв}(X)$ – эквивалентные тепловые параметры атома, с которым связан атом водорода.

Координаты атомов и величины тепловых параметров депонированы в Кембриджском банке структурных данных (ССDС № 815951). Основные длины связей и величины валентных углов приведены в табл. 2.

ИК-спектр поглощения I записывали на спектрофотометре Perkin-Elmer Spectrum 100 в области 400–4000 см⁻¹. Образец готовили в виде таблетки с КВг. В табл. 3 представлено отнесение полос поглощения, проведенное по данным [4–6].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Координационным полиэдром атома урана в структуре I является гексагональная бипирамида UO_8 , в аксиальных позициях которой находятся

Таблиі	ia 1.	Кристалло	графич	ческие	данные,	, парамет-
ры	эксг	іеримента	И	уточн	ения	структуры
(CN_3H)	$I_6)_2[($	$UO_2)_2(C_2O_4)$)(CH ₃	$_{3}COO)_{4}$]	

984.43
Моноклинная, <i>Р</i> 2 ₁ / <i>n</i> , 2
8.5264(2), 13.8438(4), 10.7284(2)
103.5430(10)
1231.14(5)
2.656
$MoK_{\alpha}; 0.71073$
13.222
150.0(2)
$0.10 \times 0.05 \times 0.03$
Bruker-Nonius X8Apex, CCD
φиω
0.3515, 0.6925
29.72
−11 < <i>h</i> <11, −19 < <i>k</i> < 14, −11 < <i>l</i> < 14
6978/2816, 0.0299/2375
Полноматричный МНК по F^2
$w = 1/[\sigma^2(F_o^2) + (0.0160P)^2 + 0.0000P], P = (F_o^2 + 2F_c^2)/3$
166
0.00062(7)
0.0490
0.0258
1.050
0.853/-1.150
SADABS [2], SHELXTL ver. 5.10 [3]

Таблица 2. Основные геометрические параметры структуры $(CN_3H_6)_2[(UO_2)_2(C_2O_4)(CH_3COO)_4]^*$

Іексагональные бипирамиды UO ₈												
Связь <i>d</i> , Å		$\Omega, \%^{**}$		Угол		ω, град						
U–01 1.7		.757(3)	3) 21.		90 O1UO2		178.29(15)					
U-02	1	.762(3)	22.	09	09 O3UO4		52.34(10)					
U-03	2	.478(3)	9.11		O3UO6		64.60(10)					
U-04	2	.468(3)	9.	25	O6UO5		52.17(10)					
U-05	2	.507(3)	8.	63	O8UO5		63.18(10)					
U-06	2	.448(3)	9.	59	O8UO7a		64.15(10)					
U–07 <i>a</i>	2	.508(3)	9.	52	O4UO7a		64.15(10)					
U-08	2	.478(3)	9.	91								
Оксалат-ион												
Связь		<i>d</i> , Å		Угол		ω, град						
C5-O7		1.243(5	() × 2	07	C508	1	26.3(4) × 2					
C5-O8		1.255(6) × 2	07	C5C5	1	$17.1(5) \times 2$					
C5–C5a		1.519(9)		O8C5C5		1	16.6(5) × 2					
		A	цетат	-ион	Ы							
Связь		<i>d</i> , <i>A</i>	ł	2	Угол		ω, град					
C1-O3		1.273(6)		O3C1O4		118.2(4)						
C1-O4		1.269(6)		O3C1C2		120.5(4)						
C1-C2		1.459(6)		O4C1C2		121.2(4)						
C3-O5		1.263(5)		O5C3O6		117.9(4)						
C3-O6		1.281(5)		O5C3C4		121.9(4)						
C3-C4		1.486	(6)	O6C3C4		120.2(4)						
* Varuan				- 1								

* Коды симметрии a: -x, -y, -z + 1.

** Здесь и далее Ω – телесный угол (в процентах от 4π ср), под которым общая грань полиэдров ВД соседних атомов видна из ядра любого из них.

кристаллохимические формулы даны в соответствии с систематикой [7].

Основной структурной группировкой являются центросимметричные димеры состава $[(UO_2)_2C_2O_4(CH_3COO)_4]^{2-}$, относящиеся к кристаллохимической группе $A_2K^{02}B_4^{01}$ комплексов уранила $(A = UO_2^{2+})$. Связывание этих димеров в каркас осуществляется за счет электростатических взаимодействий с внешнесферными катионами гуанидиния, а также за счет системы водородных связей, в образовании которых участвуют атомы водорода катионов гуанидиния и атомы кислорода ионов уранила, оксалат- и ацетат-ионов (табл. 4).

Результаты ИК-спектроскопического анализа находятся в полном соответствии с составом и данными РСА монокристаллов. Характеристическая полоса поглощения антисимметричного валентного колебания иона уранила проявляется

атомы кислорода ионов уранила (рис. 1). Отметим, что в почти линейных (угол O=U=O равен 178.3°) ионах UO₂²⁺ расстояния U–O1 (1.757 Å) и U–O2 (1.762 Å) практически совпадают, хотя атом O2 участвует в образовании водородных связей с атомами водорода катиона гуанидиния, а атом O1 входит только в состав иона уранила. Из шести атомов кислорода экваториальной плоскости полиэдра атома урана два принадлежат тетрадентатно-мостиковому оксалат-иону (тип координации K^{02}), четыре входят в состав двух бидентатно-циклических ацетат-ионов (тип координации B^{01}). Обозначения типов координации лигандов и

Таблица 3. Отнесение полос поглощения в ИК-спектре $(CN_3H_6)_2[(UO_2)_2(C_2O_4)(CH_3COO)_4]^*$

Волновые числа, см ⁻¹	Отнесение	Волновые числа, см ⁻¹	Отнесение		
3456 c.		1319 cp.	v (OCO)		
3399 с.	V(NH)	1269 сл. ∫	<i>v_s</i> (ОСО) _{оксал}		
3274 c.	V(INII)	1086 сл.			
3204 c.		1051 cp.	$\gamma(CH_3)$		
2975 сл.	$\mathcal{L}(\mathbf{CH})$	1023 сл.			
2924 сл. 👌	$V_s(C\Pi_3)$	934 c.	$v_{as}(UO_2^{2+}),$		
1687 c.			v(C-C)		
1670 c.	v _{as} (OCO) _{оксал}	848 сл.	$v_{s}(UO_{2}^{2+})$		
1651 c.		794 c.	δ(ОСО) _{оксал}		
1540 c.		695 c.	S(COO)		
1475 c.	v _{as} (COO) _{auer}	683 c.	о(СОО) _{ацет}		
1414 c.		548 cp.	δ(NH)		
1384 cp.	$\delta_s(CH_3)$	506 cp.	$\delta(OCO)_{okcan}$		

* Интенсивности полос: с. – сильная, ср. – средняя, сл. – слабая.

при 934 см⁻¹ [4, 5]. Наличие полосы поглощения в области 1319 см⁻¹, отвечающей симметричному валентному колебанию группировки $C_2O_4^2$, в соответствии с [6] согласуется с тетрадентатно-мостиковым (K^{02}) типом координации оксалатогрупп. Валентные колебания (антисимметричное и симметричное) групп CH₃COO⁻ проявляются в

Рис. 1. Катион $(C(NH_2)_3)^+$ и анион $[(UO_2)_2(C_2O_4)(CH_3COO)_4]^{2-}$ в соединении I (эллипсоиды 50%-ной вероятности).

области, отвечающей характеристическим колебаниям бидентатно-циклических ацетатогрупп (тип координации B^{01}). Несмотря на заметную вариацию длин связей в координационной сфере атомов урана, объем полиэдра Вороного—Дирихле атомов урана в I (9.4 Å³), имеющего форму гексагональной призмы, хорошо согласуется со средним значением 9.2(3) Å³ [8] для атомов U(VI) в кислородном окружении.

К настоящему времени установлено строение еще двух оксалатоацетатных комплексов уранила (NH₄)₂[(UO₂)₂(C₂O₄)(CH₃COO)₄] · 2H₂O (II) [9] и ${NH_2(C_2H_5)_2}_2[(UO_2)_2(C_2O_4)(CH_3COO)_4] \cdot 2H_2O$ (III) [10] с двухъядерными урансодержащими группировками [(UO₂)₂C₂O₄(CH₃COO)₄]²⁻, которые, как и I, принадлежат к кристаллохимической группе $A_{2}K^{02}B_{4}^{01}$. Геометрические характеристики димеров в структурах кристаллов І-ІІІ похожи, например расстояние U–U в димерах I (6.42 Å) близко к установленному в II (6.41 Å) или III (6.47 Å). Основные различия структур I-III обусловлены влиянием природы внешнесферных катионов R характер взаимной упаковки димеров на [(UO₂)₂C₂O₄(CH₃COO)₄]²⁻. Поскольку в структурах I-III удалось установить координаты всех без исключения атомов, для сравнительного анализа невалентных контактов, реализующихся между указанными димерами и катионами R (в II и III и молекулами кристаллизационной воды), использован метод молекулярных полиэдров Вороного-Дирихле (ММПВД) [11]. В рамках ММПВД учитываются все теоретически возможные невалентные контакты между атомами А и Z, полиэдры Вороного-Дирихле (ПВД) которых в структуре кристаллов имеют общую грань, хотя содержатся в составе разных ионов или молекул. При этом для каждого типа контактов A_i и Z_j рассчитывается их общее количество (k_{ij}), диапазон соответствующих им межатомных расстояний ($d_{\min} - d_{\max}$) и общая площадь (*S*_{*ii*}) граней ПВД.

Результаты анализа с помощью ММПВД показывают (табл. 5), что состав и строение катионов R существенно влияет на характер невалентных взаимодействий A/Z, реализующихся в структурах рассматриваемых кристаллов $R_2[(UO_2)_2(C_2O_4)(CH_3COO)_4]$ · $\cdot nH_2O$. Так, в III между атомами, которые находятся в составе димеров $[(UO_2)_2C_2O_4(CH_3COO)_4]^{2-}$, ионов диэтиламмония и молекул воды, реализуются только 4 из 15 теоретически возможных типов невалентных контактов, а именно: Н/Н, Н/С, H/O и O/O. В кристаллах II, которые отличаются от III только природой ионов R (аммоний вместо диэтиламмония), кроме четырех указанных типов контактов присутствуют невалентные взаимодействия С/О. Максимальное разнообразие типов невалентных контактов (9 из 15 возможных) наблюдается в структуре I, в которой кроме

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ИК-СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ 259

N_H0		Расстояние, Å		Угол N–H…O,	O (N-H) %	Ω (H…O), %	
iv ii o	N…O	N-H	Н…О	град	52 (IV II), 70		
N1-H1…O4	3.059(5)	0.88	2.31	143.1	33.3	15.0	
N1-H1…O7	3.391(5)	0.88	2.60	150.1	33.2	12.1	
N1-H1…O3	2.998(5)	0.88	2.14	164.5	33.2	17.0	
N2-H2…O6	2.865(5)	0.88	2.01	164.0	33.5	21.9	
N2-H2…O8	2.948(5)	0.88	2.11	158.1	33.2	19.2	
N3-H3…O2	3.090(5)	0.88	2.35	142.3	32.8	16.8	
N3-H3…O5	2.984(5)	0.88	2.14	159.1	33.0	17.8	

Таблица 4. Водородные связи в структуре комплекса $(CN_3H_6)_2[(UO_2)_2(C_2O_4)(CH_3COO)_4]^*$

* Учтены контакты с расстояниями $H \cdots O < 3.0 \text{ Å}$ и $\Omega(H \cdots O) > 12 \%$.

Таблица 5. Характеристики межмолекулярных невалентных контактов в структурах некоторых комплексов уранила, относящихся к кристаллохимической группе $A_2 K^{02} B^{01*}_4$

Тип кон-	$(CN_{3}H_{6})_{2}[(UO_{2})_{2}(C_{2}O_{4})(CH_{3}COO)_{4}]$ (I)					$\begin{array}{c} (\mathrm{NH}_{4})_{2}[(\mathrm{UO}_{2})_{2}(\mathrm{C}_{2}\mathrm{O}_{4})(\mathrm{CH}_{3}\mathrm{COO})_{4}] \cdot \\ \cdot 2\mathrm{H}_{2}\mathrm{O}\left(\mathrm{II}\right) \end{array}$									
такта	k _{ij}	d_{\min}	d _{max}	S _{ij}	Δ_{AZ}	k _{ij}	d_{\min}	d _{max}	S _{ij}	Δ_{AZ}	k _{ij}	d_{\min}	d _{max}	S _{ij}	Δ_{AZ}
0/0	36	3.29	4.67	25.6	3.6	40	3.27	3.71	34.5	4.3	8	3.39	4.16	0.4	< 0.1
N/O	32	3.22	4.01	9.7	1.4										
C/O	28	3.24	4.27	17.8	2.5	16	3.79	3.79	4.3	0.5					
C/N	16	3.42	3.97	9.6	1.3										
C/C	6	3.56	3.91	1.6	0.2										
H/O	188	2.01	4.26	394.6	55.3	264	1.94	3.88	486.2	61.0	284	1.80	4.58	535.3	55.7
H/N	20	2.88	3.64	15.6	2.2										
H/C	72	2.86	4.10	34.5	4.8	48	3.41	3.80	43.0	5.4	64	2.88	3.91	47.9	5.0
H/H	148	2.45	4.28	204.0	28.6	96	1.83	4.91	229.2	28.8	246	2.21	4.57	376.7	39.2
Всего	546	2.01	4.67	712.9	100.0	464	1.83	4.91	797.3	100	602	1.80	4.58	960.3	100.0

* k_{ij} — общее количество невалентных межмолекулярных контактов, приходящихся на одну формульную единицу $R_2[(\text{UO}_2)_2(\text{C}_2\text{O}_4)(\text{CH}_3\text{COO})_4] \cdot n\text{H}_2\text{O}; S_{ij}$ — общая площадь граней ПВД, отвечающих контактам A/Z; Δ_{AZ} — парциальный вклад (%) невалентных контактов A/Z в величину 0S , равную общей площади граней ПВД.

пяти упомянутых типов взаимодействий встречаются контакты N/O, C/N, H/N и C/C (табл. 5). Отметим, что в кристаллах I-III атомы азота содержатся только в составе внешнесферных ионов *R*. Отсутствие невалентных контактов с участием атомов азота в II и III вызвано тем, что в их структуре присутствуют атомы N с KЧ 4, тогда как в I содержатся атомы N с KЧ 3, причем в I на один димер приходится шесть атомов азота, тогда как в II или III – только два. В структурах II и III ПВД *sp*³-гибридизованных атомов N представляет собой искаженный тетраэдр, грани которого эквивалентны четырем связям (N-H или N-C). В то же время три грани ПВД *sp*²-гибридизованного атома N в I не в состоянии образовать замкнутый полиэдр, поэтому обязательно возникают дополнительные небольшие грани, отвечающие межмолекулярным невалентным контактам N/Z (по шесть на каждый атом N). По данным ММПВД в I в роли атомов Z выступают атомы C и H (соседнего иона гуанидиния) или O (ионов уранила или карбоксильных групп). За счет совокупности контактов C/N, H/N и C/C ионы гуанидиния в I попарно объединены в "дикатионы" (рис. 2), в которых плоскости двух соседних ионов располагаются параллельно друг другу на расстоянии (δ) 3.40 Å. Образование "дикатионов" с параллельной ориентацией плоских ионов гуанидиния, которое, по-видимому, можно рассматривать как π -стэкинг, встречается в ряде изученных комплексов уранила (например, в кристаллах NH₄(CN₃H₆)[UO₂(SeO₃)₂] [12], δ = = 3.38 Å).

Как известно [11], в рамках ММПВД относительную роль межмолекулярных контактов разной природы можно количественно охарактери-

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

Рис. 2. Фрагмент структуры, показывающий связывание димеров $[(UO_2)_2(C_2O_4)(CH_3COO)_4]^{2-}$ за счет водородных связей (пунктирная линия) с участием "дикатиона" гуанидиния.

зовать параметром Δ_{AZ} , который указывает парциальный вклад (в процентах) невалентных контактов A/Z в величину ⁰S, равную общей площади граней ПВД, отвечающих всем межмолекулярным контактам. По имеющимся данным (табл. 5) в трех обсуждаемых соединениях основной вклад во взаимное связывание димеров $[(UO_2)_2C_2O_4(CH_3COO)_4]^{2-}$, ионов *R* и молекул воды (в II и III) вносят водородные связи (контакты H/O с $∆_{HO}$ в диапазоне 55–61%) и дисперсионные взаимодействия (контакты H/H с $\Delta_{\rm HH}$ в области 28–39%, H/C с $\Delta_{\rm HC}$ ~ 5% и O/O с $\Delta_{\rm OO}$ ~ 4%). Все остальные типы контактов, реализующиеся в структурах I или II, имеют $\Delta_{AZ} < 3\%$, и их роль в образовании упаковки, по-видимому, менее существенна. Отметим, если в структурах II и III наиболее короткое d(U-U) в области 6.41–6.47 Å соответствует расстоянию U-U в димерах, то в изученной структуре I самое короткое расстояние U–U (6.06 Å) отвечает атомам урана соседних димеров, соединенных друг с другом не только водородными связями с участием «дикатиона» гуанидиния (рис. 2), но и совокупностью невалентных контактов (включая C/O, N/O, C/N, C/C, H/N) между атомами соседних димеров и "дикатиона".

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проект № 02.740.11.0275) и Российского фонда фундаментальных исследований (проект № 09-03-00206).

СПИСОК ЛИТЕРАТУРЫ

- 1. Комплексные соединения урана / Под ред. Черняева И.И. М.: Наука, 1964. С. 198.
- 2. *Sheldrick G.M.* SADABS. Program for empirical X-ray absorption correction, Bruker-Nonius, 1990–2004.
- 3. *Sheldrick G.M.* // Acta Cryst. A. 2008. V. 64. № 1. P. 112.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- Володько Л.В., Комяк А.И., Умрейко Д.С. Ураниловые соединения (спектры, строение). Минск: Издво БГУ, 1981. Т. 1. 432 с.
- Чумаевский Н.А., Минаева Н.А., Михайлов Ю.Н. и др. // Журн. неорган. химии. 1998. Т. 43. № 5. С. 789.
- 7. Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Cryst. B. 2009. V. 65. № 1. P. 45.
- 8. Сережкин В.Н., Блатов В.А., Шевченко А.П. // Координац. химия. 1995. Т. 21. № 3. С. 163.
- 9. Сережкина Л.Б., Вологжанина А.В., Неклюдова Н.А. и др. // Журн. неорган. химии. 2008. Т. 53. № 8. С. 1285.
- Сережкина Л.Б., Вологжанина А.В., Неклюдова Н.А., Сережкин В.Н. // Кристаллография. 2009. Т. 54. № 1. С. 65.
- 11. Сережкин В.Н., Сережкина Л.Б., Пушкин Д.В. // Журн. физ. химии. 2011. Т. 85. № 5. С. 914.
- 12. *Марухнов А.В., Пересыпкина Е.В., Вировец А.В. и др.* // Координац. химия. 2009. Т. 35. № 1. С. 42.

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013