КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 2, с. 247–251

= СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.737

ОПРЕДЕЛЕНИЕ СТРУКТУРЫ ВОДОРОД-БИС[2-(4-ДИМЕТИЛАМИНОСТИРИЛ)-ХИНОЛИН-1-ОКСИД] ДИХЛОРКУПРАТА ПО РЕНТГЕНОДИФРАКЦИОННЫМ ДАННЫМ

© 2013 г. Т. А. Екимова, В. А. Тафеенко*, Л. А. Алешина, Р. С. Басалаев, В. П. Андреев, Я. П. Нижник

> Петрозаводский государственный университет E-mail: dery@psu.karelia.ru *Московский государственный университет им. М.В. Ломоносова Поступила в редакцию 26.06.2012 г.

По рентгенодифракционным данным от порошкового образца и монокристалла определена кристаллическая структура водород-бис[2-(4-диметиламиностирил)-хинолин-1-оксид] дихлоркупрата(I): кристаллы моноклинные, пр. гр. $P2_1/n$, Z = 2. Две молекулы N-оксида 2-(4-диметиламиностирил)хинолина связаны друг с другом через находящийся в центре симметрии водород, образуя сложный катион.

DOI: 10.7868/S0023476113020082

ВВЕДЕНИЕ

Гетероароматические *N*-оксиды и их комплексы с ионами различных металлов особенно интересны как материалы с высокой биологической активностью [1]. В связи с этим постоянно синтезируются новые соединения, получающиеся, как правило, в виде порошка. Иногда в этих образцах можно выбрать монокристалл, пригодный для рентгеноструктурного анализа.

Цель настоящей работы — определить кристаллическую и атомно-молекулярную структуры водород-бис[2-(4-диметиламиностирил)-хинолин-1-оксид] дихлоркупрата(I) на основе анализа рентгенодифракционных данных от порошка и монокристалла.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Первоначально задачей синтеза было получение молекулярного комплекса N-оксида 2-(4-диметиламиностирил)хинолина с хлоридом меди состава 2 : 1. Синтез проводили путем медленного добавления горячего этанольного раствора CuCl₂ · 2H₂O (0.5 ммоль) к раствору лиганда (1 ммоль) в горячем этаноле. N-оксид 2-(4-диметиламиностирил)хинолина синтезировали, как описано в [2]. Образующийся черно-коричневый мелкокристаллический осадок промывали этанолом, диэтиловым эфиром, сушили на воздухе (выход 51%).

Из порошка был выбран монокристалл, однако для него удалось зарегистрировать дифракционные отражения лишь в области $\theta \le 20^\circ$, т.е. для значений межплоскостных расстояний $d_{hkl} \ge$ ≥ 2.25 Å. Для получения достаточно надежного решения структуры такого интервала оказалось недостаточно, поэтому были проведены исследования порошкового образца.

Рентгенографические данные для порошкового образца получены на дифрактометре ДРОН-6 в симметричной геометрии на отражение на Си K_{α} излучении в интервале углов 20 от 3° до 70° с шагом 0.02°. Время регистрации интенсивности при каждом фиксированном угле составляло 10 с. На порошковой рентгенограмме надежно регистрировались отражения до $d_{hkl} = 1.78$ Å, угол скольжения $\theta = 35^{\circ}$.

Индицирование порошковой рентгенограммы исследуемого соединения проводилось при помощи программы TREOR90 [3] по 40 дифракционным отражениям. Достоверность индицирования оценивалась по общепринятым факторам M_{20} [4] и F_N [5]. Полученные значения факторов достоверности составили: $M_{20} = 22$, $F_N = 23$.

Основные кристаллографические данные, условия съемки и параметры уточнения структуры комплекса обоими методами приведены в табл. 1. Полученные значения параметров элементарной ячейки совпали в пределах погрешности эксперимента.

По дифракционным данным, полученным для монокристалла, структура расшифрована прямым методом. Показано, что молекулярный комплекс *N*-оксида 2-(4-диметиламиностирил)хинолина с CuCl₂ состава 2 : 1 при синтезе не образовался. Полученное соединение представляет собой семисоль *N*-оксида 2-(4-диметиламиностирил)хинолина с кислотой HCuCl₂(I).

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнение структуры $C_{38}H_{37}Cl_2CuN_4O_2$

Таблица 2.	Отдельные	длины	связей	(<i>d</i> ,	Å) :	И	валент-
ные углы (о	ω, град)						

$C_{38}H_{37}C_{12}C_{4}U_{4}U_{2}$		Свал	d	Свал	d	
Монокристалл		Связв	u	Связв	4 40.0 (7)	
Сингония, пр. гр., Z	гония, пр. гр., <i>Z</i> Моноклинная, <i>P</i> 21/ <i>n</i> , 2		2.088(2)	C5-C10	1.408(7)	
<i>a</i> , <i>b</i> , <i>c</i> , Å	10.675(2), 7.7504(10),	N1-C2	1.334(6)	C6–C7	1.408(6)	
	20.557(3)	N1-C9	1.385(7)	C7–C8	1.368(7)	
β, град	96.17(2)	N2-C16	1.355(7)	C8–C9	1.391(7)	
V, A^3	1690.9(5)	N2-C19	1.440(6)	C9-C10	1.412(6)	
$D_x, \Gamma/CM^3$	1.407	N2-C20	1.450(6)	C11-C12	1.336(7)	
Излучение; λ , A	CuK_{α} , 1.54184	C2-C11	1.434(7)	C12-C13	1.446(7)	
μ , cm ⁻¹	2.684	C2–C3	1.425(7)	C13–C14	1.395(6)	
Т, К	297(2)	C3–C4	1.352(3)	C13–C18	1.403(7)	
Размер образца, мм	$0.1 \times 0.1 \times 0.05$	C4-C10	1.391(2)	C15-C16	1.402(7)	
Дифрактометр	Enrat Nonius FR590	$C_{5}-C_{6}$	1.358(7)	C16 - C17	1.394(7)	
Тип сканирования	ω	Vroz		Vroz		
T_{\min}, T_{\max}	0.6180, 0.8572	УЮЛ	ω	УЮЛ	ω	
Ө _{тах} , град	64.99	C2N1O1	119.8(4)	C8C9C10	120.9(5)	
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-12 \le h \le 12, 0 \le k \le 9,$ $0 \le l \le 24$	C2N1C9	123.4(5)	C4C10C5	124.4(6)	
Число отражений: изме-	3097/1030: 0.1876/1030	O1N1C9	116.7(5)	C4C10C9	118.0(5)	
ренных/независимых	, , ,	C16N2C19	121.0(5)	C5C10C9	117.5(6)	
$(N_1), R_{int}/c I > 2\sigma(I) (N_2)$		C16N2C20	121.9(6)	C12C11C2	124.4(6)	
Метод уточнения	МНК по <i>F</i> ²	C19N2C20	116.8(5)	C2C11H11	117.8(2)	
Число параметров	218	N1C2C11	118.8(5)	C11C12C13	128.0(6)	
$R1/wR2 \text{ по } N_1$	0.2156/0.1602	N1C2C3	117.8(5)	C13C12H12	116.0(2)	
$K1/wK2 \text{ по } N_2$	0.0595/0.1259	C11C2C3	123.3(6)	C14C13C18	116.4(5)	
	0.825	C4C3C2	120.2(6)	C14C13C12	118.9(6)	
$\Delta \rho_{min} / \Delta \rho_{max}$	-0.300/0.245	C4C3H3	119.9(2)	C18C13C12	124 7(6)	
Программы	SHELX97 [6]	C3C4C10	121.6(6)	C15C14C13	121.6(6)	
Изтичние:) Å	$C_{11}K = 1.54178$	C3C4H4	121.0(0) 110.2(2)	C13C14H14	121.0(0) 110.2(3)	
h = h = h	Cuk_{α} , 1.54178 10.680(2), 7.746(3), 20.547(7)		11).2(2)	C14C15C16	121.8(6)	
и, <i>v</i> , <i>c</i> , А В град	96 1(0)	C6C5U5	121.0(0) 110.2(2)	C14C15U15	121.8(0)	
Число рефлексов	1522		119.2(2)	VICTOCISHIS	119.1(2)	
Общее число точек	3255		119.0(0)	N2C16C17	122.0(6)	
Число уточняемых пара-	253	С5С6Н6	120.2(3)	N2C16C15	121.8(6)	
метров	200	C8C7C6	120.8(7)	C17C16C15	116.2(5)	
<i>Rp</i> , %	7.1	C6C7H7	119.6(1)	C18C17C16	122.2(6)	
<i>Rwp</i> , %	9.2	C7C8C9	119.5(6)	C16C17H17	118.9(2)	
<i>Rb</i> , %	12.4	C9C8H8	120.2(1)	C17C18C13	121.7(6)	
$R_{\rm exp},\%$	5.4	N1C9C8	120.4(5)	C13C18H18	119.1(3)	
S	2.6	N1C9C10	118.6(6)			

Уточнение структурных и профильных характеристик порошковой рентгенограммы проводилось при помощи программы MRIA [7]. Уточнение методом Ритвельда происходило в несколько этапов. На первом этапе были зафиксированы структурные параметры, уточнялись профильные характеристики и параметры, определяющие характер и величину текстуры. Параметры текстуры рассчитывались с использованием метода разложения по симметризованным гармоникам вплоть

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

Рис. 1. Уточнение методом Ритвельда структурных и профильных параметров для водород-бис[2-(4-диметиламиностирил)-хинолин-1-оксид]дихлор-купрата; расчет – сплошная кривая (практически совпадающая с экспериментальными данными); разность экспериментальной и рассчитанной кривых распределения интенсивности – кривая внизу.

до 15 порядка включительно [8]. На следующем этапе в число уточняемых параметров включались координаты атомов и изотропные тепловые факторы. Результат уточнения представлен на рис. 1.

Отдельные длины связей и валентные углы (табл. 2) рассчитаны по координатам атомов, полученным для монокристалла. Координаты атомов и другие экспериментальные данные депонированы в Кембриджском банке структурных данных под номером CCDC 771331 для монокристальных и номером CCDC 771332 для порошковых данных.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Лиганды в комплексе плоские, связаны друг с другом через атом водорода, образуя сложный катион.

Атом водорода находится в центре инверсии. Сами лиганды расположены в параллельных плоскостях, находящихся друг от друга на расстоянии 2.443 Å (рис. 2). Расстояние O1…O1' равно 2.454(6) Å, угол O1–H1–O1' равен 180°. Найденное расстояние О···O незначительно больше аналогичных расстояний в известных молекулярных комплексах [9–12]: от 2.396 Å в гидробромиде *N*-

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

ЕКИМОВА и др.

Рис. 2. Строение катиона водород-бис[2-(4-диметиламиностирил)-хинолин-1-оксид] и дихлоркупрат-аниона.

Рис. 3. Кристаллическая упаковка водород-бис[2-(4-диметиламиностирил)-хинолин-1-оксид] дихлоркупрата вдоль оси *с*. Пунктирная линия – межмолекулярные H-связи.

оксида α -пиколина [9] до 2.414 Å в тригидрате гидрохлорида *N*-оксида α -пиколина [9]. Торсионный угол O1–N1–O1'–N1' равен 180°. Угол H1–O1–N1 107.1(3)°, что согласуется с литературными данными: аналогичный угол в тригидрате гидрохлорида *N*-оксида α -пиколина [9] составляет 107.73°, а в водород-бис(2-нонилпиридин-1оксид)тетрахлораурате(III) – 108.78° [13].

Длина связи N1–O1 равна 1.358(7) Å. В различных соединениях [9–19], в которых лиганды также связаны через водород, она варьируется от 1.314 Å в водород-бис(2-нонилпиридин-1-оксид)тетрахлораурате(III) [13] до 1.405 Å в тригидрате гидрохлорида *N*-оксида α-пиколина [9].

Торсионные углы H1-O1-N1-C2 и H1-O1-N1-C9 равны -72.(4)° и 110.(4)° соответственно.

Дихлорокупрат-анион образует слабые водородные связи С-H···Cl с атомами водорода органического катиона (рис. 3), объединяющие катионы и анионы в бесконечные цепочки вдоль оси с. Сl1…H6' 2.934(2) Å, Cl1–C6'–H6' 154.5(4)°. По данным [10, 11, 13, 16–17], аналогичные межмолекулярные связи возникают в структурах водород-бис(пиридин-N-оксид)тетра-хлороаурата(III), водород-бис(3-метилпиридин-N-оксид)тетрахлоро-аурата(III), водород-бис(2-нонилпиридин-1-оксида)тетрахлораурата(III), водородбис(2-метилпиридин-N-оксид)тетрахлороаурата(III) и водород-бис(2,6-диметил-пиридин-N-оксид)тетрахлороаурата (III). Расстояния Cl–H варьируют в достаточно широком диапазоне от 2.683 до 2.942 Å.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Albini A., Pietra S.* Heterocyclic N-oxides. Boca Raton; Arbor Ann; Boston: CRC Press, 1991. 312 p.
- 2. Андреев В.П., Рыжаков А.В., Теканова С.В. // Химия гетероцикл. соединений. 1995. № 4. С. 518.

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

- Werner P.E., Eriksson L., Westadhl M. // J. Appl. Cryst. 1985. V. 18. P. 367.
- 4. de Wolff P.M. // J. Appl. Cryst. 1968. V. 1. P. 108.
- 5. *Smith G.S., Snyder R.L.* // J. Appl. Cryst. 1979. V. 12. P. 60.
- 6. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- Zlokazov V.B., Chernyshev V.V. // J. Appl. Cryst. 1992.
 V. 25. P. 447.
- 8. Järvinen M. // J. Appl. Cryst. 1993. V. 26. P. 525.
- Speakman J.C., Muir K.W. // Croat. Chem. Acta. 1982. V. 55. P. 233.
- 10. *Hussain M.S., Schlemper E.O.* // J. Chem. Soc., Dalton Trans. 1982. P. 751.
- 11. Hussain M.S., al-Hamoud S.A.A. // J. Chem. Soc., Dalton Trans. 1985. P. 749.

- 12. Hussain M.S. // Polyhedron. 1996. V. 15. P. 645.
- Drew M.G.B., Glaves L.R., Hudson M.J. // J. Chem. Soc., Dalton Trans. 1985. P. 771.
- Wasicki J., Jaskolski M., Pajak Z. et al. // J. Mol. Struct. 1999. V. 476. P.81.
- 15. Cherkasova T.G., Mezentsev K.V. // Coord. Chem. (Russ.). 2002. V. 28. P. 510.
- 16. Sakhawathussain M., al-Hamoud S.A.A. // Inorg. Chem. Acta. 1984. V. 82. P. 111.
- 17. Hussain M.S., al-Hamoud S.A.A. // J. Crystallogr. Spectrosc. Res. 1986. V. 16. P. 647.
- Sanmartin J., Bermejo M.R., Fondo M. et al. // J. Coord. Chem. 1999. V. 48. P. 97.
- 19. Jaskolski M., Gdaniec M., Kosturkiewicz Z., Szafran M. // Pol. J. Chem. 1978. V. 53. P. 2399.