КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 2, с. 234–239

= СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ =

УДК 548.737

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА *n*-ГЕПТИЛОКСИФЕНИЛОВОГО ЭФИРА *n*-ГЕКСИЛОКСИБЕНЗОЙНОЙ КИСЛОТЫ И *n*-БУТИЛОКСИФЕНИЛОВОГО ЭФИРА *n*-ГЕПТИЛОКСИБЕНЗОЙНОЙ КИСЛОТЫ. ДИЗАЙН МЕЗОФАЗЫ

© 2013 г. Л. Г. Кузьмина, М. А. Гунина, А. В. Чураков, С. М. Пестов*

Институт общей и неорганической химии РАН, Москва E-mail: kuzmina@igic.ras.ru * Московский государственный университет тонких химических технологий Поступила в редакцию 05.04.2012 г.

Проведено рентгеноструктурное исследование двух ароматических сложных эфиров – C_6H_{13} –O– C_6H_4 –C(O)O–C $_6H_4$ –O–C $_7H_{15}$ (1) и C $_7H_{15}$ –O–C $_6H_4$ –C(O)O–C $_6H_4$ –O–C $_4H_9$ (2), относящихся к классу нематических жидкокристаллических соединений. Соединение 1 кристаллизуется в двух модификациях – моноклинной (1-м) и триклинной (1-тр). В кристаллической упаковке 1 и 2 наблюдается разделение на чередующиеся рыхлые алифатические и плотные ароматические области. Ароматические области в 1-м и 2 объединены в цепи за счет водородных связей с участием карбонильного атома кислорода сложноэфирной группы и фрагмента С–Н бензольного кольца, но в 1-м эти водородные связи существенно слабее, чем в 2. В 1-м существуют π -стэкинг-взаимодействия, объединяющие молекулы в центросимметричные димеры с межплоскостным расстоянием 3.45 Å. В 1-тр найден паркетный тип упаковки ароматических фрагментов, благоприятный для двумерной системы направленных взаимодействий С–Н···π.

DOI: 10.7868/S0023476113020148

ВВЕДЕНИЕ

Ароматические сложные эфиры, содержащие алкильный или алкилокси-заместитель в положениях 4 и 4' бензольных колец, являются типичными представителями жидкокристаллических (**ЖК**) соединений:

	O	I, $R^1 = OAlk$, $R^2 = OAlk$
$R^1 \longrightarrow$	— (= II, $R^1 = OAlk$, $R^2 = Alk$
\ <u> </u> /	ò{	R^2 III, $R^1 = Alk$, $R^2 = OAlk$
	N	$IV. R^1 = Alk. R^2 = Alk$

Наиболее часто они образуют нематическую фазу, однако известны и более сложные схемы фазовых превращений. Ранее было установлено, что тип мезофазы и характер фазовых переходов в ней в значительной мере определяется структурой предшествующего кристалла, т.е. видом его кристаллической упаковки: наличием систем слабых направленных межмолекулярных взаимодействий, их числом, а также соотношением энергий слабых взаимодействий [1-7]. Кристаллическая упаковка структурно родственных соединений существенно зависит от формы молекул, которая в рядах I-IV определяется электронными эффектами в них. К числу эффектов относится сопряжение между π-системами бензольных колец и неподеленными электронными парами атомов кислорода OAlk-заместителей в положении 4 и/или 4'. Этот эффект приводит к

тому, что плоскость заместителя OAlk, имеющего, как правило, конформацию плоского зигзага, образует малый двугранный угол (не более $\sim 20^{\circ}$) с плоскостью соответствующего бензольного кольца. В случае, когда заместитель бензольного кольца R = Alk, ничто в самой молекуле не ограничивает взаимной ориентации плоскостей бензольного кольца и плоского зигзага заместителя, которая определяется условиями кристаллической упаковки. В связи с наличием или отсутствием этого эффекта форма молекул в рядах I-IV должна различаться, поэтому различными должны быть и мотивы кристаллических упаковок в них. В настоящей работе с целью установления корреляций между кристаллической структурой и мезогенными характеристиками соединений проведено рентгеноструктурное исследование двух представителей группы соединений I: C₆H₁₃-O-C₆H₄-C(O)O- $C_6H_4-O-C_7H_{15}$ (1) и $C_7H_{15}^{-}-O-C_6H_4-C(O)O-C_6H_4-O-C_4H_9$ (2). Эти соединения образуют только нематическую фазу с температурами фазовых переходов кристалл-нематик-изотропная жидкость 55 и 88 и 68 и 86°С соответственно [8].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы 1 и 2 выращивались из различных смесей органических растворителей — этанола, *н*-гексана, диэтилового эфира, ацетона, ацетонит-

Структура	1-м	1-тр	2	
Сингония, пр. гр., Z	Моноклинная, C2/c, 8	Триклинная, <i>Р</i> 1, 4	Моноклинная, <i>P</i> 2 ₁ / <i>c</i> , 4	
<i>a</i> , <i>b</i> , <i>c</i> , Å	19.5422(6), 5.5455(2), 43.3471(2)	7.4045(6), 12.4962(9), 26.282(2)	20.462(2), 5.4167(6), 21.058(2)	
α, β, γ, град	90, 90.38(10), 90	99.991(4), 95.616(4), 95.801(4)	90, 113.398(2), 90	
V, Å ³	4697.5(3)	2366.1(3)	2142.0(4)	
D_x , г/см ³	1.167	1.158	1.192	
Излучение; λ, Å	$MoK_{lpha}, 0.71073$			
μ, см ⁻¹	0.077	0.076	0.080	
Т, К	120(2)	120(2)	123(2)	
Размер образца, мм	$0.36 \times 0.24 \times 0.18$	$0.36 \times 0.08 \times 0.06$	$0.22 \times 0.18 \times 0.05$	
Дифрактометр	Bruker SMART-APEX-2			
Тип сканирования	ω			
θ _{max} , град	30.00			
Пределы h, k, l	$\begin{array}{c} -27 \leq h \leq 23, -7 \leq k \leq 7, \\ -60 \leq l \leq 58 \end{array}$	$-9 \le h \le 9, -16 \le k \le 16, \\ -32 \le l \le 34$	$\begin{array}{c} -28 \leq h \leq 28, -6 \leq k \leq 7, \\ -29 \leq l \leq 29 \end{array}$	
Число отражений: измеренных/независимых $(N_1), R_{int}/c I > 2\sigma(I) (N_2)$	16522/6478, 0.0407/1765	16437/11164, 0.0841/4005	20749/6256, 0.0616/3555	
Метод уточнения	МНК по <i>F</i> ²			
Число параметров	415	542	253	
R_1/wR_2 по N_2	0.1024/0.1024	0.2598/0.2200	0.1173/0.1516	
R_1/wR_2 по N_1	0.0597/0.1664	0.1005/0.1765	0.0533/0.1275	
S	1.007	0.914	0.945	
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.470/0.563	-0.495/0.675	-0.289/0.302	
Программы	SAINT [9], SHELXTL-Plus [10]			

Кристаллографические характеристики, данные эксперимента и уточнения структур $C_{26}H_{36}O_4$ (1-м), $C_{26}H_{36}O_4$ (1-тр) и $C_{24}H_{32}O_4$ (2)

рила. Независимо от вида растворителя для 2 получена только одна кристаллическая модификация, а 1 кристаллизуется в двух модификациях – C2/c (1-м) и $P\overline{1}$ (1-тр). Кристаллографические па-

раметры, характеристики рентгеноструктурного эксперимента и уточнения структуры приведены в таблице.

Структуры расшифрованы прямым методом и уточнены в анизотропном приближении для неводородных атомов. Позиции атомов водорода рассчитаны геометрически и включены в окончательное уточнение структуры по модели "наездника" в **1-тр** и **2** и в изотропном приближении в **1-м**.

Экспериментальные данные депонированы в Кембриджском банке структурных данных под номерами CCDC 868342 (1-м), 868343 (1-тр) и 868344 (2).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Молекулярная структура. Строение молекул **1-м**, **1-тр** и **2** показано на рис. 1. Кристаллы **1-м** и **2** со-

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

держат одну независимую молекулу, а **1-тр** – две. В молекулах **1-м**, **1-тр** оба алкилокси-фрагмента представляют собой плоский зигзаг, а в молекуле **2** только один, более длинный, заместитель имеет такую конформацию. Более короткий бутилокси-заместитель имеет иную геометрию. Торсионные углы C10–C11–O3–C14, O3–C14– C15–C16 и C14–C15–C16–C17 соответственно равны -2.6° , -65.7° и 178.6°. Таким образом, эта цепь имеет *син-син-анти*-конформацию, т.е. бутилокси-фрагмент О3...C17 неплоский. Неплоская конформация алкильной цепи наблюдается в других молекулах, в которых эта цепь не слишком длинная [3].

В молекуле 1-м можно выделить четыре плоских фрагмента: бензольное кольцо C2...C7 со сложноэфирной группой C₆H₄–C(O)O– (плоскость *I*), бензольное кольцо C8...C13 (плоскость *2*), OAlk-заместитель кольца C14...C19 (плоскость *3*) и OAlk-заместитель кольца C20...C26 (плоскость 4). Двугранные углы между плоскостями 1-2, 1-3 и 2-4 равны 59.0°, 163.1° и 7.2°. В независимых молекулах **1-тр** эти двугранные углы

Рис. 1. Строение молекул в кристаллах **1-м** (а), **1-тр** (б) и **2** (в); параметры анизотропных атомных смещений приведены на уровне вероятности 50%.

равны 65.1°, 167.4°, 13.6° и 66.3°, 171.8°, 8.9° соответственно.

В молекуле **2** аналогичные двугранные углы 1-2и 1-3 равны 67.1° и 9.0°, а аналогом угла 2-4 является приведенный ранее торсионный угол C10-C11-O3-C14 (-2.6°).

Таким образом, в обеих молекулах наблюдается непланарность центрального фрагмента. Такая геометрия характерна для ароматических сложных эфиров. Согласно данным Кембриджской базы структурных данных [11], максимум распределения двугранных углов между плоскостями бензольных колец в ароматических сложных эфирах находится в интервале 60°–90°, а минимальное значение близко к 40°. Это означает отсутствие электронных эффектов сопряжения между бензольным кольцом С7...С13 и сложноэфирной группой с бензольным кольцом С2...С7, а потому взаимный поворот этих фрагментов молекул задается эффектами кристаллической упаковки.

В молекуле 1 алкилокси-группы почти копланарны соответствующим бензольным кольцам. В молекуле 2 более длинная цепь почти копланарна соответствующему бензольному кольцу, а в более короткой цепи торсионный угол C10–C11–O3–C14 (-2.6°) указывает на планарность этого фрагмента. Это свидетельствует о возможности сопряжения между орбиталью неподеленной электронной пары каждого из атомов кислорода с π^* -системой соответствующего бензольного кольца.

Кристаллическая упаковка. Общий вид кристаллических упаковок **1-м**, **1-тр** и **2** показан на рис. 2. Во всех этих упаковках наблюдается разделение кристалла на рыхлые алифатические и плотно упакованные ароматические области, что характерно для кристаллических упаковок ЖКсоединений [1–7].

Рассмотрим строение ароматических областей в кристаллах этих соединений. Соединения **1** и **2** образуют только нематическую фазу. Это должно означать наличие в мезофазе только одного типа слабых направленных взаимодействий. В кристаллической упаковке **2** имеются водородные связи О2…H13–C13 (рис. 3).

Расстояние О2···H13 в равно 2.37 Å, а угол при атоме H13 равен 168°. При этом угол C1=O2···H13

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

Рис. 2. Общий вид кристаллической упаковки 1-м (а), 1-тр (б) и 2 (в).

составляет 127°, что указывает на ориентированность sp^2 -гибридизованной орбитали неподеленной электронной пары атома кислорода на атом H13. Эти геометрические параметры соответствуют водородной связи средней силы. Наличие в бензольном кольце С8...С13 двух акцепторных заместителей делает атомы водорода в нем достаточно "кислыми" для того, чтобы участвовать в образовании водородных связей, объединяющих трансляционно связанные молекулы в бесконечные цепи, параллельные оси *b* кристалла. Иных слабых взаимодействий в кристаллической упаковке **2** не обнаружено.

Таким образом, в мезофазе, образующейся из **2**, присутствует только один структуроформирующий элемент, который определяет ее вид, а именно — нематик. Граф мезофазы **2** показан на схеме (прямоугольники — бензольные кольца, зигзаг —

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

алифатическая цепь, ломаные линии – сложноэфирные группы, штриховые линии – водородные связи).

Аналогичная система водородных связей найдена в структуре **1-м**. Однако в ней соответственное расстояние H13···O1 равно 2.54 Å, угол при атоме водорода 161° и угол C1–O1···H13 145° от-

Рис. 2. Окончание.

вечают заметно более слабому взаимодействию, чем в 2.

В кристалле **1-м** обнаруживается еще одно направленное взаимодействие. Это π -стэкинг-взаимодействие между бензольными кольцами типа C2...C7 в парах центросимметрично связанных молекул (рис. 4а). Межплоскостное расстояние в парах равно 3.45 Å, что соответствует довольно сильному π -стэкинг-взаимодействию.

Таким образом, в кристалле 1-м имеются два структуроформирующих элемента, и для него

следовало бы ожидать формирования смектической мезофазы. Но поскольку данное соединение является нематиком, то это может означать, что при его плавлении происходит разрушение одного из взаимодействий. Логично предположить, что в данном случае разрушается слабая водородная связь.

Альтернативное объяснение может дать анализ кристаллической упаковки триклинной модификации, показывает, что в ней присутствует паркетная упаковка ароматических фрагментов

Рис. 3. Цепь молекул 2, объединенных водородными связями.

Рис. 4. Фрагмент кристаллической упаковки 1-м (а) и 1-тр (б).

(рис. 4б), благоприятная для формирования двумерной сетки молекул, объединенных взаимодействиями С–Н[…]π.

Других слабых направленных взаимодействий здесь не обнаруживается. Такая упаковка может отвечать только нематической фазе. Поэтому не исключено, что термограммы для 1 были сняты именно для триклинной модификации, а более симметричная моноклинная кристаллическая модификация возникает при медленном выращивании кристаллов из раствора.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 10-03-00086а).

СПИСОК ЛИТЕРАТУРЫ

1. *Кузьмина Л.Г., Кучерепа Н.С., Пестов С.М. и др. //* Кристаллография. 2009. Т. 54. № 5 С. 908.

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

- 2. Кузьмина Л.Г., Кучерепа Н.С., Родникова М.Н. // Кристаллография. 2008. Т. 53. № 6. С. 1079.
- 3. *Кузьмина Л.Г., Кучерепа Н.С., Родникова М.Н. //* Кристаллография. 2008. Т. 53. № 6. С. 1072.
- 4. Кузьмина Л.Г., Кучерепа Н.С., Сырбу С.А. // Кристаллография. 2010. Т. 55. № 1. С. 31.
- 5. *Кузьмина Л.Г., Кучерепа Н.С. //* Кристаллография. 2011. Т. 56. № 2. С. 267.
- 6. Константинов И.И., Чураков А.В., Кузьмина Л.Г. // Кристаллография. 2013. Т. 58. № 1. С. 89.
- 7. Носкова О.В., Чураков А.В., Кузьмина Л.Г и др. // Кристаллография. 2003. Т. 48. № 4. С. 687.
- Blair T.T., Neubert M.E., Tsai M., Tsai C. // J. Phys. Chem. Ref. Data. 1991. V. 20. № 1. P. 189
- 9. SAINT. Version 6.02A. Bruker AXS Inc. Madison, Wisconsin, USA, 2001.
- 10. SHELXTL-Plus. Version 5.10. Bruker AXS Inc. Madison, Wisconsin, USA, 2001.
- 11. Allen F.H. // Acta Cryst. B. 2002. V. 58. P. 380.