КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 2, с. 228–233

= СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ =

УДК 548.54

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА 3-АМИНО-4-ГИДРОКСИБЕНЗОСУЛЬФАМИДА И ЕГО ХЛОРГИДРАТА. КВАНТОВО-ХИМИЧЕСКОЕ ИЗУЧЕНИЕ ИХ ТАУТОМЕРИИ

© 2013 г. О. В. Ковальчукова, С. Б. Страшнова, Е. П. Ромашкина, П. В. Страшнов, Б. Е. Зайцев, В. С. Сергиенко*

Российский университет дружбы народов, Москва E-mail: okovalchukova@mail.ru *Институт общей и неорганической химии РАН, Москва Поступила в редакцию 27.02.2012 г.

Выделены в кристаллическом состоянии 3-амино-4-гидроксибензосульфамид и его хлоргидрат. Методом рентгеноструктурного анализа установлена их кристаллическая и молекулярная структура. В рамках приближения теории функционала плотности (B3LYP/aug-cc-pVDZ) изучено равновесие между нейтральными таутомерными формами молекулы 3-амино-4-гидроксибензосульфамида. Спектрофотометрически определены константы кислотно-основного равновесия 3-амино-4-гидроксибензосульфамида.

DOI: 10.7868/S0023476113020124

ВВЕДЕНИЕ

Сульфаниламиды известны как эффективные химиотерапевтические агенты для предотвращения и лечения бактериальных инфекций человека [1]. Их действие основано на структурном сходстве с *п*-аминобензойной кислотой и на том, что они являются ее антиметаболитами. Присутствующие в бактериальной среде сульфаниламиды включаются в процесс биосинтеза фолиевой кислоты, конкурируя с *п*-аминобензойной кислотой, и на определенной стадии блокируют последнюю, что ведет к гибели бактерий. Известны многочисленные исследования металлокомплексов сульфаниламидов [2-8]. Несмотря на это, вопросам их электронного строения и таутомерии посвящено небольшое число работ [9–11]. Введение в состав аминов кислотных фрагментов (сульфо-, карбоксильных или гидроксильных групп) может приводить к образованию цвиттер-ионной формы за счет перехода протона от кислотного к основному центру [12].

В настоящей работе представлены результаты рентгеноструктурного анализа (PCA) 3-амино-4гидроксибензосульфамида и его хлоргидрата, а также квантово-химического расчета стабильности таутомерных форм молекул. Методом электронной спектроскопии (ЭСП) определены константы кислотности и основности соединения 3амино-4-гидроксибензосульфамида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Монокристаллы 3-амино-4-гидроксибензосульфамида (I) и его хлоргидрата (II) выделены перекристаллизацией из нейтрального и сильнокислого этанольных растворов соответственно.

Рентгеноструктурный анализ. Кристаллографические характеристики, данные эксперимента и уточнения структуры I (C₆H₈N₂O₃S) и II (C₆H₉ClN₂O₃S) приведены в табл. 1. Структуры I и II определены комбинацией прямых методов и синтезов Фурье. Все атомы водорода найдены из разностных фурье-синтезов. Структуры уточнены полноматричным анизотропно-изотропным (атомы водорода) МНК. Отсутствие центра инверсии в структуре I проверено программой PLATON [14]. Результаты PCA структур I и II депонированы в Кембриджском банке структурных данных, ССDС № 867459 и 867458.

Моделирование электронного и пространственного строения изолированных молекул и их таутомерных цвиттер-ионных форм выполнено в рамках приближения теории функционала плотности (B3LYP/aug-cc-pVDZ) с полной оптимизацией всех геометрических параметров. Влияние растворителя учитывали методом **PCM** (*Polarizable Continuum Model*). Расчеты проводили средствами программного комплекса Firefly 7.1.G [15] на суперкомпьютере НИВЦ МГУ "Чебышев".

Электронные спектры поглощения этанольных растворов I при различных значениях pH записывали на однолучевом спектрофотометре Cary-50 в интервале длин волн 200–750 нм. Кон-

Соединение	I	П		
Сингония, пр. гр., Z	Ромбическая, <i>Pna</i> 2 ₁ , 4	Моноклинная, P2 ₁ / <i>n</i> , 4		
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.4434(4), 15.5646(9), 6.7602	7.738(2), 12.074(5), 9.797(3)		
β, град	90	99.99(2)		
<i>V</i> , Å ³	783.19(8)	901.4(5)		
D_x , Γ/cm^3	1.596	1.655		
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$	CuK_{α} ; 1.54184		
μ, мм ⁻¹	0.379	5.774		
<i>Т</i> , К	173(2)	293(2)		
Размер образца, мм	$0.37 \times 0.25 \times 0.2$	0.2 imes 0.15 imes 0.1		
Дифрактометр	Bruker APEX2	Enraf-Nonius CAD-4		
Тип сканирования	φ, ωθ	ω/2θ		
θ _{max} , град	29.97	64.92		
Пределы h, k, l	$-5 \le h \le 10, -21 \le k \le 20, -9 \le l \le 6$	$-9 \le h \le 6, -14 \le k \le 0, -6 \le l \le 11$		
Число отражений: измеренных/не- зависимых (N_1), R_{int} /с $I > 2\sigma(I)$ (N_2)	3540/1846, 0.0119/1815	1593/1530, 0.0525/1496		
Метод уточнения	МНК по <i>F</i> ²	МНК по F^2		
Число параметров	141	154		
<i>R</i> 1, <i>wR</i> 2 по <i>N</i> ₁	0.0250/0.0674	0.0496/0.1277		
<i>R</i> 1, <i>wR</i> 2 по <i>N</i> ₂	0.0246/0.0670	0.0490/0.1268		
S	1.004	1.044		
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.229/0.301 -0.921/0.507			
Программы	SHELXS97, SHELXL97 [13]			

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структур I ($C_6H_8N_2O_3S$) и II ($C_6H_9CIN_2O_3S$)

станты протонирования I определяли спектрофотометрически по методике [16].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структурные единицы кристалла I – молекулы 3-амино-4-гидроксибензосульфамида (рис. 1),

Рис. 1. Строение молекулы 3-амино-4-гидроксибен-зосульфамида.

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

II — катионы протонированных по анилиновому атому азота молекул I и хлорид-анионы (рис. 2). Длины связей и величины валентных углов в I, II типичны для подобных соединений [17]. В структуре I присутствуют пять потенциально активных атомов водорода (H1-5), участвующих в образовании водородных связей (**BC**) (табл. 2). В струк-

Рис. 2. Строение катиона хлоргидрата 3-амино-4-гидроксибензосульфамида.

$D-\mathrm{H}\cdots A$	d(D-H), Å	$d(\mathbf{H}\cdots A), \mathbf{\mathring{A}}$	$d(D\cdots A), \text{\AA}$	Угол (DHA), град	
O3-H1…O2#1	0.85(4)	1.87(4)	2.6884(17)	161(3)	
N1-H2···N2#2	0.81(2)	2.14(2)	2.9461(19)	177(3)	
N1-H3····O1#3	0.85(3)	2.14(3)	2.9944(18)	176(2)	
N2-H4…O1#2	0.83(3)	2.30(3)	3.1232(19)	173(3)	
N2-H5N1#4	0.87(3)	2.61(3)	3.446(2)	160.4(19)	
N2-H5O3	0.87(3)	2.25(3)	2.652(2)	108.0(18)	
#1: x + 1/2, -y + 1/2, z - 1; #2: x - 1/2, -y + 1/2, z; #3: -x + 1, -y + 1, z - 1/2; #4: -x + 1/2, y - 1/2, z - 1/2.					

Таблица 2. Геометрические параметры водородных связей в структуре I, C₆H₈N₂O₃S

Таблица 3. Геометрические параметры водородных связей в структуре II, $C_6H_9ClN_2O_3S$

$D-\mathrm{H}\cdots A$	d(D-H), Å	$d(\mathrm{H}\cdots A),\mathrm{\AA}$	$d(D\cdots A), \text{\AA}$	Угол (<i>D</i> HA), град
N1-H1Cl1#1	0.94(4)	2.41(4)	3.323(3)	165(3)
N1-H2···Cl1	0.89(4)	2.48(5)	3.358(3)	167(4)
N2-H3····Cl1#2	0.74(5)	2.51(5)	3.194(3)	154(4)
N2-H4O2#3	0.90(5)	1.97(5)	2.846(3)	166(4)
N2-H5Cl1#4	0.86(5)	2.49(4)	3.258(3)	149(3)
O3-H6…C11#5	0.69(4)	2.40(4)	3.035(3)	156(4)

#1: x + 1/2, -y + 1/2, z + 1/2; #2: -x + 1, -y, -z + 1; #3: -x + 1/2, y - 1/2, -z + 3/2; #4: x, y, z + 1; #5: -x + 1/2, y - 1/2, -z + 1/2.

туре II все шесть атомов водорода при атомах кислорода и азота участвуют в образовании ВС (табл. 3). В пяти из шести ВС акцептором является атом хлора. Совместное действие ВС объединяет структурные единицы в кристалле II в трехмерный каркас (рис. 3).

Следует отметить различное кристаллохимическое поведение атомов N2 в структурах I и II.

Рис. 3. Фрагмент структуры хлоргидрата 3-амино-4-гидроксибензосульфамида.

Рис. 4. Электронные спектры поглощения 3-амино-4-гидроксибензосульфамида (10⁻⁵ моль/л, этанол) при титровании HCl (10⁻¹ моль/л) (а) и NaOH (pH 7.95–10.81) (б); стрелками показано направление изменения спектра при титровании.

В обеих структурах атом N2 участвует в трех BC. Однако если в кристалле I в двух BC атом азота – донор водорода, в третьей – акцептор, то в кристалле протонированной формы II он только донор водорода. *орто*-Расположение гидроксо- и амино-групп позволяет образовываться внутримолекулярной BC N–H···O, однако в структуре I такая BC присутствует, а в хлоргидрате II ее нет – величины двугранных углов C4C3N2H (H – атом водорода, максимально приближенный к атому O3) составляют -30° и -49° для структур I и II соот-

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

ветственно Такое различие является косвенным подтверждением слабости подобных ВС.

Найденное строение нейтральной и протонированной форм соединения I позволило провести отнесение полос в ЭСП. Этанольный раствор соединения I характеризуется тремя полосами поглощения: $\lambda_{max1} = 216$, $\lambda_{max2} = 250$ и $\lambda_{max3} = 300$ нм. Известно, что взаимодействие неподеленной пары электронов с протоном в процессе протонирования должно приводить к уменьшению интенсивности полосы соответствующего элек-

Форма таутомера	Вид молекулы	Полная энергия, а.е.	Относит. энергия, ккал/моль	
А	H = H = H = H = H = H = H = H = H = H =	-966.852	7.68	
В	H = O = H = C = H $H = O = C = C = C$ $H = O = C = C$ $H = H$ $H = H$	-966.865	0	
С	H H C C H C O O C O O C N H H	-966.849	9.81	

Таблица 4. Геометрическая оптимизация и относительная стабильность нейтральных таутомерных форм молекулы І

тронного перехода. Согласно результатам РСА, протонирование молекулы I осуществляется по атому азота аминогруппы. В ЭСП I с уменьшением рН наблюдается значительное падение интенсивности и батохромный сдвиг полосы $\lambda_{maxl} = 216$ нм в область 235 нм (рис. 4а). Исходя из этого, можно утверждать, что электронный переход, определяемый анилиновой аминогруппой, лежит в этой области. Наличие в спектре изобестических точек свидетельствует о равновесном процессе протонирования.

Титрование I щелочами приводит к батохромному сдвигу полос поглощения λ_{max2} и λ_{max3} в области 273 и 305 нм соответственно с одновременным увеличением их интенсивности и вторичному появлению изобестических точек (рис. 46).

По результатам спектрофотометрического титрования рассчитаны константы кислотности и основности I: $pK_b = 2.06 \pm 0.28$, $pK_a = 9.22 \pm 0.51$.

Для молекулы I теоретически возможно существование трех таутомерных нейтральных форм: основной (A) и двух цвиттер-ионных, образованных переносом гидроксильного атома водорода к соседней аминогруппе (B) или к аминогруппе сульфаниламида (C) (табл. 4). Квантово-химическое моделирование в газовой фазе показало возможность существования только двух форм (A и C), поскольку цвиттер-ионная форма B не имеет соответствующего минимума на поверхности потенциальной энергии (ППЭ) и спонтанно превращается в А. Учет водного окружения молекул методом РСМ [18] выявляет минимумы на ППЭ, соответствующие трем возможным нейтральным таутомерным формам I. Согласно вычисленным значениям полной энергии, форма В в водном растворе на 7.7 ккал/моль устойчивее, чем А, и на 9.8 ккал/моль, чем С. Неустойчивость формы С объясняется удлинением связи S-N от 1.70 Å (форма A) до 2.10 Å, что указывает на ее преимущественно ионный характер, и укорочением связи S–C от 1.77 Å (формы *A* и *B*) до 1.69 Å. Суммарный заряд (+0.347) NH₃-группы сульфаниламида в форме С относительно мал и близок к нейтральной форме аммиака, что предполагает дальнейший гидролиз формы С в водном растворе.

Существование молекулы в растворе преимущественно в формах *A* и *B* подтверждается также расчетами ЭСП методом TD-DFT. Моделирование ЭСП нейтральной молекулы I показало, что экспериментальный спектр поглощения (216, 250, 300 нм) в данном приближении близок к рассчитанным спектрам форм *A* ($\lambda(f) = 216(0.33)$, 244(0.05), 273(007) нм) и *B* ($\lambda(f) = 214(0.01)$, 255(0.32), 286(0.06) нм).

Авторы выражают благодарность А.Б. Илюхину за участие в рентгеноструктурном исследовании соединений **I**, **II**.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 10-03-00003-а).

СПИСОК ЛИТЕРАТУРЫ

- Maren T.H. // Ann. Rev. Pharmacol. Toxicol. 1976. V. 16. P. 309.
- BlascoV., Perello L., Latorre J. et al. // J. Inorg. Biochem. 1996. V. 61. P. 143.
- Ferrer S., Borras J., Garcia-Espana E. // J. Inorg. Biochem. 1990. V. 39. P. 97.
- Supuran C.T., Mincoine F., Scozzafava A. et al. // Eur. J. Med. Chem. 1998. V. 33. P. 247.
- Butt N. // Metal Ions in Biol. Systems / Ed. Sigel. Marcel Dekker; New York, V. 16, 1983.
- Butt N., Uitterdijk J.D., Klasen H.B. // Transit. Metal. Chem. 1979. V. 4. P. 285.
- Narang K.K., Gupta J.K. // Transit. Metal. Chem. 1977. V. 2. P. 83.

- Sharaby C.M. // Spectrochim. Acta. A. 2007. V. 66. P. 1271.
- 9. Varghese H.T., Panicer C.Y., Philip D. // Spectrochim. Acta. A. 2006. V. 65. P. 155.
- 10. Rastell A.I., Debenede P.G., Albasins A., Vampa J. // Farm. Ed. Sci. 1974. V. 29. P. 654.
- Narang K.K., Gupta J.K. // Indian J. Chem. 1975. V. 13. P. 705.
- 12. *Liu J.-L., Du C.-J., Wang L.-S.* // Acta Cryst. E. 2010. V. 66. P. 03281.
- 13. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 14. Spek A.L. // J. Appl. Cryst. 2003. V. 36. P. 7.
- 15. Granovsky A.A. Firefly version 7.1.G, http://classic.chem.msu.su/gran/firefly/index.html
- Бек Мю, Надьпал И. Исследование комплексообразования новейшими методами. М.: Мир, 1989. 411 с.
- 17. Orpen A.G., Brammer L., Allen F.N. et al. // Intern. Table for Crystallography. 1992. V. C.
- Miertus S., Scrocco E., Tomasi J. // Chem. Phys. 1981. V. 55. P. 117.