УДК 548.736

СОЕДИНЕНИЙ

СТРУКТУРА ОРГАНИЧЕСКИХ

СИНТЕЗ, СВОЙСТВА И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПОЛИГИДРАТА 1-ОКСИЭТИЛИДЕНДИФОСФОНАТОГИДРОКСОГЕРМАНАТА(IV) БАРИЯ Ва₃[Ge(µ-OH)(µ-O*edph*)]₆ · 25H₂O

© 2013 г. В. С. Сергиенко, И. И. Сейфуллина*, Е. Э. Марцинко*, А. Б. Илюхин

Институт общей и неорганической химии, Москва E-mail: sergienko@igic.ras.ru * Одесский национальный университет, Украина Поступила в редакцию 27.09.2011 г.

Проведен синтез и рентгеноструктурный анализ бариевой соли 1-оксиэтилидендифосфонатогидроксогерманиевой кислоты Ba₃[Ge(μ -OH)(μ -Oedph)]₆ · 25H₂O (I) (H₄Oedph – 1-оксиэтилидендифосфоновая кислота). Комплекс охарактеризован методами элементного анализа, термогравиметрии и ИК-спектроскопии. Структурные единицы кристалла I – шестиядерные циклические комплексные анионы [Ge(μ -OH)(μ -Oedph)]₆⁶⁻, катионы Ba²⁺ и кристаллизационные молекулы воды.

DOI: 10.7868/S0023476113010141

Ранее были получены и структурно охарактеризованы координационные соединения германия(IV) различного типа с наиболее изученным представителем, нашедшим применение в различных областях науки, техники, сельского хозяйства и медицины, фосфоновых комплексонов - 1-оксиэтилидендифосфоновой кислотой H2O3PC(OH)(CH3)PO3H2 $(\mathbf{H_4Oedph}): (C_6H_6NO_2)_6[Ge(\mu-OH)(\mu-Oedph)]_6$ $\cdot 12H_2O$ (II) [1], $Mg_2[Ge_6(\mu-OH)_6(\mu-Oedph)_4(\mu-O$ HOedph)₂] · 40H₂O (III) [1] и Zn₄[Ge₆(µ-OH)₄(µ- $O_{2}(\mu$ -Oedph)₆] · 38H₂O (**IV**) [2]. По методике получения комплекса III [1] синтезированы 1-оксиэтилидендифосфонатогидроксогерманаты кальция и бария [3]. Совокупностью данных элементного анализа, термогравиметрии, ИК-спектроскопии и их сравнения с таковыми для комплекса III установлено, что с кальцием и барием при рН 3-4 также образуются кислые соли $M_2H_2[Ge(\mu -$ OH)(μ -Oedph)]₆ · nH₂O, где M = Ca, n = 26; Ba, *n* = 18.

Цель настоящего исследования — подобрать условия (варьированием концентрации и pH раствора), синтезировать средний 1-оксиэтилидендифосфонатогидроксогерманат(IV) бария с полностью депротонированной координированной формой Oedph^{4–} и установить его структуру.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. 300 мл водного раствора, содержащего 4.48 г (0.02 моль) 1-оксиэтилидендифосфоновой кислоты $C_2H_8O_7P_2 \cdot H_2O$ "ч." и 2.08 г (0.02 моль) GeO₂ "ос.ч.", упаривали до 50 мл, охлаждали до комнатной температуры, а затем при постоянном помешивании добавляли карбонат бария до pH = = 5 (~0.01 моль). Раствор фильтровали. Осадок комплекса I, содержащий пригодные для PCA монокристаллы, выпадал из фильтрата при добавлении 30 мл ацетонитрила. Его отделяли на фильтре Шотта, промывали смесью воды с ацетонитрилом 1 : 1 и сушили до постоянной массы при 20°C.

Элементный анализ. Содержание германия, фосфора и бария определяли методом атомноэмиссионной спектроскопии с индуктивно связанной плазмой на приборе Optima 2000 DV (фирма Perkin Elmer), углерода и водорода – с помощью полуавтоматического C,N,H-анализатора. Гидратный состав устанавливали с привлечением расчетов по термогравиметрической кривой.

ВаСHGeP H_2O Найдено, %15.685.453.0016.2014.0017.50Для $C_{12}H_{80}Ba_3Ge_6O_{73}P_{12}$ вычислено, %15.745.523.0616.6914.2517.24

Термогравиметрический анализ (**ТГА**) проводили на дериватографе Q-1500Д (воздушная атмосфера, интервал температур 20–1000°С, скорость нагрева 10 град/мин).

ИК-спектры поглощения (400–4000 см⁻¹) лиганда и комплекса I записывали на спектрофотометре Shimadzu FTIR-8400S.

Рентгеноструктурный анализ. Кристаллографические характеристики, данные эксперимента

и уточнения структуры приведены в табл. 1. Структура I определена комбинацией прямого метода и фурье-синтезов. Атомы бария разупорядочены по шести позициям с заселенностями 0.42, 0.35, 0.35, 0.15, 0.12, 0.11. Часть молекул воды (семь из шестнадцати) также разупорядочена. Величины заселенностей разупорядоченных позиций получены при изотропном уточнении структуры с фиксированными тепловыми параметрами разупорядоченных атомов ($U_{\mu_{30}} = 0.04 \,\text{\AA}^2$ для бария и 0.12 Å² для кислорода) и в последующих расчетах не уточнялись. Суммарная заселенность позиций атомов бария принята равной 1.5. Атомы водорода метильных групп в позициях, рассчитанных из геометрических соображений, уточнены в модели «наездника» с тепловыми параметрами, большими на 50% эквивалентных тепловых параметров связанных с ними атомов углерода. Структура уточнена в анизотропноизотропном (атомы кислорода молекул воды) приближении.

Экспериментальные данные для структуры I депонированы в Кембриджском банке структурных данных (ССDС № 846076).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Соединение I – кристаллическое вещество белого цвета с мольным соотношением Ва:Ge:лиганд = 1:2:2. В результате РСА установлено, что структурные единицы кристалла I – центросимметричные шестиядерные циклические анионы $[Ge(\mu-OH)(\mu-Oedph)]_{6}^{b-}$ (рисунок), катионы бария и молекулы воды. Атомы германия попарно объединены двумя мостиковыми лигандами - гидроксо- и оксиэтилидендифосфоновым. Каждый из трех кристаллографически неэквивалентных атомов Ge1-Ge3 координирован четырьмя атомами кислорода четырех фосфонатных групп двух лигандов Oedph⁴⁻. Их октаэдрическая координация достраивается двумя гидроксолигандами в цис-позициях друг к другу. При координации каждого атома германия лигандом Oedph⁴⁻ формируются два шестичленных хелатных цикла GeO₂P₂C (всего двенадцать). Кроме того, замыкаются шесть биметаллических восьмичленных металлоциклов Ge₂O₄P₂. В целом каждый лиганд Oedph⁴⁻ выполняет тетрадентатную трис(хелатно)-μ₂-мостиковую функцию.

Строение и геометрические параметры шестиядерного комплексного аниона в структуре I сходно с таковыми в ранее определенных структурах II–IV, а также 6{H*A*}[Ge(μ -OH)(μ -Oedph)]₆ · · 2*A* · 33H₂O (*A* – 8-гидроксихинолин) [7] и 6{H(1,10-*Phen*)}[Ge(μ -OH)(μ -Oedph)]₆ · 2(1,10-*Phen*) · 20H₂O [7]. В структурах I–IV имеют место различия в составе шестиядерных Ge₆-анионов. В **Таблица 1**. Основные кристаллографические данные и результаты уточнения структуры $Ba_3[Ge(\mu-OH)(\mu-Oedph)]_6 \cdot 25H_2O(I)$

M	2605.91	
Сингония, пр. гр., Z	Моноклинная, <i>P</i> 2 ₁ / <i>n</i> , 2	
a, b, c, Å	11.949(2), 17.908(4), 19.775(4)	
β, град	90.406(3)	
$V, Å^3$	4231.7(15)	
D_x , Γ/cm^3	2.045	
Излучение, λ, Å	Mo <i>K</i> _α , 0.71073	
μ, мм ⁻¹	3.814	
<i>Т</i> , К	173(2)	
Размер образца, мм	0.34 imes 0.21 imes 0.18	
Дифрактометр	Bruker Smart APEX2 [4]	
Тип сканирования	φиω	
Учет поглощения, T_{\min} , T_{\max}	Полуэмпирический, по эквивалентам, 0.7453, 0.6118 [5]	
$\theta_{\rm max}$, град	25	
Пределы h, k, l	$\begin{array}{c} -14 < h < 14, -21 < k < 21, \\ -23 < l < 23 \end{array}$	
Число отражений: измеренных/независимых (N_1) , $R_{int}/c I > 1.96\sigma(I) (N_2)$	33536/7462 0.0919/4593	
Метод уточнения	МНК по F^2	
Весовая схема	$\frac{1}{[\sigma^2(F_o^2) + (0.018P)^2 + 20P]}, P = (F_o^2 + 2F_o^2)/3$	
Число параметров	470	
Факторы недостоверности:		
$R1$, $wR2$ no N_2	0.0888, 0.2519	
R_1, wR_2 по N_1	0.1445, 0.2797	
S	1.483	
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}$, $\Im / Å^3$	2.402/-0.892	
Программы	SADABS [5], SHELX-97, SHELXL-97 [6]	

структуре III в отличие от I, IV имеются два типа лигандов – анионов фосфорорганической кислоты: четыре полностью депротонированных $Oedph^{4-}$ и два монопротонированных $HOedph^{3-}$; в структуре IV – два типа мостиковых лигандов OH_n^{m-} (n = 0, 1; m = 2, 1): четыре гидроксо (OH⁻) и два оксо (O²⁻). Кроме того, в каждой из структур II–IV имеет место взаимная равновероятная неупорядоченность гидроксильной и метильной групп одного из лигандов $Oedph^{4-}$.

Интервал расстояний Ge–O(Oedph) в структуре I (1.845–1.889 Å, средн. 1.873(9) Å) (табл. 2) сходен с таковым в структурах II, III и IV (средн. 1.893(3), 1.883(5) и 1.883(6) Å соответственно). Связи Ge–O(OH) в I (1.836–1.880Å, средн.

Строение комплексного аниона [Ge(µ-OH)(µ-Oedph)]₆⁶⁻ (эллипсоиды тепловых колебаний неводородных атомов даны с 50%-ной вероятностью).

1.862(9) Å) также сопоставимы по длине с аналогичными связями в II-IV (средн. 1.893(3), 1.845(4), 1.891(5) Å соответственно). Концевые связи Р–О_к в I (1.480–1.495 Å, средн. 1.490(10) Å) близки к таковым в II-IV (средн. 1.504(7), 1.493(6), 1.492(6) Å), а также в соединениях H_{4-n} Oedphⁿ⁻ (n = 0-4) с катионами щелочных металлов и аммония (средн. Р-О_к 1.495 Å) [8]). Длина мостиковых (хелатных) связей Р-О_м в структуре I (1.530–1.557 Å, средн. 1.547(10) Å) сопоставима по величине с аналогичными связями в моно-, ди-, три- и гексаядерных оксокомплексах Mo(VI), W(VI) с анионами Oedph⁴⁻ (P-O_м 1.534–1.568 Å) [9] и в структурах II-IV (1.527– 1.559 Å). Интервал длин связей Р–С в I составляет 1.802—1.840 Å (средн. 1.819(16) Å).

Атомы бария в структуре I координированы исключительно атомами кислорода молекул воды. Последние участвуют в разветвленной системе водородных связей (**BC**) (OH₂)O···O(H₂O) и O(Oedph)···O(H₂O). Существенная неупорядоченность всех катионов Ba²⁺ и части молекул воды, во-первых, понижает точность определения кристаллической структуры (высокие значения факторов недостоверности), во-вторых, делает невозможным корректное описание как способа координации (КЧ, координационный полиэдр) атомов бария, так и способа упаковки структурных единиц в кристалле I (и геометрических параметров BC).

При анализе термораспада комплекса установлено, что термическое разложение I начинается с эндотермического эффекта в интервале температур 70–170°С (максимум при 100°С), который сопровождается удалением 25 молекул воды в расчете на формульную единицу. Широкий температурный интервал этого процесса позволяет заключить, что комплекс содержит как кристаллизационную, так и координированную воду. О том, что I — кристаллогидрат, свидетельствует и полоса валентных колебаний $v(H_2O)$ в его ИК-спектре при 3461 см⁻¹, а наличие координированной воды подтверждается четкой полосой $\delta(H_2O) = 1645$ см⁻¹.

Таблица 2. Основные межатомные расстояния в структуре $Ba_3[Ge(\mu-OH)(\mu-Oedph)]_6 \cdot 25H_2O$ (I)

Связь	<i>d</i> , Å	Связь	d, Å
Ge1-O23	1.845(8)	P2-O5	1.545(10)
Ge1-024	1.866(8)	P2-C1	1.823(16)
Ge1-O4	1.870(9)	P3-O10	1.485(11)
Ge1-08	1.887(9)	P3-O8	1.547(10)
Ge1-011	1.888(9)	P3-O9	1.550(10)
Ge1-01	1.894(9)	P3-C3	1.802(15)
Ge2-O23	1.836(9)	P4-O13	1.495(10)
Ge2-O18	1.869(9)	P4-011	1.530(10)
Ge2-O22	1.869(9)	P4-O12	1.556(10)
Ge2-05	1.871(9)	P4-C3	1.840(16)
Ge2–O2	1.872(9)	P5-017	1.476(11)
Ge2-015	1.889(9)	P5-015	1.542(10)
Ge3-O22	1.859(8)	P5-O16	1.549(10)
Ge3-012*	1.860(9)	P5-C5	1.816(18)
Ge3-O24*	1.868(8)	P6-O20	1.479(11)
Ge3-09*	1.880(9)	P6-019	1.543(10)
Ge3-016	1.886(10)	P6-O18	1.547(10)
Ge3-019	1.888(9)	P6-C5	1.82(2)
P1-O3	1.480(10)	O7–C1	1.465(17)
P1-O1	1.544(10)	O14–C3	1.452(19)
P1-O2	1.557(10)	O21-C5	1.458(19)
P1-C1	1.810(15)	C1-C2	1.530(19)
P2-O6	1.495(10)	C3–C4	1.49(2)
P2O4	1.544(10)	C5-C6	1.53(2)

* Симметрические преобразования эквивалентных атомов: -x + 1, -y + 1, -z.

В ИК-спектре I обнаружены полосы валентных колебаний связи $\text{Ge-O}_{\text{фосф}}$ (591 см⁻¹) и деформационных колебаний Ge–O–H (820 см⁻¹), т.е. германий входит в состав комплекса в гидролизованной форме. Гидроксигруппа в I выполняет мостиковую функцию, о чем свидетельствует наличие в его ИК-спектре полосы деформационных колебаний мостиковой OH-группы при 1010 см⁻¹.

Обнаружение полос 1194, 1090, 1055 и 973 см⁻¹, соответствующих $v_{as}(PO_3)$ и $v_s(PO_3)$, подтверждает наличие в I только полностью депротонированных групп PO_3^{2-} .

Таким образом, удалось доказать, что направленный синтез кислого и среднего 1-оксиэтилидендифосфонатогидроксогерманата(IV) бария можно осуществить в зависимости от выбранных условий их получения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сейфуллина И.И., Марцинко Е.Э., Александров Г.Г., Сергиенко В.С. // Журн. неорган. химии. 2004. Т. 49. № 6. С. 928.
- Марцинко Е.Э., Сейфуллина И.И., Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2005. Т. 50. № 6. С. 953.
- 3. Сейфуллина И.И., Марцинко Е.Э., Ткаченко В.Н. и др. // Вісник ОНУ. Сер. Хім. 2005. Т. 10. № 8. С. 5.
- Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2007
- 5. Sheldrick G.M. SADABS. University of Göttingen, Germany, 1997.
- 6. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- Mafra L., Paz F.A.A., Fa-Nian Shi et al. // Eur. J. Inorg. Chem. 2006. P. 4741.
- 8. Сергиенко В.С. // Кристаллография. 2000. Т. 45. № 1. С. 69.
- 9. Сергиенко В.С. // Кристаллография. 1999. Т. 44. № 5. С. 939.