КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 2, с. 207–214

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.03+548.4

ПОЛУЧЕНИЕ, СТРУКТУРНЫЕ, ОПТИЧЕСКИЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ ЦИНКИТА

© 2013 г. И.А. Каурова, Г.М. Кузьмичева*, В.Б. Рыбаков**

Московский государственный открытый университет, Александров E-mail: kaurova_irina@mail.ru * Московский государственный университет тонких химических технологий ** Московский государственный университет им. М.В. Ломоносова

Поступила в редакцию 03.11.2011 г.

Проведенное рентгеноструктурное изучение кристаллов ZnO, выращенных гидротермальным методом, показало присутствие дифракционных отражений, позволяющих отнести их к пр. гр. *P*3, а не *P*6₃*mc*. Найденное распределение Zn1 и Zn2, O1 и O2 по позициям структуры совместно с вакансиями и внедренными атомами цинка позволило объяснить найденную дисимметризацию кинетическим (ростовым) фазовым переходом типа порядок—беспорядок, вызванным упорядочением атомов Zn и O по позициям структуры. Окраска кристаллов уточненных составов (Zn_{0.975} $\Box_{0.025}$)Zn_{*i*(0.015)}(O_{0.990} $\Box_{0.010}$) (зеленый) и (Zn_{0.965} $\Box_{0.035}$)Zn_{*i*(0.035)}O (светло-зеленый) связана с разным содержанием кислорода, что подтверждается результатами рентгеноспектрального микро-анализа и спектрами поглощения. С кислородными вакансиями также связана степень структурно-го совершенства кристаллов, удельное сопротивление и энергия активации.

DOI: 10.7868/S0023476113020112

ВВЕДЕНИЕ

Цинкит – ZnO (пр. гр. $P6_3mc$, Z = 2) является прямозонным, широкозонным полупроводником ($E_g = 3.37$ эВ), обладающим высокой температурой плавления ($T_{пл} = 1975^{\circ}$ С), плотностью ($\rho = 5.64$ г/см³) и энергией связи экситонов (60 мэВ) [1].

Ввиду активного использования широкозонных кристаллов ZnO в различных областях пьезо-, опто-, микро- и акустоэлектроники, в частности в устройствах на объемных и поверхностных акустических волнах (фильтры, резонаторы, линии задержки), в светоизлучательных приборах и акустоэлектронных усилителях [1-3], особого внимания заслуживает изучение их физических свойств, в частности оптических и электрофизических, и нахождение взаимосвязи характеристик свойств со структурными особенностями кристаллов и их дефектами. Именно они характеризуют материал и возможность его применения. В свою очередь дефекты кристаллической структуры напрямую зависят от методов получения кристаллов и условий их дальнейшей обработки.

В настоящее время основным методом получения крупногабаритных промышленных монокристаллов ZnO является гидротермальный метод, основанный на кристаллизации вещества из перегретых водных растворов при повышенных температурах и давлениях [4–6]. Полученные кристаллы часто содержат металлические примеси, захватываемые из раствора [4], а также собственные точечные дефекты, которые могут влиять на изменение их физических свойств, в том числе и на окраску. При использовании щелочных сред в процессе выращивания изменяется состав раствора и происходит образование вакансий кислорода и сверхстехиометрических атомов цинка (Zn_i), располагающихся в междоузлиях, координаты которых не определены [5]. Кроме того, в гидротермально выращенных нелегированных кристаллах ZnO экспериментально обнаружены примесные ионы Pb³⁺, Co²⁺, Ni⁺, Fe³⁺, In³⁺, Ga³⁺, Al³⁺, Li¹⁺ [7–10].

Собственные точечные дефекты изучены в основном на кристаллах ZnO, облученных частицами высоких энергий. Методом электронного парамагнитного резонанса (ЭПР) в кристалле цинкита выявлены однозарядные вакансии кислорода ($V_{\rm O}$) [7]. Методом оптического детектирования магнитного резонанса найдены однозарядные вакансии цинка ($V_{\rm Zn}$) [11], а после облучения электронами при 4.2 К методом оптического детектирования ЭПР – вакансии цинка ($V_{\rm Zn}$) [12].

Выращенные кристаллы ZnO практически всегда имеют *n*-тип проводимости. "Непреднамеренную" проводимость *n*-типа часто связывают с собственными дефектами, но роль отдельных дефектов остается спорной [13–21]. В частности, кислородные вакансии и междоузельный цинк упоминались как причины *n*-типа проводимости в ZnO. Однако большинство доказательств влия-

Сингония, пр. гр., Z	тригональная, РЗ, 2				
Образец	ZnO3	ZnO8			
<i>a</i> , <i>c</i> , Å	3.2468(6); 5.2019(9)	3.2444(4); 5.1998(6)			
<i>V</i> , Å ³	47.49(3)	47.40(2)			
D_x , г/см ³	5.691	5.701			
μ, мм ⁻¹	13.01 13.03				
<i>Т</i> , К	293(2)				
Размер образца, мм	$\sim 0.2 \times 0.2 \times 0.2$				
θ _{max} , град	39.82	39.84			
Пределы h, k, l	$-7 \le h \le 7, -7 \le k \le 7, -11 \le l \le 11$				
Число отражений: измеренные/не- зависимые ($I > 2\sigma(I)$)	2355/259	2361/259			
Число параметров	19				
Весовая схема	$1/[\sigma^2(F_o^2) + (0.0396P)^2],$	$1/[\sigma^2(F_o^2) + (0.0822P)^2 + 0.05P],$			
	$P = (F_o^2 + 2F_c^2)/3$	$P = (F_o^2 + 2F_c^2)/3$			
$R_1 \left(I > 2\sigma(I) \right)$	0.0283	0.0477			
wR_2	0.0663	0.1326			
<u>S</u>	1.135	1.133			

Таблица 1. Кристаллографические характеристики, данные рентгенографического эксперимента и результаты уточнения структуры кристаллов ZnO

ния собственных точечных дефектов на проводимость основаны на теоретических расчетах, а не на экспериментальных наблюдениях. Так, однои двухзарядные вакансии в позициях цинка и кислорода и междоузельные точечные дефекты в кристаллах ZnO теоретически рассчитаны как наиболее вероятные собственные точечные дефекты с помощью метода функционала плотности в приближении локальной плотности [22, 23].

Ввиду активного использования широкозонных кристаллов ZnO в оптоэлектронике особого внимания требует изучение их оптических свойств. Оптическое пропускание цинкита начинается с 26000 см⁻¹ (385 нм) и продолжается до 1050 см⁻¹ (9500 нм) [1]. Авторы [24] на спектрах пропускания монокристаллов цинкита наблюдали поглощение в области 22500 см⁻¹ (~445 нм), придающее кристаллу желтоватую окраску и связанное, по их мнению, с избытком цинка в кристалле ZnO. Присутствие в кристаллах ZnO неконтролируемых примесей также может смещать оптическое пропускание и вызывать образование на оптических спектрах полос поглощения. Так, специально вводимые добавки марганца вызывают интенсивную красную окраску, и оптическое пропускание смещается на 18000 см^{-1} (555 нм); вхождение примеси никеля вызывает образование полос 12400 (~805 нм), 13500 (~840 нм), 15280 (~655 нм), 16400 (~610 нм), 17700 (~565 нм), 22500 см⁻¹ (~445 нм), и кристаллы приобретают зеленую окраску, как и ионы кобальта с интенсивной полосой 16000 см⁻¹ (~625 нм) [5].

Цель работы — определение вида и концентрации точечных дефектов и нахождение связи между структурными, оптическими и электрофизическими свойствами кристаллов ZnO, выращенных гидротермальным методом.

МЕТОДИКА ЭКСПЕРИМЕНТА

Монокристаллы шинкита получены гидротермальным методом в платиновых вкладышах в концентрированных растворах щелочей 4М(КОН) + $+ 1M(LiOH) + 0.1M(NH_4OH)$ на моноэдрических затравках [0001] при температурах кристаллизации 330-350°C, давлении 30-50 МПа и прямом перепаде температур 8-15°С между камерами роста и растворения автоклава (ВНИИСИМС, г. Александров). Раствор щелочи заполнял футеровочный вкладыш в соответствии с рассчитанным коэффициентом заполнения ~70-90% свободного объема вкладыша. В качестве шихты использованы таблетки, спрессованные из порошкообразного реактива оксида цинка марки "ОСЧ", отожженного при температуре 800-1000°С. Длительность цикла выращивания кристаллов 130-150 сут.

Рентгеноструктурный анализ (**РСА**) микрочастей кристаллов размером ~0.2 × 0.2 × 0.2 мм³ проведен при комнатной температуре на четырехкружном монокристальном дифрактометре CAD-4 [25] (Ag K_{α} , графитовый монохроматор, ω -сканирование) (табл. 1). Первичная обработка дифракционных данных проводилась по комплексу программ WinGX [26] с введением эмпири-

Таблица 2. Координаты атомов, эквивалентные изотропные тепловые параметры $U_{3 \text{KB}} \times 10^2 (\text{\AA}^2)$, заселенности позиций µ в исследованных кристаллах ZnO по данным PCA

Пополюти	Образцы			
Параметр	ZnO3	ZnO8		
Zn1 x	2/3	1/3		
У	1/3	2/3		
z	0.5002(2)	0.39000(7)		
μ	1.0	0.93(1)		
$U_{_{ m ЭKB}}$	0.50(2)	0.250(3)		
Zn2 x	1/3	2/3		
У	2/3	1/3		
z	0.0002(1)	0.88976(4)		
μ	0.95(1)	1.0		
$U_{_{ m ЭKB}}$	0.37(1)	0.150(2)		
Zn _i x	0	0		
У	0	0		
Z.	0.998(6)	0.3990(6)		
μ	0.015(5)	0.035(6)		
$U_{_{ m ЭKB}}$	0.18	0.089		
O1 <i>x</i>	2/3	1/3		
У	1/3	2/3		
z	0.1189(10)	0.0075(2)		
μ	1.0	1.0		
$U_{_{ m ЭKB}}$	0.39(2)	0.130(3)		
O2 <i>x</i>	1/3	2/3		
У	2/3	1/3		
Z.	0.6192(10)	0.5067(2)		
μ	0.98(1)	1.0		
$U_{_{ m ЭKB}}$	0.23(3)	0.120(2)		

Примечание. Структура ZnO8 – "правая форма", структура ZnO3 – "левая форма".

ческой поправки на поглощение. Кристаллическая структура уточнена полноматричным МНК в изотропном и анизотропном приближении для всех атомов с использованием комплекса программ SHELXL97 [27] при учете атомных кривых рассеяния для нейтральных атомов (табл. 2, 3). Фриделевские пары рефлексов не усреднялись. Параметры ячейки определены автоиндицированием по 25 отражениям в интервале углов $18^{\circ} < \theta < 21^{\circ}$.

Рентгеновская съемка измельченных в порошок образцов на отражение проведена при комнатной температуре на порошковых дифрактометрах HZG-4 (Ni-фильтр) и ДРОН-3 (графитовый плоский монохроматор, Cu K_{α}) на дифрагированном пучке (пошаговый режим: время набора им**Таблица 3.** Основные межатомные расстояния *d* (Å) в исследованных кристаллах ZnO по данным PCA

Межатомные	Образцы			
расстояния, Å	ZnO3	ZnO8		
$Zn1-3 \times O2$	1.9741(7)	1.9690(4)		
$-1 \times O1$	1.9836(21)	1.9888(11)		
$\langle Zn1-O \rangle$	1.9765	1.9740		
$Zn2-3 \times O1$	1.9737(7)	1.9707(4)		
$-1 \times O2$	1.9817(21)	1.9917(11)		
$\langle Zn2-O\rangle$	1.9757	1.9760		
Zn_i -3 × O1	1.9778(42)			
$Zn_i - 3 \times O2$		1.9551(9)		

пульсов 15 с и величина шага 0.02°) в интервале углов 20 10°–115°. Для предотвращения проявления преимущественной ориентации образцы при съемке вращались. Первичная обработка дифракционных порошковых данных проведена по комплексу программ FullProf-2007 [28, 29]. Параметры элементарной ячейки образцов рассчитаны с помощью программы Dicvol 04 [30]. Качественный фазовый анализ образцов, выполненный с использованием автоматизированной базы данных PCPDFWIN PDF-2, свидетельствует о получении однофазных образцов.

Рентгенодифракционные исследования плоскополированных пластин ZnO размером ~10 × × 10 × 1 мм³ выполнены на многоцелевом рентгеновском дифрактометре D8 Discover (Bruker AXS) (съемка на отражение; Cu $K_{\alpha 1}$, U = 40 кВ, I = 40 мА, отражение [0002]). Измерения выполняли в двухкристальной схеме. Для монохроматизации пучка использовали четырехкратный монохроматор Бартеля (два двухкратных отражений Ge [002] в положении (n, -n, -n, n)), полностью убирающий $K_{\alpha 2}$ -линию. Величина дисперсии длины волны Cu $K_{\alpha 1}$ составляла $\Delta\lambda/\lambda = 5.5 \times 10^{-5}$.

Количественный рентгеноспектральный микроанализ выполнен на энергодисперсионном рентгеновском микроанализаторе INCA Penta FETx 3 (OXFORD INSTRUMENTS). С целью исключения эффектов зарядки на объекты наносили тонкую металлическую пленку толщиной 10 нм методом магнетронного распыления. Визуализацию участков, выбранных для измерения химического состава исследуемых объектов, проводили в растровом электронном микроскопе высокого разрешения с автоэмиссионным катодом 7500F (JEOL). Разрешение по углероду составляло не менее 30 эВ. Анализ химического состава объектов проводили на пяти участках каждого образца.

Спектры оптического пропускания образцов в виде плоскопараллельных полированных с двух сторон пластин толщиной около 1 мм, изготов-

 \bullet Zn1 \bullet Zn2 \bigcirc O1 \bullet O2

Рис. 1. Кристаллическая структура ZnO: проекция *ac* (a), *ab* (б).

ленных из тех областей кристалла, которые использовались для рентгенографических исследований, регистрировались на спектрофотометре UV-VIS Specord-M40 (Carl Zeiss) при комнатной температуре в диапазоне длин волн 385–833 нм.

Температурные зависимости удельной проводимости измерены на образцах в виде плоскопараллельных пластин размером ~10 × 10 мм² и толщиной ~1-3 мм в интервале температур 20-550°С с помощью тераомметра Е6-13А. Измерение проводилось в течение 1 мин после установления температуры, при переменном токе и низком напряжении (U=90 В). На измеряемые образцы наносились Ni-электроды методом магнетронного напыления. Для контроля температуры (скорость нагрева 3°С/мин) использовалась Рt-термопара (точность измерения ±0.1°С). Температурная зависимость удельной проводимости в диапазоне 20-550°С соответствует соотношению $\sigma = \sigma_0 e^{-E_a/KT}$ по которому определяли значение энергии активации E_a. Значение удельного электрического сопротивления определяли при 400°С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

ZnO кристаллизуется в структурном типе вюрцита (пр. гр. $P6_3mc$, Z = 2), не имеющем центра

Рис. 2. Внешний вид образцов серий I (а) и II (б), где номера 1-8 соответствуют номерам образцов *ZnO1*–*ZnO8*.

симметрии и обладающем полярной осью, параллельной направлению [0001] (рис. 1). Атомы кислорода в структуре ZnO образуют гексагональную плотнейшую упаковку, а атомы цинка занимают половину тетраэдрических пустот (точнее, атомы Zn и O находятся в тригональных пирамидах вследствие симметрии позиций 3m) с координатами 1/3 2/3 0 и 1/3 2/3 z с z = 0.3819 соответственно.

Объекты исследования – восемь образцов ZnO, разделенные по цвету на две серии: серия I – зеленые (образцы *ZnO1–ZnO4*); серия II – свет-ло-зеленые (образцы *ZnO5–ZnO8*) кристаллы (рис. 2).

Полученные параметры элементарных ячеек образцов серий I и II отличаются друг от друга, причем для образцов серии I выявлено бо́льшее различие параметров между собой (a = 3.2453(4) - 3.2612(3) Å, $\Delta \sim 0.016$ Å; c = 5.170(2) - 5.208(2) Å, $\Delta \sim 0.04$ Å), чем для образцов серии II (a = 3.2542(3) - 3.2598(2) Å, $\Delta \sim 0.006$ Å; c = 5.190(2) - 5.201(1) Å, $\Delta \sim 0.01$ Å). В связи с тем что параметры ячейки и цвет образцов являются своеобразными индикаторами состава, можно ожидать, что составы у этих образцов разные, причем в первом случае вариация составов больше.

На порошковых дифрактограммах образцов обеих серий (рис. 3а) выявлен дополнительный пик в области $2\theta = 17.20^{\circ} - 17.40^{\circ}$ (рис. 3б) с межплоскостным расстоянием $d \sim 5.19$ Å, соответствующим отражению [0001], которое не подчиняется законам погасания пр. гр. Р63тс. Интенсивданного пика в ~400 раз меньше ность интенсивности самого сильного отражения [0002]. Необходимо отметить, что данный пик не может относиться ни к СиК_в-линии, ни к какой-либо примесной фазе. В результате РСА микрочастей образцов ZnO3 (серия I) и ZnO8 (серия II) также обнаружены дополнительные отражения (~9%), не принадлежащие пр. гр. Р63mc. Эти отражения были успешно проиндицированы в пр. гр. РЗ.

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

Рис. 3. Дифрактограмма образца в интервалах углов 20 10°-120° (а) и 12°-25° (б).

В табл. 1–4 приведены результаты РСА кристаллов *ZnO3* (серия I) и *ZnO8* (серия II) в рамках пр. гр. *P*3. Уточненный состав *ZnO3* может быть записан в виде $Zn_{0.975}\Box_{0.025}$) $Zn_{0.015(i)}(O_{0.990}\Box_{0.010})$ или [($Zn1_{0.500}$) ($Zn2_{0.475(5)}\Box_{0.025}$)] $Zn_{0.015(5)(i)}$ [($O1_{0.500}O2_{0.490(6)}\Box_{0.010}$)], т.е. с вакансиями в позициях Zn2 ($V_{Zn}^{"}$) и O2 ($V_{O}^{"}$) и междоузельными атомами цинка – Zn_i. Микрочасть образца *ZnO8* имеет состав ($Zn_{0.965}\Box_{0.035}$) $Zn_{0.035(i)}$ O[($Zn1_{0.465(6)}\Box_{0.035}$)($Zn2_{0.500}$)] Zn_{0.035(6)(i)}[($O1_{0.500}$)($O2_{0.500}$)] с вакансиями только в позиции Zn1 ($V_{Zn}^{"}$) и междоузельными атомами

цинка – Znⁱ. Таким образом, составы этих кристаллов различаются содержанием кислорода (в *ZnO3* присутствуют кислородные вакансии, а в *ZnO8* их нет) и цинка в основных (концентрация $V_{Zn}^{"}$ в *ZnO3* меньше) и междоузельных (концентрация Znⁱ в *ZnO3* меньше) позициях структуры (табл. 2, 4).

Полученные результаты согласуются с результатами рентгеноспектрального микроанализа: в данных кристаллах отсутствуют примесные атомы (с учетом точности определения) и в составе кристалла серии II содержится больше кислорода

РСМА, мас. %		PCA	
ZnO3	O – 26.36(2)	$[Zn1_{0.500}(Zn2_{0.475(5)}\square_{0.025})]Zn_{0.015(5)(i)}$	
	Zn – 73.64(2)	$[(O1_{0.500}O2_{0.490(6)}\square_{0.010})]$	
ZnO8	$\begin{array}{c} Zn_{1.0050(3)}O_{0.986(1)}\\ O-26.50(17) \end{array}$	$[(Zn1_{0.465(6)}\square_{0.035})Zn2_{0.500}]Zn_{0.035(6)(i)}$	
	$\frac{Zn - 73.50(17)}{Zn_{1.003(2)}O_{0.991(7)}}$	$(O1_{0.500})(O2_{0.500})$	

Таблица 4. Уточненные составы образцов, определенные методом рентгеноспектрального микроанализа (PCMA) (стехиометрия: Zn – 73.27 мас. %; O – 26.73 мас. %) и рентгеноструктурного анализа (PCA)

30.0

22.4

рины дифракционных отражении кристаллов ZnO							
Обра- зец	Направ- ление роста	Срез	θ°	hkil	<i>b</i> _i , c	<i>b</i> , c	<i>b</i> ₂ , c
ZnO3	(0001)	Ζ	34.43	0002	19.9	35.0	28.8

Таблица 5. Теоретические (b_i) , экспериментальные интегральные (b) и физические (b₂) значения полуши-

по сравнению с кристаллом серии I (табл. 4). Кроме того, уточненные составы позиций коррелируют и с межатомными расстояниями катион-анион: *d*_{Zn1-O} (*ZnO3*) > *d*_{Zn1-O} (*ZnO8*) и *d*_{Zn2-O} (*ZnO3*) < < *d*_{Zn2-O} (*ZnO8*) (табл. 4).

Внедренные катионы цинка занимают позицию 00x, т.е. расположены в каналах (рис. 1б) с треугольной координацией (табл. 3). Вероятно, чередование заполненных и незаполненных "слоев" Zn и О в структуре ZnO приводит к понижению симметрии в локальной области кристалла (рис. 1б). В данном случае имеет место кинетический (ростовой) фазовый переход типа порядок-беспорядок без изменения параметра элементарной ячейки и структурного типа, но с изменением симметрии [31].

Параметры ячейки микрочасти образца ZnO3 (a = 3.2468(6), c = 5.2019(9) Å) больше по сравнению с микрочастью образца ZnO8 (a = 3.2444(4), c = 5.1998(6)Å). Это можно объяснить или подав-

I, 10⁴ отн. ед. 7 (a) 5 3 1 *3*5.01 36.11 36.03 36.05 36.07 36.09 7 (б) 5 3 1 0 36.31 36.33 36.35 36.37 36.39 36.41 θ, град

Рис. 4. Кривые дифракционных отражений (отражение 0002): образцы ZnO3 (а) и ZnO8 (б).

ляющим влиянием V_{Zn} на параметры ячейки по сравнению с другими точечными дефектами, или найденным упорядочением атомов цинка и кислорода по кристаллографическим позициям структуры ZnO3 в отличие от упорядочения только атомов цинка в структуре ZnO8, что, как известно, вызывает не связанное с составом увеличение параметров элементарной ячейки. Параметры ячейки измельченного в порошок кристалла ZnO3 (a = 3.2489(1), c = 5.201(2) Å), наоборот, меньше по сравнению с параметрами измельченного в порошок кристалла ZnO8 (a = 3.2542(2), c = 5.201(1) Å), что объясняется неравномерностью состава по образцу, с одной стороны, и некорректностью сопоставления параметров ячейки, определенных при разных условиях эксперимента [32], с другой.

Полуширины кривых дифракционных отражений (КДО) кристалл-монохроматора (b₁) и исследуемого кристалла (b₂) связаны с экспериментальной интегральной полушириной КДО (b) соотношением

$$b^2 = b_1^2 + b_2^2 + b_{\mu H c T p}^2 + b_{\mu \mu c T p}^2$$

где $b_{\text{дисп}}$ (дисперсионное уширение) = 5.9", $b_{\text{инстр}}$ (инструментальное уширение) = $b_1 = 11$ ".

Сравнение теоретических (b_i) и физических (b₂) значений полуширины дифракционных отражений ZnO показало, что среди изученных кристаллов более совершенным является образец ZnO8 с наименьшей разницей между приведенными выше значениями (табл. 5, рис. 4). Именно этот образец характеризуется отсутствием кислородных вакансий (в пределах точности расчета).

Оптическое пропускание изученных кристаллов цинкита начинается в области ~385 нм $(26\,000 \text{ см}^{-1})$, что связано с прямым межзонным переходом, который обусловлен шириной запрещенной зоны (рис. 5). На спектрах оптического пропускания образцов серии І присутствуют две полосы поглощения в области ~445 нм (~22500 см⁻¹) и ~625 нм (~16000 см⁻¹) (рис. 5а), тогда как на спектрах пропускания образцов серии II есть лишь небольшое поглощение в области ~445 нм (рис. 5б). Сопоставление результатов структурного анализа (табл. 4) и спектров оптического пропускания (рис. 5) позволило установить, что полоса поглощения в области ~445 нм связана с наличием в структуре кислородных вакансий (по данным [24] – с избытком цинка, что, в принципе, одно и то же). Полоса поглощения в области ~625 нм, вероятно, отвечает за окраску кристаллов, т.е. с этой полосой связан центр окраски $(V_0^{n'}, ne')^{\times}$ – вакансия кислорода и локализован-

ный электрон – подобно сильным пьезоэлектрикам семейства лангасита [33, 34]. Ярко-зеленую окраску кристаллам цинкита могут придавать ионы кобальта и никеля [5], которые по данным

> КРИСТАЛЛОГРАФИЯ том 58 Nº 2 2013

ZnO8

Рис. 5. Спектры оптического пропускания кристаллов серий I (а) и II (б).

рентгеноспектрального микроанализа в составе исследуемых кристаллов отсутствуют.

На основе температурных зависимостей удельной электропроводности (рис. 6) для кристаллов цинкита серий I и II рассчитаны значения удельного сопротивления (ρ) и энергии активации (табл. 6). Из табл. 6 видно, что значения удельного сопротивления достаточно сильно различаются для образцов разных серий: для образцов *ZnO5–ZnO8* серии II значения ρ имеют большие значения по сравнению с образцами ZnO1–ZnO4 серии I, так же как и значения энергии активации, причем в пределах каждой серии эти величины различаются незначительно.

Таким образом, в результате соотнесения данных РСА для образцов I и II серий (табл. 4) с результатами исследований температурных зависимостей удельной электропроводности (рис. 6, табл. 6), вероятно, на электрофизические свойства ZnO, на их окраску и общее структурное совершенство преимущественно оказывают влияние кислородные вакансии. Аналогичные результаты получены для нецентросимметричных кристаллов семейства лангасита [35, 36], в структуре которых аналогично цинкиту имеются тригонально-пирамидальные позиции, они обладают схожими с кристаллами цинкита величинами плотности и температурной устойчивости, а также оптическими и пьезоэлектрическими характеристиками.

Рис. 6. Температурные зависимости удельной электропроводности для кристаллов серий I и II.

выводы

В результате рентгенографических исследований в структуре кристаллов ZnO найдены вакансии в позиции цинка ($V_{Zn}^{"}$) и кислорода ($V_{O}^{"}$) и междоузельные атомы цинка (Zn_i"), причем содержание кислородных вакансий в кристаллах I серии больше по сравнению с кристаллами II серии. В структуре дефектных кристаллов ZnO выявлено чередование заполненных и незаполненных "слоев" Zn и O, приводящих к понижению симметрии в локальной области кристалла (переход от пр. гр. $P6_3mc \kappa P3$).

Найдено влияние состава кристаллов на характер спектров оптического пропускания: полоса поглощения в области ~445 нм связана с кислородными вакансиями, а полоса поглощения в области ~625 нм отвечает за окраску кристаллов. Эти данные могут быть использованы для первичной характеризации дефектности кристаллов по данным спектрофотометрии.

Установлена связь структурного совершенства кристаллов цинкита, их удельного сопротивле-

Таблица 6. Электрофизические свойства кристаллов ZnO

Обр	азец	ρ, Ом см (400°С)	<i>E</i> _a , эВ		
Серия І	ZnO1	$1.3(1) \times 10^7$	0.38(9)		
	ZnO2	$4.9(1) \times 10^7$	0.36(8)		
	ZnO3	$1.6(1) \times 10^7$	0.38(9)		
	ZnO4	$1.2(1) \times 10^7$	0.34(8)		
Серия II	ZnO5	$1.1(1) \times 10^8$	0.6(1)		
	ZnO6	$2.5(1) \times 10^{8}$	0.6(1)		
	ZnO7	$1.0(1) \times 10^{8}$	0.44(9)		
	ZnO8	$1.5(1) \times 10^{8}$	0.51(9)		

ния и энергии активации с кислородными вакансиями.

Авторы выражают благодарность М.И. Вороновой (НИТУ "МИСиС", Москва) за проведение рентгенодифракционных экспериментов и Н.В. Садовской (ФГУП "НИФХИ им. Л.Я. Карпова") за рентгеноспектральные исследования.

СПИСОК ЛИТЕРАТУРЫ

- Кузьмина И.П., Никитенко В.А. Окись цинка. Получение и оптические свойства. М.: Наука, 1984. 163 с.
- 2. *Brown E.H.* Zinc oxide: Properties and applications. New York: Pergamon press, 1976. 112 p.
- 3. Синтез минералов. Александров: ВНИИСИМС, 2000. 662 с.
- 4. *Кортунова Е.В., Лютин В.И.* // Тр. ВНИИСИМС. 1997. Т. XIV. С. 31.
- 5. Дубовский А.Б., Кортунова Е.В. // Новые промышленные технологии. 2007. № 1. С. 38.
- Dem'yanets L.N., Lyutin V.I. // J. Cryst. Growth. 2008. V. 310 P. 993.
- 7. Vlasenko L.S. // Physica B. 2009. V. 404. P. 4774.
- 8. Walsh W.M., Rupp L.W. // Phys. Rev. 1962. V. 126. P. 952.
- Holton W.C., Schneider J., Estle T.L. // Phys. Rev. A. 1964. V. 133. P. 1638.
- Jiang Y., Giles N.C., Halliburton L.E. // J. Appl. Phys. 2007. V. 101. P. 093706.
- 11. Son N.T., Ivanov I.G., Kuznetsov A. et al. // J. Cryst. Growth. 2008. V. 310. P. 1006.
- Vlasenko L.S., Watkins G.D. // Phys. Rev. B. 2005. V. 72. P. 035203.
- 13. Hutson A.R. // Phys. Rev. 1957. V. 108. P. 222.
- 14. Thomas D.G. // J. Phys. Chem. Solid. 1957. V. 3. P. 229.
- Mohanty G.P., Azaroff L.V. // J. Chem. Phys. 1961. V. 35. P. 1268.
- 16. Hausmann A., Tuerle W. // J. Phys. 1973. V. 259. P. 189.
- Hoffmann K., Hahn D. // Phys. Status Solidi. A. 1974. V. 24. P. 637.

- 18. Utsch B., Hausmann A. // J. Phys. B. 1975. V. 21. P. 27.
- 19. Hausmann A., Utsch B. // J. Phys. B. 1975. V. 21. P. 217.
- 20. *Hagemark K.I.* // J. Solid State Chem. 1976. V. 16. P. 293.
- Neumann G. Current Topics in Materials Science. V. 7. Amsterdam: North-Holland Publishing Co., 1981. 152 p.
- 22. Janotti A., Van de Walle C.G. // J. Cryst. Growth. 2006. V. 287. P. 58.
- 23. Van de Walle C.G. // Physica B. 2001. V. 308–310. P. 899.
- 24. Лобачев А.Н., Кузьмина И.П., Шалдин Ю.В. и др. Рост кристаллов из высокотемпературных растворов. М.: Наука, 1977. 158 с.
- 25. Enraf-Nonius. CAD-4 Software. Version 5.0. Enraf-Nonius. Delft. The Netherlands. 1989.
- 26. Farrugia L.J. // J. Appl. Cryst. 1999. V. 32. P. 837.
- 27. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 28. Филонова Е.А., Пирогов А.Н. Элементы структурного анализа. Метод FULLPROF как один из методов обработки дифракционных данных. Метод. указания для студентов хим. фак. Екатеринбург: УрГУ, 2005. 35с.
- 29. Филонова Е.А. Элементы структурного анализа. Ч. 2. Рекомендации к использованию метода Ритвельда для обработки дифракционных данных. Метод. указания для студентов хим. фак. Екатеринбург: УрГУ, 2006. 32 с.
- 30. Boultif A., Louer D. // J. Appl. Cryst. 2004. V. 37. P. 724.
- 31. Чернов А.А. // УФН. 1970. Т. 100. С. 277.
- 32. Тюнина Е.А., Каурова И.А., Кузьмичева Г.М. и др. // Вестн. МИТХТ. 2010. Т. 5. № 1. С. 57.
- Кузьмичева Г.М., Захарко О., Тюнина Е.А. и др. // Кристаллография. 2008. Т. 53. № 6. С. 989.
- 34. *Каурова И.А., Кузьмичева Г.М., Рыбаков В.Б. и др. //* Неорган. материалы. 2010. Т. 46. № 9. С. 1100.
- 35. Доморощина Е.Н., Дубовский А.Б., Кузьмичева Г.М. и др. // Неорган. материалы. 2005. Т. 41. № 11. С. 1378.
- 36. *Каурова И.А., Кузьмичева Г.М., Дубовский А.Б.* // Неорган. материалы. 2010. Т. 46. № 10. С. 1251.