= КРИСТАЛЛОХИМИЯ =

УДК 548:546.185

ИЗУЧЕНИЕ КАЛЬЦИЙСОДЕРЖАЩИХ ОРТОФОСФАТОВ СТРУКТУРНОГО ТИПА NaZr₂(PO₄)₃ МЕТОДОМ ВЫСОКОТЕМПЕРАТУРНОЙ РЕНТГЕНОГРАФИИ

© 2013 г. А. И. Орлова, А. Е. Канунов, С. Г. Самойлов*, А. Ю. Казакова*, Г. Н. Казанцев*

Нижегородский государственный университет E-mail: a.kanunov@mail.ru * Физико-энергетический институт, Обнинск Поступила в редакцию 31.05.2011 г.

Ортофосфаты Ca_{0.5}Ti₂(PO₄)₃, Ca_{0.5}Zr₂(PO₄)₃, Ca_{0.75}Zr₂(SiO₄)_{0.5}(PO₄)_{2.5}, CaMg_{0.5}Zr_{1.5}(PO₄)₃ (структурный тип NaZr₂(PO₄)₃) с разной степенью заселенности кальцием межкаркасных позиций приготовлены золь-гель методом с последующей термической обработкой высушенных гелей и исследованы методами ИК-спектроскопии и рентгенофазового анализа. Проведено аналитическое индицирование рентгенограмм в рамках пр. гр. $R^{\overline{3}}$. Методом высокотемпературной рентгенографии исследовано поведение при нагревании: тепловое расширение в интервале температур 20–610°C (в случае Ca_{0.5}Zr₂(PO₄)₃ до 500°C). Рассчитаны коэффициенты теплового линейного расширения по сдвигу дифракционных максимумов. Определены параметры элементарных ячеек кристаллов при разных температурах. Выявлены зависимости теплового расширения и его анизотропии от степени заполненности катионных *M*-позиций кальцием.

DOI: 10.7868/S0023476113020185

ВВЕДЕНИЕ

Фосфаты — структурные аналоги NaZr₂(PO₄)₃ (NZP) привлекают внимание благодаря разнообразию свойств и уникальной возможности изменения и оптимизации этих свойств за счет изменения состава. Важными свойствами этих соединений являются ионная проводимость, люминесценция, каталитическая активность, способность противостоять действию разрушающих факторов природного и техногенного характера (высоких температур, тепловых стрессов, радиации, химических систем). Принципы кристаллохимического моделирования формульных типов каркасных фосфатов и других соединений с тетраэдрическими оксоанионами, изложенные в [1-4], позволяют обосновывать состав соединений при разработке материалов "по замыслу".

Одним из направлений современного материаловедения, где такой подход в отношении семейства изоморфных NZP-фосфатов оправдан, является разработка кристаллических, в том числе керамических композиций для биологических применений. Для таких целей выбор базовых соединений должен основываться на фосфатах, содержащих кальций. Однако систематические данные о роли биогенных элементов (кальция, магния, кремния) в формировании каркасных соединений со структурой NZP ограничены, в том числе в отношении теплового расширения.

Для фосфатов NZP-подобного строения характерно малое и ультрамалое тепловое расширение, которое достигается за счет анизотропии расширения. Для большинства этих соединений при повышении температуры параметр с увеличивается, параметр а уменьшается [5]. В соответствии с моделью теплового расширения [4], поведение таких фосфатов при нагревании зависит от природы входящих в их состав катионов (их размера, заряда, электроотрицательности). В большей степени сказывается влияние катионов, находящихся во внекаркасных позициях, а также заселенности этих позиций. Данные о тепловом расширении Са-содержащих фосфатов NZPстроения приведены в табл. 1. Это фосфаты вида $Ca_{0.5}M_2^{IV}(PO_4)_3$, где $M^{IV} = Ti$, Zr. Титансодержащие фосфаты расширяются вдоль всех кристаллографических направлений, для фосфатов, содержащих цирконий, характерно расширение (вдоль c) - сжатие (вдоль a и b) при нагревании.

В настоящей работе на основании анализа схемы возможных кристаллохимических моделей для каркасных NZP-ортофосфатов [1, 2] выбраны формульные составы с Ca²⁺ в качестве иона-компенсатора заряда каркаса с различной его концентрацией. Соединения получены и охарактеризованы методами инфракрасной (**ИК**) спектроскопии, рентгенофазового анализа (**РФА**), исследовано их тепловое расширение, а также оценена зависимость последнего от степени заполненности межкаркасных позиций, т.е. от концентрации кальция в их составе.

Состав	Коэфф	Питература			
	α_a	α_c	α_{cp}	$ \alpha_a - \alpha_c $	
$Ca_{0.5}Ti_2(PO_4)_3$	8.77	2.56	6.74	6.21	[6]
	6.99	1.31	5.14	5.68	[7]
$Ca_{0.5}Zr_2(PO_4)_3$	-2.57	7.74	0.85	10.31	[7]
	-5.10	9.90	-0.10	4.80	[8, 9]
	-3.30	10.10	1.17	6.80	[10]

Таблица 1. Средние коэффициенты теплового расширения кальцийсодержащих фосфатов со структурой NaZr₂(PO₄)₃ в температурном интервале 25–1000°C

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследования выбраны фосфат титана $Ca_{0.5}Ti_2(PO_4)_3$ и фосфаты циркониевого ряда $Ca_{0.5}Zr_2(PO_4)_3$, $Ca_{0.75}Zr_2(SiO_4)_{0.5}(PO_4)_{2.5}$, $CaMg_{0.5}Zr_{1.5}(PO_4)_3$. Эти соединения, кроме соединения с кремнием, были синтезированы в [11–13].

Образцы получали методом осаждения (зольгель-процесс). Исходные 1М-растворы солей металлов смешивали в стехиометрических соотношениях и затем при постоянном перемешивании

Пропускание, %

Рис. 1. ИК-спектры фосфатов $Ca_{0.5}Ti_2(PO_4)_3$ (1), $Ca_{0.5}Zr_2(PO_4)_3$ (2), $CaMg_{0.5}Zr_{1.5}(PO_4)_3$ (3), $Ca_{0.75}Zr_2(SiO_4)_{0.5}(PO_4)_{2.5}$ (4).

прибавляли 1М-раствор дигидрофосфата аммония. Далее полученную суспензию подвергали изотермической обработке на воздухе в несколько этапов: при 600, 800, 900°С в течение 24 ч при каждой температуре и диспергировали перед каждой стадией нагревания.

Характеризацию фаз проводили методами ИК-спектроскопии и РФА. Спектры поглощения образцов, приготовленных методом тонкодисперсных пленок на подложке KBr, регистрировались с помощью спектрофотометра Shimadzu IR-Prestige-21 в диапазоне 1800–400 см⁻¹. Дифрактограммы получены на рентгеновском дифрактометре Shimadzu LabX XRD-6000 (Си K_{α} -излучение, $\lambda = 1.54178$ Å). Съемка проводилась в интервале брэгговских углов (20) 10°–50°.

Поведение фосфатов при нагревании исследовали с помощью метода высокотемпературной рентгенографии. Измерения с шагом по 20 0.05° проводили на дифрактометре ДРОН-3М (Си K_{α} -излучение, $\lambda = 1.54078$ Å) с высокотемпературной приставкой ГВПТ-1500. Коэффициенты теплового линейного расширения (α_a , α_c) определяли графически по величинам термических смещений дифракционных максимумов в соответствии с методикой [14]. Измерения проводили в области температур 20–620°С. Величины температур определялись Pt-Pt/10%Rh-термопарой.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Приготовленные образцы представляли собой кристаллические порошки белого цвета. Результаты ИК-спектрального анализа подтвердили их принадлежность к классу ортофосфатов. ИК-спектры образцов типичны для ортофосфатов, кристаллизующихся в пр. гр. $R\overline{3}$ (рис. 1). В спектре силикофосфата Ca_{0.75}Zr₂(SiO₄)_{0.5}(PO₄)_{2.5} проявились полосы поглощения, соответствующие как PO₄ (валентные колебания 1250–950 см⁻¹), так и SiO₄ (валентные колебания 1700–1400 см⁻¹) тетраэдрам.

Рентгенограммы по местоположению и относительной интенсивности дифракционных мак-

186

Рис. 2. Рентгенограммы фосфатов $Ca_{0.5}Ti_2(PO_4)_3(1)$, $Ca_{0.5}Zr_2(PO_4)_3(2)$, $Ca_{0.75}Zr_2(SiO_4)_{0.5}(PO_4)_{2.5}(3)$, $CaMg_{0.5}Zr_{1.5}(PO_4)_3(4)$.

симумов сходны между собой (рис. 2). Индицирование фаз проводили с использованием в качестве аналогов CaTi₄(PO₄)₆ [15] и CaZr₄(PO₄)₆ [16], относящихся к структурному типу NZP, пр. гр. $R\overline{3}$. На рентгенограммах присутствовали все рефлексы с характерными для данной структуры индексами Миллера [*hkl*] гексагональной ячейки: 104, 110, 113, 024, 116, 300, 128, 226 (рис. 2).

Данные высокотемпературной рентгенографии свидетельствуют, что при повышении температуры во всех изученных интервалах температур наблюдаемые смещения дифракционных максимумов незначительны. Для примера на рис. 3 представлены рентгенограммы фосфатов в интервалах температур 20 и 120°С (20 и 500°С в случае для фосфата $Ca_0 \, _5 Zr_2(PO_4)_3$).

Коэффициенты теплового расширения вдоль кристаллографических осей *a* (α_a) и *c* (α_c) рассчитывали непосредственно по смещениям дифракционных максимумов спектра путем построения математической модели и ее графического анализа. Для гексагональной сингонии функция *z*(*x*) = = ($\alpha_a - \alpha_c$)*x* + α_c , α_a и α_c принимают значения $\alpha_a = z(1)$, $\alpha_c = z(0)$, где $z_i = -(\operatorname{ctg} \theta_i) \Delta \theta / \Delta T$, $x_i =$ = $\frac{4(h_i^2 + h_i k_i + k_i^2)c^2}{4(h_i^2 + h_i k_i + k_i^2)c^2 + 3l_i^2a^2}$, где *h k l* – индексы Миллера, *a* и *c* – параметры элементарной ячейки.

Рассчитанные экспериментальные значения zи x при разных T и аппроксимирующие кривые приведены на рис. 4. По этим графическим зави-

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

Рис. 3. Рентгенограммы фосфатов $Ca_{0.5}Ti_2(PO_4)_3$ (a), $Ca_{0.5}Zr_2(PO_4)_3$ (b), $Ca_{0.75}Zr_2(SiO_4)_{0.5}(PO_4)_{2.5}$ (b), $CaMg_{0.5}Zr_{1.5}(PO_4)_3$ (г) при T = 20 (*I*), 120 (*2*), 500°C (*3*).

симостям определили коэффициенты $\alpha_a u \alpha_c$, рассчитали средний коэффициент $\alpha_{cp} = (2\alpha_a + \alpha_c)/3$ и анизотропию $|\alpha_a - \alpha_c|$ (табл. 2). С использованием найденных $\alpha_a u \alpha_c$ рассчитали параметры эле-

Рис. 4. Экспериментальные значения *z* и *x* и аппроксимирующие кривые для фосфатов $Ca_{0.5}Ti_2(PO_4)_3$ (*1*), $Ca_{0.5}Zr_2(PO_4)_3$ (*2*), $Ca_{0.75}Zr_2(SiO_4)_{0.5}(PO_4)_{2.5}$ (*3*), $CaMg_{0.5}Zr_{1.5}(PO_4)_3$ (*4*) в интервалах изучаемых температур.

ментарных ячеек *а* и *с* (табл. 3) для разных температур (рис. 5).

Как следует из полученных данных, структура фосфата с титаном $Ca_{0.5}Ti_2(PO_4)_3$ характеризуется нетипичным для NZP-фосфатов расширением по всем кристаллографическим направлениям (табл. 2, 3; рис. 5). При этом значения α_a и α_c согласуются с данными [6, 7].

Для ряда фосфатов с цирконием характерно расширение—сжатие вдоль разных кристаллографических направлений: $\alpha_a < 0$, $\alpha_c > 0$ (табл. 2, 3, рис. 5). Исключением являются данные, полученные в небольшом интервале температур (20– 80° C) для фосфата Ca_{0.75}Zr₂(SiO₄)_{0.5}(PO₄)_{2.5}, где

Формульный состав	Температурный интервал, °С	Параметры теплового расширения ($\alpha \times 10^6$, °C ⁻¹)		$0^{6}, {}^{\circ}C^{-1})$	
	20-T	$\alpha_a \pm 0.5$	$\alpha_c \pm 0.3$	$\alpha_{cp} \pm 0.5$	$ \alpha_a - \alpha_c \pm 0.5$
$Ca_{0.5}Ti_2(PO_4)_3$	20-120	6.6	3.3	5.5	3.3
	20-170	8.7	4.7	7.4	4.0
	20-173	9.2	3.2	7.2	6.0
	20-220	7.1	5.1	6.4	2.0
	20-329	8.8	4.7	7.4	4.1
	20-354	7.5	5.0	6.7	2.5
	20-470	9.0	5.6	7.9	3.4
	20-610	8.7	5.4	7.6	3.3
	20- <i>T</i>	$\alpha_a \pm 0.3$	$\alpha_c \pm 0.4$	$\alpha_{cp} \pm 0.4$	$ \alpha_a - \alpha_c \pm 0.4$
$Ca_{0.5}Zr_2(PO_4)_3$	20-170	-5.2	5.2	-1.7	10.4
	20-500	-4.0	7.1	-0.3	11.1
	20-T	$\alpha_a \pm 0.2$	$\alpha_c \pm 0.5$	$\alpha_{cp} \pm 0.5$	$ \alpha_a - \alpha_c \pm 0.5$
Ca _{0.75} Zr ₂ (SiO ₄) _{0.5} (PO ₄) _{2.5}	20-80	-6.0	-5.2	-5.7	0.8
	20-120	-6.1	-1.0	-4.4	5.1
	20-170	-4.6	2.6	-2.2	7.2
	20-220	-4.9	2.6	-2.4	7.5
	20-270	-4.1	4.2	-1.4	8.3
	20-370	-4.3	5.6	-1.0	10.0
	20-420	-3.3	6.3	-0.1	9.5
	20-620	-2.3	8.0	1.1	10.3
	20-T	$\alpha_a \pm 0.2$	$\alpha_c \pm 0.3$	$\alpha_{cp} \pm 0.3$	$ \alpha_a - \alpha_c \pm 0.3$
CaMg _{0.5} Zr _{1.5} (PO ₄) ₃	20-120	-1.5	0.7	-0.8	2.2
	20-220	-1.5	3.9	0.3	5.5
	20-320	-1.1	5.6	1.2	6.7
	20-420	-0.8	6.9	1.8	7.7
	20-520	-0.6	7.6	2.1	8.1
	20-620	-0.2	7.5	2.3	7.7

Таблица 2. Характеристики теплового расширения кальцийсодержащих ортофосфатов: $\alpha_a, \alpha_c, \alpha_{cp}, |\alpha_a - \alpha_c|$

КРИСТАЛЛОГРАФИЯ том 58 № 2 2013

Таблица 3. Параметры *a*, *c* (Å) элементарной ячейки фосфатов при температуре от 20 до 620°C

Формульный состав	<i>T</i> , °C	$a \pm 1 \times 10^{-3}$	$c \pm 1 \times 10^{-3}$
$Ca_{0.5}Ti_2(PO_4)_3$	20	8.361(3)	21.997(0)
	120	8.367(0)	22.001(3)
	170	8.372(2)	22.012(4)
	173	8.373(0)	22.013(3)
	220	8.373(1)	22.016(3)
	329	8.384(1)	22.029(0)
	354	8.382(1)	22.036(2)
	470	8.395(0)	22.052(7)
	610	8.406(0)	22.066(7)
$Ca_{0.5}Zr_2(PO_4)_3$	20	8.785(0)	22.682(0)
	170	8.778(9)	22.699(1)
	320	8.771(3)	22.713(0)
	500	8.768(3)	22.766(3)
Ca _{0.75} Zr ₂ (SiO ₄) _{0.5} (PO ₄) _{2.5}	20	8.778(0)	22.718(0)
	80	8.774(9)	22.711(0)
	120	8.772(7)	22.715(8)
	170	8.771(9)	22.726(9)
	220	8.769(5)	22.730(0)
	270	8.769(0)	22.741(8)
	370	8.764(8)	22.762(8)
	420	8.766(5)	22.774(8)
	620	8.766(0)	22.826(6)
$CaMg_{0.5}Zr_{1.5}(PO_4)_3$	20	8.765(0)	22.724(0)
	120	8.763(7)	22.725(6)
	220	8.762(3)	22.741(9)
	320	8.762(2)	22.762(5)
	420	8.762(1)	22.786(8)
	520	8.762(5)	22.809(9)
	620	8.763(8)	22.826(0)

оба коэффициента отрицательные (-6.0 и -5.2×10^{-6} 1/град) (табл. 2).

С увеличением концентрации кальция в составе соединений, а следовательно, доли занятых межкаркасных позиций отмечается тенденция к росту значений α_a (абсолютные значения уменьшаются). При этом величины α_c уменьшаются в области низких температур (до 170°С). Что касается остальных температурных интервалов, то значения α_c практически не зависят от состава (рис. 6, табл. 2). За счет анизотропии теплового расширения, которая имеет тенденцию к уменьшению при переходе от Ca_{0.5}Zr₂(PO₄)₃ к Ca_{0.75}Zr₂(SiO₄)_{0.5}(PO₄)_{2.5} и CaMg_{0.5}Zr_{1.5}(PO₄)₃ (рис. 7, табл. 2), средние значения α_{cp} характеризуются очень малыми величинами: α_{cp} , min = $+ 0.3 \times 10^{-6}$ 1/град

Рис. 5. Зависимость параметров элементарной ячейки *а* и *с* фосфатов $Ca_{0.5}Ti_2(PO_4)_3$ (*I*), $Ca_{0.5}Zr_2(PO_4)_3$ (*2*), $Ca_{0.75}Zr_2(SiO_4)_{0.5}(PO_4)_{2.5}$ (*3*), $CaMg_{0.5}Zr_{1.5}(PO_4)_3$ (*4*) от температуры.

и -0.3×10^{-6} 1/град, $\alpha_{cp, max} = -2.2 \times 10^{-6}$ 1/град и 2.3×10^{-6} 1/град. Анизотропия минимальная для фосфата CaMg_{0.5}Zr_{1.5}(PO₄)₃.

По своему поведению при нагревании изученные вещества относятся, как и большинство NZP-фосфатов, к классу малорасширяющихся.

Рис. 6. Зависимость параметров теплового расширения от степени заселенности кальцием межкаркасных позиций (*m*) в интервалах температур 20–170 (*I*), 20–420 (*2*), 20–620°С (*3*).

Рис. 7. Зависимость анизотропии теплового расширения в ряду фосфатов $Ca_{0.5}Zr_2(PO_4)_3$, $Ca_{0.75}Zr_2(SiO_4)_{0.5}(PO_4)_{2.5}$, $CaMg_{0.5}Zr_{1.5}(PO_4)_3$ от концентрации кальция *x* в их составе при температурах 20–170 (*1*), 20–500 (620) °С (*2*).

Следовательно, керамические материалы на их основе должны обладать высокой устойчивостью к микрорастрескиванию в поле высоких температурных градиентов.

Их термомеханическая прочность, как следует из рис. 7, будет увеличиваться по мере увеличения заселенности позиций в полостях каркаса, т.е. при росте концентрации кальция. Наилучшим из исследуемых соединений по устойчивости к действию термошоков является фосфат $CaMg_{0.5}Zr_{1.5}(PO_4)_3$. При выборе соединений из числа изученных для изготовления керамик биологического назначения предпочтение следует отдать названному выше фосфату с максимальной концентрацией кальция в его составе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Орлова А.И. // Радиохимия. 2002. Т. 44. № 5. С. 385.
- Волков Ю.Ф., Орлова А.И. Систематика и кристаллохимический аспект неорганических соединений с одноядерными тетраэдрическими оксоанионами. Димитровград: ФГУП "ГНЦ РФ НИИАР", 2004. 286 с.
- 3. *Орлова А.И., Корытцева А.К. //* Кристаллография. 2004. Т. 49. № 5. С. 724.
- 4. Alamo J. // Solid State Ionic. 1993. V. 63-65. P. 547.
- 5. Sleight A.W. // Endeavor. 1995. V. 19. № 2. P. 64.
- Huang C.-Y., Agrawal D.K., McKinstry H.A. // J. Mater. Sci. 1995. V. 30. P. 3509.
- Govindan Kutty K.V., Asuvathraman R., Sridharan R. // J. Mater. Sci. 1998. V. 33. P. 4007.
- Limaye Y., Agrawal D.K., McKinstry A. et al. // US Patent № 4.801.566. Jan. 31, 1989.
- Limaye Y., Agrawal D.K., Roy R. // J. Mater. Sci. 1991. V. 26. P. 93.
- Chakraborty N., Basu D., Fischer W. // J. Europ. Ceram. Soc. 2005. V. 25. P. 1885.
- Крюкова А.И. // Журн. неорган. химии. 1991. Т. 35. № 8. С. 1962.
- Черноруков Н.Г., Коршунов И.А., Прокофьева Т.В. // Кристаллография. 1978. Т. 23. № 4. С. 844.
- 13. *Петьков В.И., Орлова А.И., Капранов Д.А. //* Журн. неорган. химии. 1998. Т. 43. № 9. С. 1534.
- 14. *Самойлов С.Г., Орлова А.И., Казанцев Г.Н. и др. //* Кристаллография. 2006. Т. 51. № 3. С. 519.
- Senbhagaraman S., Guru Row T., Umarji A. // J. Mater. Chem. 1993. V. 3. P. 309.
- Alamo J., Rodrigo J.L. // Solid State Ionics. 1993. V. 63–65. P. 678.