КРИСТАЛЛОГРАФИЯ, 2013, том 58, № 1, с. 72-75

УДК 548:736

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО СОЕДИНЕНИЯ AsS₂

= СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

© 2013 г. Н. Б. Болотина, В. В. Бражкин*, Т. И. Дюжева*, Л. М. Литягина*, Л. Ф. Куликова*, Н. А. Николаев*, И. А. Верин

> Институт кристаллографии РАН, Москва E-mail: bolotina@ns.crys.ras.ru * Институт физики высоких давлений РАН, Троицк Поступила в редакцию 03.05.2012 г.

Монокристаллы AsS_2 впервые получены из расплава As_2S_3 при давлениях выше 6 ГПа и температурах выше 800 К по реакции $As_2S_3 \rightarrow AsS + AsS_2$. Моноклинная структура новой фазы высокого давления установлена рентгеноструктурным анализом и сопоставлена со структурой ранее изученной фазы высокого давления AsS.

DOI: 10.7868/S0023476113010074

ВВЕДЕНИЕ

Система мышьяк-сера относится к одной из самых интересных и важных халькогенидных систем. В нормальных условиях в этой системе известно довольно много соединений различного состава, что и обеспечивает большое разнообразие материалов на их основе для использования в технических целях. Наиболее распространенными являются соединения состава AsS и As_2S_3 , встречающиеся в природе как минералы – реальгар и аурипигмент. Особое место среди сульфидов мышьяка занимает аурипигмент As_2S_3 , структура которого квазидвумерная слоистая, в отличие от молекулярных структур всех других сульфидов, за исключением недавно синтезированной метастабильной фазы высокого давления AsS [1].

При исследованиях фазовой диаграммы As_2S_3 *in situ* [2] обнаружено фазовое превращение при давлениях выше 6 ГПа и температурах выше 800 К. Фазы высокого давления сохраняются в метастабильном состоянии после сброса давления. При изучении монокристаллов, выращенных в этой области давления и температуры, обнаружено, что аурипигмент неустойчив и претерпевает химическое разложение, предположительно, по реакции $As_2S_3 \rightarrow AsS + AsS_2$ с образованием нового соединения дисульфида мышьяка, не существующего в нормальных условиях. Определение атомного строения AsS_2 и явилось целью данной работы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Условия выращивания монокристаллов AsS_2 p = 5.5-6.0 ГПа и T = 850-600°С были выбраны в соответствии с p, Т-диаграммой As_2S_3 [2]. Образец аурипигмента при заданном давлении охлаждался со средней скоростью 1°/мин в температурном интервале 850-600°С. После вскрытия контейнера образец представлял собой хорошо раскристаллизованную массу карминно-красного цвета с размером зерна от 5 до 30 мкм, содержащую веерообразные кристаллы размером до 1 мм с совершенной косой спайностью, а также кристаллы удлиненного габитуса размером 30 \times 30 \times 200 $\rm мкm^3$ (рис. 1). Последние были отобраны для проведения полного структурного анализа, в результате которого установили, что химический состав кристаллов соответствует формуле AsS₂. Рентгендифракционные данные от монокристалла собраны на дифрактометре Xcalibur с CCD-детектором (Мо-излучение, графитовый монохроматор) и обработаны по программе CrysAlis Pro [3]. Новая структура AsS_2 решена методом charge flipping в группе симметрии P12₁1; параметры элементарной ячейки: *a* = 7.916(2), *b* = 9.937(2), *c* = = 7.118(1) Å, $\beta = 106.41^{\circ}$. Решение и уточнение структуры выполнены по программе JANA2006 [4]. Данные о кристалле и эксперименте представлены в табл. 1, атомные координаты – в табл. 2. Файл с информацией о структуре депонирован в неорганической базе данных ICSD под № 424590.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Модификация высокого давления AsS_2 дает еще один уникальный пример слоистого соединения в системе As—S. Наблюдается любопытное сходство между слоистыми структурами новой фазы высокого давления AsS_2 и ранее изученной фазы AsS (рис. 2). Слои в обеих структурах слабо связаны между собой. Как видно из рис. 3а, слой в структуре AsS_2 состоит из отдельных колонок, вытянутых по диагонали в плоскости рисунка. Каждый атом мышьяка в слое связан с тремя атомами серы. Половина атомов S координирована двумя атомами As, а другая половина — одним

Рис. 1. Кристаллы AsS_2 , выращенные из расплава As_2S_3 .

Габ.	лица	1. Д	анные	о к	ристалле	и	экспе	риме	нте
------	------	------	-------	-----	----------	---	-------	------	-----

Химическая формула	AsS ₂			
М, г/моль	139			
Симметрия, пр. гр., Z	Моноклинная, <i>P</i> 12 ₁ 1, 8			
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.916(2), 9.937(3), 7.118(3)			
β, град	106.41(4)			
$V, Å^3$	537.1(3)			
D_x , г/см ³ ; µ, мм ⁻¹	3.438(2); 13.8			
Излучение, λ, Å	Mo, 0.7107			
<i>Т</i> , К	293			
Размер кристалла, мм	$0.03 \times 0.03 \times 0.20$			
Дифрактометр	Xcalibur CCD Sapphire			
Тип сканирования	ω			
Поправка на поглощение	'multi-scan' [3]			
θ_{max} , град	37.4			
Пределы h, k, l	$\begin{array}{l} -12 \leq h \leq 12, -16 \leq k \leq 15, \\ -11 \leq l \leq 11 \end{array}$			
Измеренные рефлексы/не- зависимые (<i>all</i>)	16533/4640			
Измеренные/независи- мые (<i>obs</i>), <i>I</i> > 3 σ	2550/1001			
$R_{int} (all)/R_{int} (obs)$	0.232/0.098			
МНК уточнение	Основано на <i>F</i>			
Весовая схема $1/\sigma^2 + (kF)^2$, k	0.01			
<i>N</i> refl(<i>all</i>)/ <i>N</i> refl(obs)/пара- метры*	4371/789/43			
R(all)/R(obs)/wR(all)/wR(obs)	0.308/0.131/0.137/0.081			
GOF(all)/GOF (obs)	1.04/1.40			

атомом S и одним атомом As. В результате в новой структуре появляются "необычные" для данного класса веществ связи между атомами серы. Аналогично атомы мышьяка в слое структуры AsS образуют "необычные" связи между собой. Зигзагообразные цепочки из атомов As объединяют диагональные колонки в двумерную сетку (рис. 3б). Во всем остальном две структуры очень похожи вплоть до того, что в структуре AsS на рис. 3б нетрудно выделить моноклинную ячейку, которая не является элементарной ячейкой решетки, но качественно повторяет элементарную ячейку AsS₂.

Распределение электронной плотности в слоевых сечениях каждой из двух структур представлено картами Фурье на рис. 4. Атомные позиции

Таблица 2. Позиционные и тепловые параметры в структуре AsS_2

Атом	x/a	y/b	z/c	$U_{ m _{3KB}}/U_{ m _{M30}}, { m \AA}^2$
As1	0.9708(3)	0.038496	0.4086(4)	0.0119(3)*
As2	0.4369(3)	0.0449(5)	0.2641(4)	0.0119(3)
As3	0.6526(3)	0.8151(4)	0.1072(4)	0.0119(3)
As4	0.8782(3)	0.3301(4)	0.0312(4)	0.0119(3)
S 1	0.6110(7)	0.0321(7)	0.0529(8)	0.0032(3)**
S2	0.1811(7)	0.5487(8)	0.3549(8)	0.0032(3)
S 3	0.7192(7)	0.3233(7)	0.2766(8)	0.0032(3)
S4	0.9392(7)	0.8267(7)	0.2992(8)	0.0032(3)
S5	0.1714(7)	0.0361(7)	0.0551(8)	0.0032(3)
S 6	0.4667(7)	0.8145(7)	0.3241(8)	0.0032(3)
S 7	0.1704(7)	0.3469(7)	0.2472(8)	0.0032(3)
S 8	0.7498(7)	0.5080(7)	0.4079(8)	0.0032(3)

* Единые анизотропные параметры уточнялись для всех атомов As.

* Рефлексы отобраны по критерию $|F_{obs} - F_{calc}| < 3\sigma(F_{obs})$.

** Единый изотропный параметр уточнялся для всех атомов S.

Рис. 2. Структуры фаз высокого давления AsS_2 (а) и AsS (б).

Рис. 3. Плоскость одного слоя в структурах AsS_2 (а) и AsS (б).

новой структуры AsS_2 не расщеплены, хотя в структуре AsS расщепление по *z*-координате свойственно многим позициям, что сильно усложняло структурный анализ [1]. Объяснялся этот эффект наличием в кристалле антифазных доменов, сдвинутых друг относительно друга на половину периода по оси а и ответственных за расщепление позиций As5, As3, As1 и As7 на рис. 4б. Инвариантные к сдвигу на *а*/2 цепочки из атомов As служат естественными границами доменов и необходимыми конструктивными элементами для реализации сдвига. Структура AsS_2 не содержит таких цепочек. Следовательно, кристалл не содержит антифазных доменов, и нет причин для расщепления позиций на картах Фурье (рис. 4а). Вместе с тем *R*-факторы уточнения структуры остаются довольно высокими даже после отбраковки "плохих" рефлексов по критерию $|F_{obs} - F_{calc}| < 3\sigma(F_{obs})$. Малые размеры и неизометричная форма кристаллов могут быть не единственными к тому причинами. Напомним, что в настоящей работе исследовались кристаллы AsS₂, полученные из расплава As₂S₃. Новые образцы были получены закалкой на составе (As₂S₃ + + S \rightarrow 2 AsS₂). Дифракция в плоскости k = 0 от двух кристаллов AsS₂, выращенных из расплава As₂S₃ и из собственного расплава, представлена на рис. 5а, 56 соответственно, с добавленной на рис. 56 обратной решеткой для наглядности.

Картины от кристаллов из собственного расплава свидетельствуют о худшем качестве кристаллов, что, возможно, связано с очень высокой вязкостью расплава (при высоких скоростях охлаждения расплав AsS_2 легко стеклуется). При ближайшем рассмотрении картины качественно повторяют друг друга вплоть до распределения междоузельных дефектов, некоторые из которых

КРИСТАЛЛОГРАФИЯ том 58 № 1 2013

Рис. 4. Карты Фурье электронной плотности в плоскостях y = 0.32 для AsS₂ (a), y = 0.14 для AsS (6).

Рис. 5. Дифракция в плоскости k = 0 от монокристаллов AsS₂, полученных из расплава As₂S₃ (a) и собственного расплава (б).

отмечены стрелками на обоих рисунках. Как видно из менее качественной, но более яркой картины на рис. 56, большинство рефлексов соответствуют узлам моноклинной сетки. Дефекты в междоузлиях часто точечные; иногда точки сливаются и образуют штрих. Точная причина дефектов пока не установлена. По всей видимости, кристаллы содержат вклад другой фазы или ту же фазу в другой ориентации, что и препятствует понижению *R*-фактора при уточнении основной структуры AsS₂.

Работа выполнена при финансовой поддержке по гранту Ведущих научных школ НШ 2883.2012.5

КРИСТАЛЛОГРАФИЯ том 58 № 1 2013

и гранту Президиума РАН "Вещество при высоких плотностях энергии".

СПИСОК ЛИТЕРАТУРЫ

- 1. Brazhkin V.V., Bolotina N.B., Dyuzheva T.I. et al. // Cryst. Eng. Commun. 2011. V. 13. P.2599.
- Brazhkin V.V., Katayama Y., Kondrin M.V. et al. // Phys. Rev. B. 2010. V. 82 P. 140202.
- CrysAlisCCD CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.52, release 06-11-2009 CrysAlis171.
- 4. Petricek V., Dusek M., Palatinus L. // http://jana.fzu.cz/