= КРИСТАЛЛОХИМИЯ =

УДК 546.831.4'185

ВЫСОКОТЕМПЕРАТУРНАЯ РЕНТГЕНОГРАФИЯ СЛОЖНЫХ ФОСФАТОВ КАЛЬЦИЯ, СТРОНЦИЯ, БАРИЯ И ЦИРКОНИЯ СЕМЕЙСТВА NaZr₂(PO₄)₃

© 2013 г. А. И. Орлова, С. А. Хайнаков*, А. С. Иванова, В. Ю. Волгутов, Х. Р. Гарсиа*

Нижегородский государственный университет, Россия E-mail: Albina.Orlova@inbox.ru * Университет Овьедо, Испания Поступила в редакцию 31.05.2011 г.

поступила в редакцию 51.05.2011 1.

Синтезированы новые фосфаты в системе $B_{(1-x)/2}^{II}$ Zr_{x/4}Zr₂(PO₄)₃, где $B^{II} = Ca^{2+}$, Sr²⁺ и Ba²⁺, $0 \le x \le 1$, с использованием золь-гель-технологии. По результатам рентгенофазового анализа установлено,

что они кристаллизуются в ромбоэдрической ячейке пр. гр. $R\overline{3}$, кроме $Zr_{1/4}Zr_2(PO_4)_3$ (пр. гр. $P\overline{3}c$) и относятся к семейству Na $Zr_2(PO_4)_3$ (NZP). Методом высокотемпературной рентгенографии определены параметры элементарной ячейки *a* и *c* при температурах t = 25-900°C (Ca-фазы), 25-800°C (Sr, Ba-фазы). На основании анализа полученных данных рассчитаны осевые коэффициенты α_a, α_c , а также средние $\alpha_{av} = (2\alpha_a + \alpha_c)/3$ и анизотропия $\Delta \alpha = |\alpha_c - \alpha_a|$ теплового расширения, которые равны: α_a от -0.81 до $4.09 \times 10^{-6\circ}$ C⁻¹; α_c от -0.68 до $7.15 \times 10^{-6\circ}$ C⁻¹; α_{av} от 0.49 до $2.26 \times 10^{-6\circ}$ C⁻¹ и $\Delta \alpha$ от 0.99 до $9.12 \times 10^{-6\circ}$ C⁻¹ соответственно. Рассчитанные средние коэффициенты осевого теплового расширения элементарных ячеек позволяют рассматривать полученные твердые растворы Ca–Zr-, Sr–Zr- и Ba–Zr-фосфатов как мало расширяющиеся, однако анизотропия расширения при этом имеет место. В соответствии с кристаллохимической формулой NZP аналогов (M1)^{VI}(M2)^{VII}₃ [L_2^{VI} (PO₄)₃], где L и M (M1 и M2) – позиции каркаса и его полостей, доля занятых M-позиций составляла от 6.25 до 12.5%. Фазовый переход, характерный для крайнего члена всех рядов $Zr_{1/4}Zr_2(PO_4)_3$, для смешанных фосфатов циркония и щелочноземельных элементов Ca, Sr, Ba при изученных температурах и концентрациях не наблюдался.

DOI: 10.7868/S0023476113010128

ВВЕДЕНИЕ

Соединения со структурой NaZr₂(PO₄)₃ (NZP) являются одним из перспективных классов кристаллических соединений. Особенности химии и кристаллохимии ортофосфатов каркасного строения, кристаллизующихся в структурном типе NZP, рассмотрены в [1–3]. Согласно данным рентгеноструктурного анализа, основу каркаса NZP-соединений составляет структурная единица [Zr₂(PO₄)₃]^{1–} (рис. 16), состоящая из двух циркониевых октаэдров ZrO₆ и трех фосфорных тетраэдров PO₄, объединенных посредством общих атомов кислорода. Сочлененные между собой блоки Zr₂(PO₄)₃ формируют жесткий трехмерный анионный каркас (рис. 1а).

Структура NZP и соединений его семейства описывается общей кристаллохимической формулой $(M1)^{VI}(M2)_2^{VIII}[L_2^{VI}(PO_4)_3]$, где *L* и *M* (*M*1 и *M*2) — позиции атомов каркаса и атомов, расположенных в его полостях, а VI и VI, VIII — их координационное окружение (рис. 16, 1в). Позиции типа *M* могут быть заселены полностью или частично, а могут оставаться вакантными. Они за-

Рис. 1. Фрагмент кристаллической структуры $NaZr_2(PO_4)_3$ (а), структурная единица каркаса $[Zr_2(PO_4)_3]^{1-}$ (б), координационные многогранники полостей каркаса (в).

няты преимущественно малозарядными и относительно большими катионами, тогда как каркас $[L_2^{\text{VI}}(\text{PO}_4)_3]$ сформирован многозарядными катионами небольшого размера L^{VI} и отрицательно заряженными тетраэдрами PO_4^{3-} .

Особенности кристаллической структуры фосфатов семейства NZP проявляются в своеобразном поведении при нагревании: наблюдается расширение-сжатие вдоль разных кристаллографических направлений [4-8]. При различных вариациях составов благодаря изоморфизму могут образовываться соединения с малыми и ультрамалыми коэффициентами теплового расширения и с малой или близкой к нулю анизотропией теплового расширения [9–13]. Это известные фосфаты с большими катионами Cs, K, Sr, Ba в полостях структуры NZP: CsZr₂(PO₄)₃, CsHf₂(PO₄)₃ [14], Cs_{13/10}Gd_{3/10}Zr_{17/10}(PO₄)₃ [15], K_{1/2}Sr_{1/4}Zr₂(PO₄)₃ [16], Ва_{1/2}FeNb(PO₄)₃ [17]. Это также фосфаты с незанятыми позициями полостей каркаса (с нулевым зарядом каркаса): Al_{1/2}Nb_{3/2}(PO₄)₃, Fe_{1/2}Nb_{3/2}(PO₄)₃ [18] и твердые растворы, крайние члены которых имеют противоположные по знакам коэффициенты теплового расширения: $Ca_{1/4}Sr_{1/4}Zr_2(PO_4)_3$, Са_{1/4}Ва_{1/4}Zr₂(PO₄)₃ [19–21]. Эти вещества способны практически не расширяться при нагревании и, следовательно, выдерживать тепловые стрессы без микроразрушений.

На основе кристаллохимических знаний возможно моделирование новых составов соединений и твердых растворов внутри семейства NZP с ожидаемыми низкими параметрами теплового расширения.

Один из подходов включает поиск и формирование фосфатов с малой заселенностью позиций в полостях каркаса. Этот подход реализован в [22] примере ортофосфата циркония вида $Zr_{1/4}Zr_{2}(PO_{4})_{3}$, в структуре которого доля занятых М-позиций составляет 1/16. Для этого соединения методом высокотемпературной рентгенографии установлено, что в интервале температур 25-125 и 325-575°С значения осевых коэффициентов теплового расширения и их анизотропии малы при $t = 25 - 125^{\circ}$ С $\alpha_a < 1.0 \times 10^{-6\circ}$ С⁻¹, $\alpha_c < 1.0 \times$ × 10⁻⁶°C⁻¹, $\Delta\alpha$ < 1.0 × 10⁻⁶°C⁻¹; πρи *t* = 325–575°C α_a = -1.4 × 10⁻⁶°C⁻¹, α_c < 1.0 × 10⁻⁶°C⁻¹, $\Delta\alpha$ < 2.4 × × 10^{-6°}C⁻¹. Но в исследованной температурной области от 25 до 575°С фосфат характеризовался немонотонным характером изменения параметров решетки при нагревании. В интервале 125-325°С имел место фазовый переход второго рода с относительно большим сжатием структуры вдоль всех кристаллографических направлений: $\alpha_a =$ $= -16.0 \times 10^{-6\circ} C^{-1}, \alpha_c = -48.0 \times 10^{-6\circ} C^{-1}.$ Этот феномен накладывает определенные ограниче-

Таблица 1. Параметры теплового расширения фосфатов $B_{1/2}$ Zr₂(PO₄)₃ B =Ca, Sr, Ba, $\alpha \times 10^6$, K⁻¹

Формула	α_a	α _c	α_{av}	$lpha_d^*$	Литера- тура
$Ca_{1/2}Zr_2(PO_4)_3$	-5.10	9.90	-0.10		[19, 23]
	-2.57	7.74	0.80		[9]
	-3.30	10.10		-2.76	[21]
$\mathrm{Sr}_{1/2}\mathrm{Zr}_{2}(\mathrm{PO}_{4})_{3}$	3.60	-1.20	2.00		[19, 23]
	2.24	2.28	2.22		[9]
	0.20	3.30		2.30	[21]
	2.30	1.30			[24]
$\mathrm{Ba}_{1/2}\mathrm{Zr}_{2}(\mathrm{PO}_{4})_{3}$	5.40	-1.80	3.00		[19]

* Дилатометрический коэффициент теплового расширения.

ния на полезное свойство — устойчивость к тепловым стрессам.

В развитие принципа малой заселенности *М*-позиций как фактора, обеспечивающего малое тепловое расширение NZP-фосфатов при малой анизотропии теплового расширения, в настоящей работе синтезированы и исследованы методом высокотемпературной рентгенографии со-единения $B_{(1-x)/2}$ Zr_{x/4}Zr₂(PO₄)₃, где *B* = Ca, Sr, Ba, с заселенностью *М*-позиций от 1/8 до 1/16.

Известные из литературы значения параметров теплового расширения фосфатов $B_{1/2}^{II} \operatorname{Zr}_2(\operatorname{PO}_4)_3$ (x = 0) приведены в табл. 1. Отмечаются различия в данных для фосфата $\operatorname{Sr}_{1/2}\operatorname{Zr}_2(\operatorname{PO}_4)_3$, полученных разными авторами, в том числе по знакам осевых коэффициентов [9, 19, 21, 23, 24].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез фосфатов состава $B_{(1-x)/2}^{II} \operatorname{Zr}_{x/4} \operatorname{Zr}_2(\operatorname{PO}_4)_3$ ($B^{II} = \operatorname{Ca}^{2+}$, Sr^{2+} , Ba^{2+} , $0 \le x \le 1$, с шагом x = 0.25) осуществляли золь-гель-методом с использованием в качестве комплексообразователя лимонной кислоты и этиленгликоля [25, 26].

1M-растворы солей металлов Ca(NO₃)₂ (х.ч.) или Sr(NO₃)₂ (ч.д.а.), или BaCl₂ (х.ч.) и ZrOCl₂ (ч.д.а.), взятые в соответствующей стехиометрии, смешивали с порошком лимонной кислоты $C_6H_8O_7$ (х.ч.). Молярное соотношение лимонной кислоты (ЛК) и металла (М) составляло ЛК : М = = 15: 1, где M = v(Ca или Sr, или Ba) + v(Zr). Полученную суспензию перемешивали на магнитной мешалке при температуре ~85°С до полного растворения лимонной кислоты. Затем прибавляли медленно по каплям одновременно раствор дигидрофосфата аммония NH₄H₂PO₄ (ч.д.а.) и этиленгликоль С₂H₆O₂ (ч.д.а.) при постоянном перемешивании. Молярное соотношение лимонной кислоты и этиленгликоля (ЭГ) составляло ЛК: ЭГ = 1:4. При этом образовывался гель белого

Рис. 2. Рентгенограммы фосфата Ca_{3/8}Zr_{1/16}[Zr₂(PO₄)₃] после нагревания при 700 (1), 800 (2), 900°C (3) в процессе синтеза.

цвета. Для равномерного распределения ионов металла между образующимися мицеллами перемешивание продолжали еще в течение 15 мин. Затем гель сушили при температуре 135° C (24 ч) и нагревали при 350° C (48 ч). Полученный порошок черного цвета диспергировали в агатовой ступке в течение 30 мин, затем отжигали при температурах: 600° C (48–72 ч), 700, 800 и 900°C (в течение 24 ч на каждой стадии). Между стадиями нагревания образец подвергали диспергированию в агатовой ступке в течение 30 мин.

Рентгенофазовый анализ проводили на рентгеновском дифрактометре Shimadzu LabX XRD-6000 с использованием Cu K_{α} -излучения. Дифрактограммы регистрировали в интервале углов 2 θ от 10.00° до 50.00° с шагом 0.02° при комнатной температуре.

Высокотемпературную съемку рентгеновских спектров осуществяли на рентгеновском дифрактометре X'Pert PRO с термоприставкой Anton Paar HTK 1200N. Использовали CuK_{α} -излучение. Подъем температуры составлял 5°С·мин⁻¹. Спектры записывали в интервале углов 20 от 10.0000° до 90.0000° с шагом 0.0131° при температурах от 25 до 850°С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Полученные образцы представляли собой бесцветные поликристаллические порошки. Данные рентгенофазового анализа характеризуют их как представителей семейства NZP. Максимумы дифракционных отражений и их относительные интенсивности соответствовали ромбоэдрической ячейке. Максимальные интенсивности отражений и минимальное присутствие рефлексов дополнительных фаз установлены на рентгенограммах образцов, полученных после этапа нагревания при 900°С для фосфатов ряда с кальцием и при 800°С для фосфатов со стронцием и барием (рис. 2). После нагрева при 700°С и термостатирования при этой температуре в течение 24 ч все образцы оставались рентгеноаморфными. На рис. 2 для примера приведены рентгенограммы одного из образцов с кальцием $Ca_{3/8}Zr_{1/16}[Zr_2(PO_4)_3]$ (x = 1/4) после нагревания до различных температуре в процессе синтеза.

Для последующих исследований использовали фосфаты, полученные после нагревания на последней стадии при 800°С (Са-фосфаты) и при 900°С (Sr- и Ва-фосфаты).

Рентгенограммы синтезированных фаз (рис. 3) обладали сходством и свидетельствовали об изоструктурности полученных соединений. Их индицирование выполняли с использованием данных о соединениях $Ca_{1/2}Zr_2(PO_4)_3$ (PDF2, № 33-0321) [27], $Sr_{1/2}Zr_2(PO_4)_3$ (PDF2, № 33-1360) [27], $Ba_{1/2}Zr_2(PO_4)_3$ [28] с пр. гр. $R\overline{3}$. Изоструктурные фазы в рядах фосфатов $B_{(1-x)/2}Zr_{x/4}[Zr_2(PO_4)_3]$ для B = Ca, Sr, Ba образовались в интервале составов $0 \le x \le 3/4$. Крайний член всех рядов $Zr_{1/4}Zr_2(PO_4)_3$

(x = 1) кристаллизовался в пр. гр. P3c [22].

На основании полученных данных можно предположить, что в сложной системе фосфатов

66

КРИСТАЛЛОГРАФИЯ том 58 № 1 2013

Рис. 3. Рентгенограммы фосфатов $B_{(1-x)/2}^{II}$ Zr_{x/4}[Zr₂(PO₄)₃]: B^{II} = Ca (*I*), Sr (*II*), Ba (*III*) при x = 0 (*I*), 1/4 (*2*), 1/2 (*3*), 3/4 (*4*), 1 (*5*).

 $Ca_{1/2}Zr_2(PO_4)_3 - Sr_{1/2}Zr_2(PO_4)_3 - Ba_{1/2}Zr_2(PO_4)_3 - Zr_{1/4}Zr_2(PO_4)_3$ (рис. 4) имеется область гомогенных фаз с пр. гр. $R\overline{3}$ (выделена на диаграмме составов).

Съемку рентгеновских спектров фосфатов $B_{(1-x)/2}^{II}$ Zr_{x/4}Zr₂(PO₄)₃ (B^{II} = Ca²⁺, Sr²⁺, Ba²⁺; x = 0, 1/4, 1/2, 1) проводили при 25, 50–850°С с шагом 50°С. В качестве примера для одного из составов

КРИСТАЛЛОГРАФИЯ том 58 № 1 2013

67

На основании полученных данных были рассчитаны параметры элементарных ячеек а и с для синтезированных фаз при исследованных температурах. Уточнение параметров и определение соответствующих пространственных групп проводили методом полнопрофильного анализа Pawley [29, 30] с использованием программного обеспечения Materials Studio 5.0 компании Accelrys (http://accelrys.com/products/materials-studio/index.html).

1/4

Зависимости найденных параметров решетки от температуры представлены на рис. 6, 7 и 8, рассчитанные коэффициенты теплового расширения: α_a , α_c , $\alpha_{av} = (2\alpha_a + \alpha_c)/3$ и значения анизотропии теплового расширения $\Delta \alpha = |\alpha_c - \alpha_a| - B$ табл. 2.

Приведенные данные показывают сложный характер наблюдаемых зависимостей. При этом имеются свои особенности в поведении фосфатов в рядах с кальцием, стронцием и барием при нагревании.

ОРЛОВА и др.

рис. 5.

Рис. 5. Данные высокотемпературной рентгенографии фосфата $Ca_{3/8}Zr_{1/16}Zr_2(PO_4)_3$.

Рис. 6. Зависимость параметров элементарной ячейки от температуры: $1 - Ca_{1/2}Zr_2(PO_4)_3$, $2 - Ca_{3/8}Zr_{1/16}Zr_2(PO_4)_3$, $3 - Ca_{1/4}Zr_{1/8}Zr_2(PO_4)_3$, $4 - Zr_{1/4}Zr_2(PO_4)_3$.

 $Ca_{(1-x)/2}Zr_{x/4}[Zr_2(PO_4)_3].$ Коэффициенты теплового расширения крайних членов (x = 0 и x = 1) близки к значениям, приведенным в [16, 19]. Изменения параметров ячеек фосфатов промежуточных составов (x = 1/4, x = 1/2) и фосфата $Ca_{1/2}Zr_2(PO_4)_3$ (*x* = 0) при нагревании аналогичны: значения *c* растут, *a* уменьшаются, $\alpha_c > 0$, $\alpha_a < 0$. Имеет место характерное для структуры NZP "расширение-сжатие" вдоль кристаллографических направлений с и а, b соответственно. На кривых 1, 2, 3 рис. 6 наблюдается некоторое изменение углов наклона в изучаемой температурной области. Можно выделить два участка: 25-400 и 400-850°С. Параметры а и с всех фосфатов с кальцием для $0 \le x \le 1/2$ при всех температурах значительно меньше а и с циркониевого фосфата (x = 1). Коэффициенты α_c мало зависят от состава, для коэффициентов α_a отмечается тенденция снижения их абсолютных значений с увеличением содержания циркония в составе соединений (от x = 0 до x = 1).

КРИСТАЛЛОГРАФИЯ том 58 № 1 2013

Рис. 7. Зависимость параметров элементарной ячейки от температуры в ряду фосфатов: $1 - Sr_{1/2}Zr_2(PO_4)_3$, $2 - Sr_{3/8}Zr_{1/16}Zr_2(PO_4)_3$, $3 - Sr_{1/4}Zr_{1/8}Zr_2(PO_4)_3$, $4 - Zr_{1/4}Zr_2(PO_4)_3$.

Sr_{(1-*x*)/2}**Zr**_{*x*/4}**[Zr**₂(**PO**₄)₃**]**. Коэффициенты α_{*a*} и α_{*c*} фосфата Sr_{1/2}Zr₂(**PO**₄)₃ близки к данным [24]. Структура при нагревании расширяется вдоль всех кристаллографических направлений: α_{*a*} > 0, α_{*c*} > 0, что нехарактерно для NZP-соединений. Изменение параметров ячеек промежуточных составов (*x* = 1/4, *x* = 1/2) и фосфата Sr_{1/2}Zr₂(**PO**₄)₃ (*x* = 1) при нагревании различается: *a* увеличивается, как для Sr_{1/2}Zr₂(**PO**₄)₃, α_{*a*} > 0; *c* уменьшается, α_{*c*} < 0 в отличие от фосфата Sr_{1/2}Zr₂(**PO**₄)₃, что также нехарактерно для фосфатов NZP-семейства. При увеличении концентрации Zr в изоструктурных фосфатах (от *x* = 0 до *x* = 1/4 и *x* = 1/2) наблюдается тенденция снижения коэффициентов α_{*a*} и α_{*c*}.

Рис. 8. Зависимость параметров элементарной ячейки от температуры: $1-Ba_{1/2}Zr_2(PO_4)_3),\ 2-Ba_{3/8}Zr_{1/16}Zr_2(PO_4)_3,\ 3-Ba_{1/4}Zr_{1/8}Zr_2(PO_4)_3,\ 4-Zr_{1/4}Zr_2(PO_4)_3.$

Значения параметра *а* для фосфатов всех составов со стронцием во всем температурном интервале меньше, чем для фосфата циркония, значение *с* при таком же сравнении больше.

Ва_{(1-x)/2}**Zг**_{x/4}**[Zr**₂(**PO**₄)₃**].** Для фосфата Ва_{1/2}Zr₂(**PO**₄)₃ параметры α_a и α_c положительны, структура расширяется вдоль всех кристаллографических направлений. В отличие от него для фосфата Zr_{1/4}Zr₂(**PO**₄)₃ в интервале температур 125–325°С коэффициенты α_a и α_c отрицательны, структура при нагревании сжимается. Для обоих фосфатов – крайних членов ряда – на кривых a = f(T) и c = f(T) отмечаются изломы в интервале t = 50-250°С для Ba_{1/2}Zr₂(**PO**₄)₃ и t = 125-325°С

Таблица 2. Характеристики теплового расширения фосфатов $\alpha \times 10^6$, °C⁻¹

Температурный интервал, °С	α_a	α_c	Δα	α_{av}				
Ca _{1/2} Zr ₂ (PO ₄) ₃								
25-300	-3.74	4.80	8.54	-0.89				
300-850	-1.12	6.93	8.05	1.56				
$Ca_{3/8}Zr_{1/16}Zr_2(PO_4)_3$								
25-300	-2.97	5.85	8.82	-1.00				
300-850	-1.01	7.15	8.16	1.71				
$Ca_{1/4}Zr_{1/8}Zr_2(PO_4)_3$								
25-300	-3.53	5.59	9.12	-0.49				
300-850	-0.81	5.84	6.65	1.41				
$\mathrm{Sr}_{1/2}\mathrm{Zr}_{2}(\mathrm{PO}_{4})_{3}$								
25-800	2.22	1.23	0.99	1.89				
$Sr_{3/8}Zr_{1/16}Zr_2(PO_4)_3$								
25-800	2.75	-2.59	5.34	0.97				
$Sr_{1/4}Zr_{1/8}Zr_{2}(PO_{4})_{3}$								
25-800	2.25	-0.80	3.05	1.23				
$Ba_{1/2}Zr_2(PO_4)_3$								
25-250	26.10	16.03	9.80	22.74				
250-750	3.97	3.11	0.86	3.68				
$Ba_{3/8}Zr_{1/16}Zr_2(PO_4)_3$								
25-250	4.09	-1.41	5.50	2.26				
250-750	2.79	-0.68	3.47	1.63				
$Ba_{1/4}Zr_{1/8}Zr_{2}(PO_{4})_{3}$								
25-250	2.75	-2.27	5.02	1.08				
250-750	2.71	-0.89	3.60	1.51				
$Zr_{1/4}Zr_2(PO_4)_3$ [12]								
25-125	1.10	0.00	1.10	0.73				
325-575	-1.4	-4.50	3.10	-2.43				

для $Zr_{1/4}Zr_2(PO_4)_3$ с переходом в область мало меняющихся от температуры параметров элементарных ячеек. Введение циркония в состав твердых растворов приводит к снижению α_a и α_c с переходом α_c в область отрицательных значений ($\alpha_a > 0$, $\alpha_c < 0$). По абсолютному значению эти коэффициенты для x = 1/4 и x = 1/2 малы. Параметры *с* элементарных ячеек всех Ва-содержащих фаз значительно больше, а параметр *а* меньше соответствующих *с* и *a* Zr-фосфата. Во всей изучаемой области температур эффект "расширения—сжатия" при нагревании в присутствии более крупных катионов Ba²⁺ невелик. Катион бария, находясь в *M*1-позиции, уже растягивает структуру вдоль оси *c*, сжимая ее при этом вдоль оси *a*. Кристаллохимический эффект здесь проявляется аналогично тепловому.

Все изучаемые твердые растворы Ca–Zr-, Sr–Zrи Ba–Zr-фосфатов ($1/4 \le x \le 1/2$) характеризуются малыми величинами объемного расширения α_{av} : в области низких температур от 0.49 до 2.26 × × $10^{-6\circ}$ C⁻¹, высоких температур от 0.97 до 1.71 × × $10^{-6\circ}$ C⁻¹, и относятся к группе мало расширяющихся соединений. В то же время для них имеет место анизотропия теплового расширения, которая достигает для некоторых составов значений до ~9.00 × $10^{-6\circ}$ C⁻¹ (хотя минимальные оцениваются близкими к нулю величинами) (табл. 2).

Введение циркония в фосфаты $Ca_{1/2}Zr_2(PO_4)_3$ и $Sr_{1/2}Zr_2(PO_4)_3$ в позиции M (составы $B_{3/8}Zr_{1/16}Zr_2(PO_4)_3$, $B_{1/4}Zr_{1/8}Zr_2(PO_4)_3$ (B = Ca, Sr)) практически не влияет на коэффициенты теплового расширения, хотя незначительная тенденция к их снижению имеется. В Ва-ряду присутствие циркония ($Ba_{3/8}Zr_{1/16}Zr_2(PO_4)_3 x = 1/4$, $Ba_{1/4}Zr_{1/8}Zr_2(PO_4)_3 x = 1/2$) существенно влияет на эти характеристики: α_a и α_c уменьшаются (табл. 2).

В исследованных фосфатах ($0 \le x \le 1$) доля занятых позиций *M* имеет значения от 0.125 (12.5%) до 0.0625 (6.25%)), в области составов с малым тепловым расширением ($1/4 \le x \le 1/2$) — от 0.109 до 0.094 (от 10.9 до 9.4%).

Для всех представителей исследуемых рядов фосфатов щелочноземельных элементов и циркония в области температур $t = 25-750^{\circ}$ С фазовые переходы не установлены в отличие от крайнего члена, общего для всех рядов $Zr_{1/4}Zr_2(PO_4)_3$.

Работа выполнена при финансовой поддержке Министерства образования и науки Испании (MEC-06-MAT2006-01997).

СПИСОК ЛИТЕРАТУРЫ

- Alamo J., Roy R. // Commun. Am. Ceram. Soc. 1984. № 5. P. 80.
- 2. *Roy R., Agrawal D.K., Roy R.A.* // Mater. Res. Bull. 1984. V. 19. P. 471.
- 3. Lenain G.E., McKinstry H.A., Limaye S.Y., Woodword A. // Mater. Res. Bull. 1984. V. 19. P. 1451.
- 4. *Oota T., Yamai I.* // J. Am. Ceram. Soc. 1986. V. 69. P. 1.
- Lenain G.E., McKinstry H.A., Alamo J., Agrawal D.K. // J. Mater. Sci. 1987. V. 22. P. 17.

КРИСТАЛЛОГРАФИЯ том 58 № 1 2013

- Rodrigo J.L., Alamo J. // Mater. Res. Bull. 1991. V. 26. P. 475.
- 7. Tailor D. // J. Brit. Ceram. Trans. 1991. V. 90. P. 64.
- 8. Agrawal D.K., Huang C.-Y., McKinstry H.A. // Int. J. Thermophys. 1991. V. 12. P. 697.
- Govindan K.V., Asuvathraman R., Mathews S.K., Varadaraju U.V. // Mater. Res. Bull. 1994. V. 29. № 10. P. 1009.
- Govindan K.V., Asuvathraman R., Sridharan R. // J. Mater. Sci. 1998. V. 33. P. 4007.
- 11. Orlova A.I., Kemenov D.V., Petkov V.I. et al. // High Temp. High Press. 2002. V. 34. P. 3.
- 12. Орлова А.И., Жаринова М.В., Петьков В.И. и др. // Конструкции из композиционных материалов. 2002. Т. 3. С. 3.
- 13. Barre M., Crosnier-Lopez M.-P., Le Berre F. et al. // Dalton. Trans. 2008. P. 3061.
- Самойлов С.Г., Крюкова А.И., Казанцев Г.Н., Артемьева Г.Ю. // Неорган. материалы. 1992. Т. 28. № 10/11. С. 2197.
- 15. Orlova A.I., Kazantsev G.N., Samoilov S.G. // High Temp. High Press. 1999. V. 31. P. 105.
- Zhang B., Guo J. // J. Eur. Ceram. Soc. 1995. V. 15. P. 429.
- 17. Bortsova Ye.V., Korittseva A.K., Orlova A.I. et al. // J. Alloys Compunds. 2009. № 1–2. P. 79.
- Orlova A.I., Koryttseva A.K., Lipatova Ye.V. et al. // J. Mater. Sci. Lett. 2005. V. 40. P. 2741.
- 19. *Limaye Y., Agrawal D.K., McKinstry H.A., Roy R.* // US Patent № 4,801,566 Jan. 31, 1989.
- 20. Watanabe K., Ohashi T., Mats T. // US Patent 4,935,816. 1990.
- 21. Chakraborty N., Basu D., Fischer W. // J. Eur. Ceram. Soc. 2005. V. 25. P. 1885.
- 22. Орлова А.И., Самойлов С.Г., Казанцев Г.Н. и др. // Кристаллография. 2009. Т. 54. № 3. С. 464.
- 23. *Limaye Y., Agrawal D.K., Roy R.* // J. Mater. Sci. 1991. V. 26. P. 93.
- 24. *Limaye Y., Santoshy H.* // US Patent № 5,488,018. Jan. 30, 1996.
- 25. Pechini M.P. // US Patent № 3,330,697. 1967.
- 26. *Kakihana M.* // J. Sol–Gel Sci. Technol. 1996. V. 6. P. 7.
- 27. PCPDFWIN a Windows, retrieval/display program for accessing the ICDD PDF2 – database // JCPDS – International Center for Diffraction Data.
- Гобечия Е.Р., Кабалов Ю.К., Петьков В.И., Суханов М.В. // Кристаллография. 2004. Т. 49. № 5. С. 829.
- 29. Engel G.E., Wilke S., Harris K. D., Leusen F.J. // J. Appl. Cryst. 1999. V. 32. P. 1169.
- 30. Pawley G.S. // J. Appl. Cryst. 1981. V. 14. P. 357.