РОСТ КРИСТАЛЛОВ

УДК 548.736.3

ПОЛУЧЕНИЕ КРИСТАЛЛОВ Rb_{0.90}Cs_{0.10}NO₃ И ИХ РЕНТГЕНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ

© 2012 г. В. И. Насиров, А. Ф. Хазиева, Ю. Г. Асадов, А. С. Амиров, Ю. И. Алыев

Институт физики НАН Азербайджана, Баку E-mail: yusifasadov@rambler.ru Поступила в редакцию 03.08.2011 г.

Методом рентгеновской дифракции исследованы полиморфные превращения в полученных кристаллах $Rb_{0.90}Cs_{0.10}NO_3$. От комнатной температуры до температуры плавления у $Rb_{0.90}Cs_{0.10}NO_3$ обнаружены четыре различные модификации. Определены температуры превращения и параметры элементарных ячеек кристаллов этих модификаций.

Изучение закономерностей полиморфных превращений в нитратовых соединениях щелочных металлов имеет не только научный, но и практический интерес, поскольку этот процесс тесно связан с технологией получения монокристаллов смешанного состава, обладающих полиморфизмом.

Как известно [1–6], нитрат рубидия от комнатной до температуры плавления имеет четыре, а нитрат цезия две модификации. Структурные параметры данных модификаций и температурные интервалы их существования приведены в табл. 1.

На основе литературных данных о морфологии и кинетике полиморфных превращений в нитратах рубидия и цезия выявлено существование новых *х*-модификаций между III и IV модификациями в нитрате рубидия [7], и между I и II модификациями в нитрате цезия [8]. В [9] методом молекулярно-динамического моделирования исследованы структурные фазовые превращения в нитратах рубидия и цезия, а в [10] составлена фазовая диаграмма системы RbNO₃-CsNO₃.

Исследования твердых растворов нитрата цезия в нитрате рубидия показывают, что I и III модификации не наблюдаются в твердых растворах при концентрации соли цезия ~25 мол. % [11].

Для выяснения закономерностей структурных фазовых превращений в твердом растворе $Rb_{0.90}Cs_{0.10}NO_3$ проведены микроскопические и рентгенографические исследования. Полиморфные превращения в этом твердом растворе ранее не изучались.

Цель исследований — определение влияния частичного замещения ионов Rb¹⁺ ионами Cs¹⁺ на механизм полиморфных превращений в нитрате рубидия.

Настоящая работа является продолжением исследований [12, 13] и посвящена рентгенографическому исследованию полиморфных превращений в Rb_{0.90}Cs_{0.10}NO₃.

Кристалл $Rb_{0.90}Cs_{0.10}NO_3$ получили из водного раствора при комнатной температуре. Для совершенства и чистоты полученных монокристаллов нитраты рубидия и цезия марки "ХЧ" подвергались дополнительной очистке путем многократной кристаллизации. Хорошо ограненные кристаллы размерами в среднем $1 \times 0.5 \times 10$ мм имели разнообразные внешние формы (рис. 1). Для рентгенографических исследований из этих мо-

Состав	Модифи- кация	Сингония	Параметры решетки, Å		Пргр	Температурный	Питература
			а	С	пр. тр.	интервал, К	литература
RbNO ₃	Ι	Кубическая	7.32		$Fm\overline{3}m$	564-587	[1]
	II	Ромбоэдрическая	5.48	10.71	$Pm\overline{3}m$	492-564	[2]
	III	Кубическая	4.35		$Fm\overline{3}m$	437-492	[3]
	IV	Ромбоэдрическая	10.48	7.45	<i>P</i> 31	<437	[4]
CsNO ₃	Ι	Тригональная	10.87	7.76	<i>P</i> 3/ <i>m</i>	434-687	[5]
	II	Кубическая	8.98		Pa3	<434	[6]

Таблица 1. Структурные данные отдельных модификаций и температурные интервалы их существования в RbNO₃

Рис. 1. Монокристаллы Rb_{0.90}Cs_{0.10}NO₃, полученные из водного раствора при комнатной температуре.

нокристаллов получены образцы в виде порошка, который рассматривался на порошковом дифрактометре D8 ADVANCE фирмы Bruker при режиме 40 кВ, 40 МА, CuK_{α} -излучения ($\lambda = 1.5406$ Å) в температурной камере TTK450 в интервале 77 < *T* < 723 К.

Зафиксированные от этих образцов при комнатной температуре в интервале углов $20^{\circ} \le 2\theta \le 80^{\circ}$ четкие дифракционные отражения индицируются на основе ромбоэдрической решетки с параметрами *a* = 10.479, *c* = 7.458 Å, пр. гр. *P*31. После их записи при комнатной температуре повышение температуры образца сопровождалось записью дифракционных отражений через каждые 10 К. Перед началом каждой записи температура образца поддерживалась постоянной в течение 30 мин. По изменению интенсивности структурно чувствительных отражений, которые исчезают при структурных превращениях, определена температура превращения в $Rb_{0.90}Cs_{0.10}NO_3$ и установлено, что при 500 ± 1 К ромбоэдрическая модификация превращается в кубическую. Полученные дифракционные отражения индицируются на основе параметров кубической решетки: a = 4.379 Å, пр. гр. $Pm\overline{3}m$.

Анализ дифракционных записей, зафиксированных при разных температурах, показывает, что в интервале температур 500—548 К в количествах отражений и их интенсивностях существенных изменений не происходит. Только при температуре 550 ± 1 К прежние дифракционные отражения исчезают и появляются новые, принадлежащие не кубической решетке, как показано в [3], а тетрагональной с параметрами a = 3.945, c = 8.728 Å, пр. гр. *I*4.

В интервале температур 551–588 К число и интенсивность дифракционных отражений остаются без изменения, а при температуре 590 ± 1 К дифракционные отражения, принадлежащие тетрагональной решетке, полностью исчезают и появляются новые, которые индицируются на основе кубической решетки с параметром a = 7.35 Å, пр. гр. $Fm\overline{3}m$. Расчет дифрактограмм кристалла Rb_{0.90}Cs_{0.10}NO₃, записанных при разных температурах, приведены в табл. 2, а на рис. 2 представлена дифракционная картина исследуемого кристалла при различных температурах.

При охлаждении образец $Rb_{0.90}Cs_{0.10}NO_3$ возвращается в исходное состояние, т.е. полиморфные превращения в данном образце име-

Рис. 2. Дифракционная картина Rb_{0.90}Cs_{0.10}NO₃ при различных температурах.

<i>Т</i> _{эксп} , К	20, град	$d_{ m skcn}$, Å	d _{расч} , Å	<i>I</i> /I ₀ , %	hkl	Модифика- ция	Параметры элементар- ной ячейки, Å; темпе- ратурный интервал, К
300	20.7	4.287	4.292	11.5	111	IV	Ромбоэдрическая
	29.37	3.038	3.031	100	300		a = 10.479 a = 7.458
	29.5	3.025	3.019	38.7	112		пр. гр. <i>Р</i> 31;
	36.3	2.471	2.474	10.3	221		Ниже 500
	42.1	2.143	2.144	7.6	222		
	47.28	1.920	1.918	8.1	303		
	52	1.756	1.749	3.8	114		
	61.2	1.512	1.513	4.4	600		
	65.3	1.426	1.440	8.3	251		
	69.1	1.357	1.355	2.5	144		
	73.3	1.290	1.291	3.9	441		
500	20.26	4.379	4.378	16.1	100	III	Кубическая
	28.8	3.096	3.094	100	110		a = 4.379
	35.47	2.528	2.528	22.2	111		500-550
	41.19	2.189	2.189	11.1	200		
	46.2	1.958	1.958	15.9	210		
	51.04	1.787	1.787	12.4	211		
	59.66	1.548	1.548	2.5	220		
	63.69	1.459	1.460	4.2	320		
	67.58^{0}	1.384	1.385	3.6	310		
550	20.31	4.367	4.366	60.8	002	II	Тетрагональная
	24.83	3.581	3.582	100	101		a = 3.945
	32.38	2.762	2.761	39.4	110		c = 8.728 $\Pi p. \Gamma p. 14:$
	38.27	2.349	2.354	11.9	112		550-590
	41.15	2.191	2.191	11.4	004		
	51.14	1.784	1.783	8.1	202		
	53.32	1.716	1.716	4.9	114		
590	20.91	4.243	4.255	29.7	111	Ι	Кубическая
	24.19	3.675	3.679	100	200		a = 7.350
	34.48	2.598	2.600	6.2	220		>590
	40.67	2.216	2.213	1.7	311		
	42.57	2.121	2.122	3.8	222		

Таблица 2. Расчет дифрактограммы кристалла $Rb_{0.90}Cs_{0.10}NO_3$, записанной при разных температурах (Cu K_{α} -из-лучения, $\lambda = 1.5406$ Å, 40 кB, 40 мA)

ют энантиотропный характер. Структурные данные отдельных модификаций и температурные интервалы их существования приведены в табл. 2. Анализ полученных данных говорит о том, что в кристаллах $Rb_{0.90}Cs_{0.10}NO_3$ в интервале температур 400–600 К происходят структурные превращения по следующей схеме:

Таким образом, рентгенографические исследования показывают, что в $Rb_{0.90}Cs_{0.10}NO_3$, как и в

нитрате рубидия, имеются четыре полиморфные модификации и частичное изоморфное замеще-

ние ионов Rb¹⁺ ионами Cs¹⁺, которое может повлиять на температуры превращения и температурный интервал существования полиморфных модификаций. Полиморфные превращения в исследуемых образцах носят энантиотропный характер, что подтверждается морфологическими исследованиями, проведенными под оптическими исследованиями, проведенными под оптическими микроскопом [14]. Установлено, что III модификация исследуемых кристаллов не является кубической, как показано в [3], а имеет тетрагональную решетку.

СПИСОК ЛИТЕРАТУРЫ

- 1. Brown R.N., Mclaren A.C. // Acta Cryst. 1962. V. 15. P. 977.
- Brown R.N., Mclaren A.C. // Proc. Roy. Soc. A. 1962. V. 266. P. 239.
- Korhonen U. // Ann. Acad. Sci. Fennical A. 1951. V. 1. P. 37.

- Pauling L., Sherman J. // Z. Kristallogr. Kristallogeom. 1933. B. 84. S. 213.
- 5. Finback C., Hassel O. // Z. Physic. 1937. B. 5. S. 460.
- Korhonen U. // Ann. Acad. Sci. Fennical A. 1953. V. 1. P. 150.
- 7. *Насиров В.И., Асадов Ю.Г., Насиров Э.В. //* Изв. НАН Азерб. 2006. Т. XXV. № 5. С. 150.
- Насиров В.И., Алекперов Ч.М., Магеррамова Ф.Г. // Изв. Азерб. Пед. Ун-та. 1995. Т. 1–2. С. 70.
- 9. *Lin J., Duan C., Ossowski M. et al.* // J. Solid. State Chem. 2001. V. 60. № 1. P. 222.
- Secco E.A., Secco R.A. // J. Phys. Chem. Solids. 2002. V. 63. P. 433.
- Schlemper E.C., Hamilton W.C. // J. Chem. Phys. B. 1966. V. 408. P. 4498.
- 12. *Насиров В.И., Хазиева А.Ф., Асадов Ю.Г. //* Изв. НАН Азерб. 2009. № 5. С. 156.
- 13. *Хазиева А.Ф., Асадов Ю.Г., Насиров В.И. //* Докл. НАН Азерб. 2009. Т. 65. С. 66.
- 14. *Насиров В.И., Хазиева А.Ф., Асадов Ю.Г. //* Изв. НАН Азерб. 2009. Т. 29. С. 157.