– ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 539.1.074.13; 548.4:535.56

Посвящается памяти В.Г. Васильченко

СОСТАВ КРИСТАЛЛОВ НА ОСНОВЕ СеF₃ ДЛЯ КОМПОЗИЦИОННОГО СЦИНТИЛЛЯТОРА С ПОЛИСТИРОЛЬНОЙ МАТРИЦЕЙ

© 2012 г. Б. П. Соболев, Т. М. Глушкова*, Е. А. Кривандина, З. И. Жмурова

Институт кристаллографии РАН, Москва E-mail: fluorides@ns.crys.ras.ru *Московский государственный университет им. М.В. Ломоносова Поступила в редакцию 09.12.2011 г.

Изучены зависимости показателей преломления от состава для твердых растворов на основе фторида церия: Ce_{1-y}Sr_yF_{3-y} и Ce_{1-y}Ba_yF_{3-y}. Показано, что кристаллы составов Ce_{0.925}Sr_{0.075}F_{2.925} и Ce_{0.875}Ba_{0.125}F_{2.875} ($\lambda = 0.589$ мкм) имеют средний показатель преломления $n_{\rm cp}$, совпадающий с показателем преломления полистирола ($n = 1.5975 \pm 0.001$) для этой длины волны, и их можно рекомендовать в качестве наполнителей для церийсодержащих композиционных сцинтилляторов на основе полистирола.

ВВЕДЕНИЕ

Новое поколение ускорителей частиц повлекло за собой разработку нового поколения сцинтилляторов, обладающих высокими быстродействием, поглощающей способностью, радиационной прочностью и энергетическим разрешением. Для регистрации продуктов взаимодействия ускоренных частиц используются электромагнитные калориметры (ЭК) полного поглощения. В них чаше всего сцинтиллирующей средой являются монокристаллы неорганических соединений. Выращивание монокристаллов и их обработка вносит значительный вклад в стоимость ЭК. Поэтому предпринимались попытки использовать другие формы сцинтилляторов, сохраняющие высокие спектроскопические характеристики и поглощающую способность, но не требующие выращивания крупных кристаллов.

В период поиска сцинтилляторов нового поколения для физики высоких энергий одними из наиболее перспективных по совокупности свойств считались кристаллы фторида церия — $CeF_3 [1-4]$. Выбор CeF_3 в качестве сцинтиллятора для Большого адронного коллайдера во многом не состоялся из-за проблем получения монокристаллов нужного размера и чистоты, в то время как промышленное производство крупных кристаллов РbWO₄ было практически налажено.

Одним из путей удешевления сцинтиллирующих материалов без существенной потери их характеристик является замена монокристаллов композиционными материалами.

Матрицами композиционных материалов могут быть как неорганические низкоплавкие соли, так и пластмассы разного состава [5]. Условием сохранения световыхода сцинтиллирующего наполнителя является снижение диффузного рассеяния света на его частицах. Это достигается близостью показателей преломления матрицы и наполнителя в области длин волн излучения.

Высокий уровень прозрачности композита требует выполнения эмпирического условия соотношения показателей преломления наполнителя $(n_{\rm cu})$ и матрицы $(n_{\rm mat})$: $\Delta n = |n_{\rm mat} - n_{\rm cu}| \le (0.01 - 0.02)$ [6].

В [7] выбор комбинации "полистирол-CeF₃" был обоснован близостью их показателей преломления. Для этой композиционной пары величина $\Delta n \sim 0.02$ (наблюдаемое расхождение значений *n* для CeF₃ объясняется разными авторами разным содержанием примесей) лежит на границе допустимого диапазона Δn матрицы и наполнителя. Это заставило авторов [7] экспериментально проверить прозрачность продукта полимеризации полистирола с полученным нами мелкокристаллическим CeF₃. Прямое введение Се F₃ в полистирол дало композит с полным поглощением света на толщине ~1 мм. Это исключило возможность использования для композита комбинации "полистирол-СеF3", привлекательной по другим характеристикам.

Низкую прозрачность композиционного материала "полистирол—CeF₃" подтвердили и в [8], где изучали зависимость потери световыхода от содержания наполнителя CeF₃. Потери достигают 60% с ростом весовой доли наполнителя до 30%. В то же время эти потери существенны, если в качестве наполнителей используется BaF₂, для которого $\Delta n = 0.123$.

Таким образом, несмотря на соответствие эмпирическому правилу подбора компонентов композиционной пары по показателям преломления, даже лучшая по согласованию показателей пара "полистирол— CeF_3 " из-за больших потерь света непригодна для создания эффективного "быстрого" (~30 нс) сцинтиллятора с высоким световыходом.

Прозрачности композиционного материала "сцинтиллятор—пластик" можно добиться двумя путями. Первый состоит в "подгонке" *п* пластика под значение этой величины для кристалласцинтиллятора смешиванием нескольких сополимеров с разными оптическими характеристиками [5, 8]. В [9] для "подгонки" к СеF₃ использовали сополимеры стирола. Этот путь сложен из-за трудности гомогенизации компонентов.

Второй путь — изменение показателя преломления кристалла CeF₃ путем изменения его состава изоморфным замещением иона церия на другие катионы. Теоретически возможность реализации этого пути анализировалась ранее в [7] для твердого раствора Ce_{1-y}Ba_yF_{3-y}. Оценка снижения Δn до величины < 0.01 (исходя из аддитивности показателей преломления компонентов в твердом растворе, что не совсем корректно) привела к составу кристалла Ce_{0.9}Ba_{0.1}F_{2.9}.

Ионы редкоземельных элементов R^{+3} не могут быть кандидатами на такие замещения, поскольку различие показателей преломления для CeF₃ и фторидов этих соединений по ряду редкоземельных элементов невелико [10] и значительно меньше необходимого для подгонки *n* материала наполнителя к *n* полистирола.

Наиболее приемлемыми кандидатами на понижение показателей преломления CeF₃ являются SrF₂ (n = 1.438 [10]) и BaF₂ (n = 1.474 [11]). Из полученных ранее фазовых диаграмм систем SrF₂-CeF₃ [12] и BaF₂-CeF₃ [13] известно, что предельные растворимости SrF₂ и BaF₂ в CeF₃ составляют (при эвтектических температурах) 18 и 16 мол. % *M*F₂ соответственно. Эти величины перекрывают диапазон концентраций, требуемых для изменения оптических характеристик CeF₃.

Необходимость усложнения химического состава кристаллов фторидов для расширения ассортимента сцинтилляторов нового поколения с параметрами, отвечающими поставленным задачам, рассматривались ранее в [3, 14]. Среди приемов изменения физических характеристик известного сцинтиллятора CeF₃ указывалось и на гетеровалентные изоморфные замещения Ce⁺³ на M^{+2} (M = Sr, Ba).

Целью работы является экспериментальный поиск составов твердых растворов $Ce_{1-y}Sr_yF_{3-y}$ и $Ce_{1-y}Ba_yF_{3-y}$, имеющих показатели преломления *n*, совпадающие с показателем преломления полистирола. Постановка настоящего исследования была предложена В. Г. Васильченко.

КРИСТАЛЛОГРАФИЯ том 57 № 6 2012

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сцинтиллирующий наполнитель. Выбор CeF₃ сделан на основании предшествующих исследований этого сцинтиллятора и твердых растворов на его основе, результаты которых изложены в [3]. Было показано, что двухкомпонентные кристаллы на основе CeF₃ сохраняют короткие времена жизни возбужденного состояния (~30 нс), имеют световыход на уровне 4–5% от NaI : Tl и высокую радиационную устойчивость (до 10^{7-10} рад) при достаточно высокой радиационной длине (~1.68 см).

Благоприятным сочетанием компонентов композита "полистирол—CeF₃" является симбатный ход кривых дисперсии их показателей преломления в диапазоне 300—600 нм [8]. Принципиальным обстоятельством, допускающим получение прозрачного композиционного материала с наполнителем на основе CeF₃, является низкое двупреломление кристаллов, составляющее по литературным данным и нашим измерениям $\Delta n = 0.007$.

Рост кристаллов. Монокристаллы CeF₃ и твердых растворов $Ce_{1-v}Sr_vF_{3-v}$ (y = 0.02-0.12) и $Ce_{1-v}Ba_vF_{3-v}$ (y = 0.03-0.10) выращивались из расплава методом Бриджмена в области гомогенности тисонитовых фаз с фторирующим агентом PbF₂. Скорость роста кристаллов диаметром 12 мм и длиной 10-25 мм для $Ce_{1-y}Sr_{y}F_{3-y}$ составляла 5 ± 1.5 мм/ч, а для CeF₃ и Ce_{1-y}Ba_yF_{3-y} – 4.8 ± ±0.3 мм/ч. Использовались коммерческие реактивы отечественного производства: CeF₃ марки "ч", SrF₂ и BaF₂ марки "ос.ч.". Очистка от примеси кислорода осуществлялась предварительным фторированием расплава этих реактивов путем добавления PbF₂ марки "ос.ч." в шихту в количестве 5 мас. %. Для исследования показателя преломления полистирола использовались образцы, предоставленные Институтом физики высоких энергий.

Показатели преломления. Кристалл CeF₃ одноосный отрицательный и характеризуется двумя показателями преломления $n_0 > n_e$. Измерение n_0 и n_e проводилось с помощью рефрактометра Пульфриха. В качестве источника излучения использовались ртутная ($\lambda = 0.546$ мкм) и натриевая ($\lambda = 0.589$ мкм) лампы, точность измерения *n* составляла $\Delta n \pm 1 \times 10^{-3}$. Образцы имели цилиндрическую форму диаметром ~10–12 мм и толщиной 1–2 мм с осью цилиндра, совпадающей с осью роста кристалла. Торцевые поверхности пластинок полировались.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Оценки среднего показателя преломления (n_{cp}) кристаллов Ce_{1-y} M_y F_{3-y} (M = Sr, Ba) из ре-

Показатели преломления кристаллов MF_2 и $Ce_{1-y}M_yF_{3-y}$ (M = Sr, Ba)

Вещество	Показатели преломления $\lambda = 0.589$ мкм		
	n _o	n _e	n _{cp}
CeF ₃	1.618	1.611	1.616
SrF ₂			1.438 [10]
BaF ₂			1.474
Ce _{0.98} Sr _{0.02} F _{2.98}	1.611	1.603	1.608
Ce _{0.95} Sr _{0.05} F _{2.95}	1.604	1.596	1.601
Ce _{0.93} Sr _{0.07} F _{2.93}	1.603	1.594	1.600
Ce _{0.88} Sr _{0.12} F _{2.88}	1.593	1.583	1.590
Ce _{0.97} Ba _{0.03} F _{2.97}	1.613	1.606	1.611
Ce _{0.95} Ba _{0.05} F _{2.95}	1.611	1.604	1.609
Ce _{0.92} Ba _{0.08} F _{2.92}	1.606	1.598	1.603
Ce _{0.90} Ba _{0.10} F _{2.90}	1.604	1.597	1.602
Полистирол			1.5975 ± 0.001

фракций компонентов CeF₃ и MF_2 в предположении аддитивности их вкладов в рефракцию твердых растворов [15] показали, что для понижения $n_{\rm cp}$ кристаллов до величины полистирола будет достаточно 10–15 мол. % MF_2 .

Для Се_{1-y}Ba_yF_{3-y} (y = 0.03-0.10) и полистирола *п* измерены на $\lambda = 0.589$ мкм. Для кристаллов твердых растворов Се_{1-y}Sr_yF_{3-y} (y = 0.02-0.12) измерения n_o и n_e выполнены на длине волны $\lambda = 0.546$ мкм. Эти значения пересчитали на $\lambda =$ = 0.589 мкм, используя данные [16, 17] по дисперсии показателей преломления n_o и n_e La_{1-y}Sr_yF_{3-y} (y = 0.01-0.13), близких к изучаемым твердым растворам Се_{1-y}Sr_yF_{3-y}. Поправка $\Delta n = -0.003$.

Зависимости средних значений показателей преломления $n_{\rm Cp} = (2n_o + n_e)/3$ кристаллов твердых растворов ${\rm Ce}_{1-y}{\rm Sr}_y{\rm F}_{3-y}$ и ${\rm Ce}_{1-y}{\rm Ba}_y{\rm F}_{3-y}$ ($\lambda = 0.589$ мкм) от содержания SrF₂ и BaF₂ (мол. %). Горизонталь *I* отвечает *n* полистирола; вертикаль *2* – составу Ce_{0.925}Sr_{0.075}F_{2.925}, вертикаль *3* – составу Ce_{0.875}Ba_{0.125}F_{2.875}.

Полученные значения n_o и n_e приведены в таблице. Там же даны значения среднего показателя преломления n_{cp} , рассчитанные из экспериментальных значений n_o и n_e по формуле для анизотропных одноосных кристаллов: $n_{cp} = (2n_o + n_e)/3$, и полученное экспериментально значение n для полистирола.

Средние значения n_{cp} для кристаллов Ce_{1-y}Sr_yF_{3-y} и Ce_{1-y}Ba_yF_{3-y} представлены на рисунке (содержания MF_2 в молярных процентах). Размеры значков экспериментальных точек соответствуют точности измерений. Горизонтальная линия *1* отвечает значению $n = 1.5975 \pm 0.001$ для полистирола; пунктирная вертикаль *2* отвечает составу твердого раствора Ce_{0.925}Sr_{0.075}F_{2.925}, а вертикаль *3* – составу Ce_{0.875}Ba_{0.125}F_{2.875}.

С точки зрения получения из расплава однородных кристаллов между этими двумя составами, удовлетворяющими условию $\Delta n = 0$, есть существенное различие. На кривых плавкости фазы $Ce_{1-v}Sr_{v}F_{3-v}$ наблюдается аномалия — максимум [12]. Максимальную температуру плавления, согласно диаграмме состояния SrF₂-CeF₃, имеет состав Ce_{0.9}Sr_{0.1}F_{2.9}. Точность определения этого состава методом дифференциально-термического анализа невелика (±2 мол. % SrF₂). В пределах ошибки метода состав с $\Delta n = 0$ и состав максимума близки. Пологая форма кривых плавкости позволяет считать, что однородные по химическому составу кристаллы $Ce_{1-\nu}Sr_{\nu}F_{3-\nu}$ могут быть получены в достаточно широкой области составов вблизи максимума, захватывающей более точно найденный состав наполнителя композиционного материала $Ce_{0.925}Sr_{0.075}F_{2.925}$.

Фаза $Ce_{1-y}Ba_yF_{3-y}$ плавится инконгруэнтно (с разложением) во всем интервале составов [13]. Это затрудняет ее получение при направленной кристаллизации расплавов в виде однородных кристаллов.

Для получения наполнителей на основе CeF₃ для полистирола разный характер плавления твердых растворов Ce_{0.925}Sr_{0.075}F_{2.925} и Ce_{0.875}Ba_{0.125}F_{2.875} принципиального значения не имеет, поскольку наполнители получаются, как правило, не направленной, как в данной работе, а массовой кристаллизацией расплава, при которой дифференциация компонентов по слитку минимальна.

выводы

Равенство показателя преломления полистирола и n_{cp} твердого раствора $Ce_{1-y}Sr_yF_{3-y}$ достигается у состава $Ce_{0.925}Sr_{0.075}F_{2.925}$. Кристаллы такого состава, получаемые из расплава направленной кристаллизацией, будут характеризоваться повышенной степенью однородности благодаря

КРИСТАЛЛОГРАФИЯ том 57 № 6 2012

близости его к составу максимума на кривой плавкости твердого раствора.

Для фазы $Ce_{1-y}Ba_yF_{3-y}$ равенство n_{cp} с n полистирола достигается у состава $Ce_{0.875}Ba_{0.125}F_{2.875}$, плавящегося с разложением.

Составы твердых растворов $Ce_{0.925}Sr_{0.075}F_{2.925}$ и $Ce_{0.875}Ba_{0.125}F_{2.875}$ в первом приближении можно рекомендовать в качестве сцинтиллирующих наполнителей для композиционных материалов на основе полистирола.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Anderson D.F.* // IEEE Trans. 1989. NS 36. № 1. P. 137.
- Moses W.W., Derenzo S.E. // IEEE Trans. 1989. NS 36. № 1. P. 173.
- Sobolev B.P. Editor and co-author Multicomponent crystals based on heavy metal fluorides for radiation detectors / Ed. Institut d'Estudis Catalans, Barcelona. Spain. 1994 (2nd Edition 1995). 265 p.
- Kobayashi M., Ishii M., Krivandina E.A. et al. // Nucl. Instrum. Methods. A. 1991. V. 302. P. 443.
- 5. Васильченко В.Г., Соловьев А.С. // ПТЭ. 2004. № 5. С. 38.

- Kubota S., Motobayashi T., Ruan (gen) J. et al. // Nucl. Instum. Methods. A. 1988. V. 270. P. 598.
- 7. Бритвич Г.И., Бритвич И.Г., Васильченко В.Г. и др. // ПТЭ. 1999. № 4. С. 83.
- Бумажнов В.А., Дурум А.А., Кочетков В.И. и др. // ПТЭ. 1999. № 4. С. 77.
- 9. Рупышев В.Г., Иванко Т.П., Козлова Г.И. и др. // Пластмассы. 1983. № 1. С. 58.
- 10. Глушкова Т.М., Каримов Д.К., Кривандина Е.А. и др. // Кристаллография. 2009. Т. 54. № 4. С. 642.
- Воронкова Е.М., Гречушников Б.Н., Дистлер Г.И., Петров И.П. Оптические материалы для инфракрасной техники. М.: Наука, 1965. 335 с.
- Sobolev B.P., Seiranian K.B. // J. Solid State Chem. 1981. V. 39. № 2. P. 17.
- 13. *Sobolev B.P., Tkachenko N.L.* // J. Less-Common Metals. 1982. V. 85. № 12. P. 155.
- 14. *Соболев Б.П., Федоров П.П.* // Неорган. материалы. 1993. Т. 29. № 4. С. 458.
- Константинова А.Ф., Кривандина Е.А., Каримов Д.Н., Соболев Б.П. // Кристаллография. 2010. Т. 55. № 6. С. 1102.
- 16. *Кривандина Е.А., Жмурова З.И., Соболев Б.П. и др. //* Кристаллография. 1998. Т. 43. № 1. С. 94.
- 17. Кривандина Е.А., Жмурова З.И., Соболев Б.П. и др. // Кристаллография. 2006. Т. 51. № 5. С. 954.