КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 6, с. 854-858

₌ СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.746.30:546.72.74.75.82.9

ЖАРОСТОЙКИЕ МЕТАЛЛЫ В ПЕРИОДИЧЕСКОЙ ТАБЛИЦЕ Д.И. МЕНДЕЛЕЕВА

© 2012 г. Н.В.Подберезская

Институт неорганической химии СО РАН, Новосибирск E-mail: podberez@niic.nsc.ru Поступила в редакцию 28.03.2011 г.

Приведены результаты анализа структурных данных неорганической базы (ICSD, версия 1.7.1, 2010-2) для тугоплавких элементов таблицы Д.И. Менделеева. Получено представление о современном состоянии исследования структур простых веществ, о количестве полиморфных модификаций, их симметрии.

введение

По структурным данным неорганической базы (ICSD, версия 1.7.1, 2010-2 БД) [1] для жаростойких элементов таблицы Д.И. Менделеева проведена аналитическая работа с целью поиска новых структурных данных. Работа имеет прямое отношение к тематике научной и практической деятельности Н.В. Белова: из его биографических данных [2] известно, что с 1964 г. и практически до конца жизни он был членом Научного совета по проблеме "Физико-химические основы получения новых жаростойких неорганических материалов" АН СССР, а его научный интерес к закономерностям упаковок начинался с защиты докторской диссертации "Плотнейшие шаровые упаковки". В [3] обсуждался вопрос о причинах устойчивости объемноцентрированной упаковки, менее плотной (почти на 10%) в сравнении с выложенной из шаров того же диаметра гранецентрированной (коэффициенты упаковки 68.02 и 74.05 соответственно).

В настоящей работе приведены структурные характеристики всех тугоплавких металлов, показаны различия в зависимости от типа структуры и межатомных расстояний в изоструктурных соединениях. Структуры простых соединений, в том числе металлов, определены в 20-30-х гг. прошлого столетия; но с тех пор благодаря техническому совершенствованию метода произошло повышение точности регистрации интенсивностей отражений и значительное усовершенствование программ для расчетов по определению и уточнению кристаллических структур, особенно при использовании метода порошковой дифрактометрии. Поэтому за прошедшее время найдены новые фазы, расширены исследования при разных температурах и давлениях, учтены изменения параметров элементарных ячеек.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По технической классификации к тугоплавким металлам относят переходные *d*-металлы 4-й, 5-й, 6-й, 7-й групп таблицы Менделеева. Наибольшее значение в технике имеют тугоплавкие металлы: Nb, Mo, Cr, Ta и W. Эти металлы и их сплавы используют в основном как жаропрочные материалы. Молибден, вольфрам и хром обладают высокой жаропрочностью, но склонны к хрупкому разрушению. Ниобий и тантал – пластичные материалы и хорошо свариваются [4]. Не входят в техническую классификацию элементы 8-й, 9-й, и 10-й групп (Ru, Os, Rh, Ir, Pd, Pt), хотя их температуры плавления также высоки, но по свойствам и специфике применения их исключают из промышленной группы. Кристаллографические характеристики для всех металлов по данным последнего структурного исследования представлены в табл. 1.

В качестве комментариев к ней отметим, что кристаллические структуры определялись на монокристаллах и порошках методом дифрактометрии на рентгеновском и синхротронном излучениях, но удивляет, что в работах современного уровня отсутствуют значения температурных параметров и *R*-факторы практически для всех приведенных в документах БД, что отмечается и составителями БД. В таблице приводятся сведения о каждом из элементов, имеющиеся в БД: символ элемента, годы начального и конечного исследования, количество записей в БД, температура плавления (°С) по данным [1], пространственная группа, тип упаковки, параметры элементарной ячейки по последним работам из [1], объем элементарной ячейки, количество формульных единиц в ней, расчетное значение плотности. Добавлены порядковый номер в таблице Д.И. Менделеева и строение электронной оболочки. Отметим, что существуют некоторые разночтения в значениях температуры плавления, приводящейся в

Номер, символ эле- мента, электронная	Тип упаковки, пространственная группа, область стабильной фазы, °С, параметры элементарной ячейки, Å (<i>а</i> или <i>a/c</i>), параметр минимальной ячейки, Å, объемы <i>V</i> / <i>V</i> _{мин} , Å ³ , <i>Z</i> / <i>D_x</i> , г/см ³				
ода исследования, количество работ, $t_{пл}$, °С	ГПУ	ОЦК Im3m	ГЦК Fm3m		
	1 0 ₃ / <i>mm</i> c		Расчетные [6]	Экспериментальные	
$22 - Ti$ Ar3 $d^{2}4s^{2}$ 1921-2004, 20 1685	<до 880 2.9064/4.667 2.9064/4.667 34.14/34.14 2/4.65	>880 3.276 2.837 35.16/17.579 2/4.52	4.06 2.870 66.92/16.731 4/4.75		
40 – Zr Kr4 <i>d</i> ² 5 <i>s</i> ² 1921–1993, 13 1952	<847 3.2332/5.1466 3.2332/5.1466 46.59/46.59 2/6.5	>847 3.568 3.089 45.42/22.711 2/6.67	4.51 3.189 91.73/22.933 4/6.6		
72 - Hf Xe4 $f^{14}5d^{2}6s^{2}$ 1925-1993, 10 2227	<1950 3.198/5.061 3.198/5.061 44.83/44.83 2/13.22	>1950 3.615 3.130 47.24/23.621 2/12.55	4.44 3.139 87.53/21.882 4/13.54		
$23 - \mathbf{V} \\ \text{Ar}3d^34s^2 \\ 1922-2009, 18 \\ 1887$		<1887 3.02589 2.620 27.70/13.853 2/6.11	3.79 2.679 54.44/13.61 4/6.21		
41 – Nb Kr4 <i>d</i> ⁴ 5 <i>s</i> ¹ 1936–2005, 12 2468		<2468 3.3279 2.882 36.86/18.28 2/8.37	4.23 2.991 75.69/18.922 4/8.615		
73 – Ta Xe4 <i>f</i> ¹⁴ 5 <i>d</i> ³ 6 <i>s</i> ² 1920–2004, 20 2990		<2990 3.30256 2.860 36.02/18.011 2/16.68	4.22 2.983 75.15/18.788 4/15.99		
$24 - \mathbf{Cr} \\ \text{Ar}3d^54s^1 \\ 1919 - 1993, 15 \\ 1890$	2.7224/4.4372 2.7224/4.4372 28.46/28.46 2/6.07	<1890 2.884 2.497 24/11.999	3.6 2.545 46.66/11.664 4/7.40		
42 – Mo Kr4 <i>d</i> ⁵ 5 <i>s</i> ¹ 1921–2007, 15 2617		<2617 3.149 2.727 31.23/15.613 2/10.20	4.03 2.849 65.45/16.363 4/9.73		
74 – W Xe4 <i>f</i> ⁴⁴ 5 <i>d</i> ⁴ 6 <i>s</i> ² 1917–1975, 14 3137		<3137 3.1652 2.741 31.71/15.855 2/19.25	4.06 2.849 66.92/16.731 4/18.24		
75 - ReXe4f145d56s21929–1987, 103180	<3180 2.760/4.458 2.760/4.458 29.41/29.41 2/21.03		3.95 2.793 61.63/15.407 4/20.06		

Таблица 1.	Симметрийные и	и метрические	характеристики	структур жаро	стойких элементов
------------	----------------	---------------	----------------	---------------	-------------------

Т

КРИСТАЛЛОГРАФИЯ том 57 № 6 2012

ПОДБЕРЕЗСКАЯ

Таблица 1. Окончание

Номер, символ эле- мента, электронная	Тип упаковки, пространственная группа, область стабильной фазы, °C, параметры элементарной ячейки, Å (<i>а</i> или <i>a/c</i>), параметр минимальной ячейки, Å, объемы <i>V</i> / <i>V</i> _{мин} , Å ³ , <i>Z</i> / <i>D</i> _x , г/см ³					
оболочка, годы пе- риода исследования, количество работ, $t_{пл}$, °C	ГПУ Рб. (mma	ОЦК	ГЦК Fm3m			
	1 0 ₃ / mmc	1m3m	Расчетные [6]	Экспериментальные		
24 – Fe Ar3 <i>d</i> ⁶ 4 <i>s</i> ² 1917–2005, 29 1535	2.473/3.962 2.473/3.962 20.984/20.984 2/8.84 Стабильна выше 8.3 ГПа	<1535 2.8605 2.622 23.41/11.75 2/7.920	3.43 2.425 40.35/12.125 4/9.19	910—1490 3.6544 2.584 48.5/12.125 4/7.60 Данные при 1000°С		
$ \begin{array}{l} 44 - \mathbf{Ru} \\ \mathrm{Kr}4d^7 5s^1 \\ 1920 - 2004, 17 \\ 2310 \end{array} $	<2310 2.696/4.269 2.696/4.269 26.872/26.872 2/12.49		3.83 2.708 56.18/14.045 4/11.95			
75 – Os Xe $4/^{14}5d^{6}6s^{2}$ 1921–1972, 10 3054	<3054 2.7338/4.3195 2.7338/4.3195 27.96/27.96 2/22.59		3.89 2.750 58.86/14.716 4/21.46			
24 – Co Ar3 <i>d</i> ⁷ 4 <i>s</i> ² 1919–1993, 17 1495	<417 2.514/4.105 2.514/4.105 22.47/22.47 2/9.05		3.420 2.418 40/10 4/9.78	>417 3.5656 2.521 45.33/11.333 4/8.63		
$\begin{array}{l} 45 - \mathbf{Rh} \\ \mathrm{Kr}4d^8 5s^1 \\ 1921 - 2006, 10 \\ 1956 \end{array}$			3.83 2.708 56.18/14.045 4/11.95	<1956 3.5909 2.539 46.31/11.577 4/14.5		
76 – Ir Xe4 <i>f</i> ¹⁴ 5 <i>d</i> ⁷ 6 <i>s</i> ² 1921–1993, 6 2410			3.9 2.757 59.32/14.83 4/21.63	<2410 3.8385 2.521 56.56/14.139 4/22.69		
28 – Ni Ar3 <i>d</i> ⁸ 4 <i>s</i> ² 1917–1988, 17 1453	Тонкая пленка 2.622/4.321 2.622/4.321 25.73/25.73 2/7.581		3.45 2.439 41.06/10.266 4/9.490	<1453 3.5664 2.491 43.36/11.34 4/8.6		
46 – Pd Kr4 <i>d</i> ¹⁰ 1921–1980, 17 1552			3.9 2.757 59.32/14.83 4/11.91	<1552 3.8874 2.748 58.75/14.686 4/12.03		
78 – Pt Xe4 <i>f</i> ¹⁴ 5 <i>d</i> ⁹ 6 <i>s</i> ¹ 1921–1993, 15 1772			3.97 2.807 62.57/15.643 4/20.7	<1772 3.9242 2.774 60.43/15.108 4/21.44		

856

КРИСТАЛЛОГРАФИЯ том 57 № 6 2012

Элемент	Ti	V	Cr		Fe	Со	Ni
ГПУ	4.65 (4.505)		6.07		8.84	9.05 (8.90)	7.58
ОЦК	4.52 (4.32)	6.11 (6.11)	7.02 (7.19)		7.92 (7.874)		7.58
ГЦК, расч [6]	4.75	6.21	7.40		9.19	9.78	9.49
ГЦК эксп [1]					7.60	8.63	8.6 (8.90)
Элемент	Zr	Nb	Мо		Ru	Rh	Pd
ГПУ	6.5 (6.506)				12.49 (12.37)		
ОЦК	6.67	8.37(8.57)	10.22(10.2)				
ГЦК, расч [6]	6.6	8.615	9.73		11.95	11.95	
	11.91						
ГЦК, эксп [1]						14.5 (12.41)	12.03 (12.02)
Элемент	Hf	Та	W	Re	Os	Ir	Pt
ГПУ	13.22 (13.09)			21.03 (21.03)	22.59 (22.61)		
ОЦК	12.55	16.68 (16.6)	19.25				
ГЦК, расч [6]	13.54	15.99	18.24	20.06	21.46	21.63	20.07
ГЦК, эксп [1]						22.69 (22.69)	21.44 (21.46)

Таблица 2. Значения расчетных плотностей (г/см³) элементов ГПУ-, ОЦК- и ГЦК-упаковок по данным [1] (в скобках [12])

разных литературных источниках. Приводятся содержащиеся в [1] данные из [5]. Обобщенно можно сказать (в качестве примечания к таблице), что переход из ОЦК (пр. гр. Іт3т) к минимальной ромбоэдрической подъячейке с углами $\alpha = \beta = \gamma = 109.47^{\circ}$ и параметрами a = b = c осуществляется через половины телесных диагоналей: матрица перехода 0.5 0.5 -0.5/ -0.5 0.5 0.5/ 0.5 –0.5 0.5. Из решетки ГШК (пр. гр. *Fm*3*m*) переход в минимальную ромбоэдрическую подъячейку (углы $\alpha = \beta = \gamma = 60^{\circ}$) происходит через половины диагоналей граней, матрица перехода 0.5 0.5 0.0/0.0 0.5 0.5/0.5 0.0 0.5. В таблице даются значения линейных параметров таких ячеек, углы не приводятся. Для гексагональной упаковки значения параметров минимальной подъячейки совпадают с таковыми для исходной (матрица перехода 1 0 0/0 1 0/0 0 1). Для металлов с ГПУ-, ОЦК- и ГЦК-упаковками структурными типами считают структуры металлов Mg, W, Cu соответственно.

Кроме приведенных в таблице для ряда металлов найдены новые фазы. Титан (фаза высокого давления (4000 МПа): пр. гр. *P6/mmm a* = 4.6, *c* = 2.82 Å, *V* = 51.8 Å³, *Z* = 3, *d*_{выч} = 4.62 г/см³, структурный тип BaIn₂ [7]. Тантал [8] (модулированные структуры): пр. гр. *P6₃/m*, *a* = 10.212, *c* = 5.3064 Å; пр. гр. *P* $\overline{4}$, *a* = 10.1814, *c* = 5.295 Å; пр. гр. *P4/mbm*, *a* = 10.815, *b* = 10.815, *c* = 8.76 Å). Вольфрам [9]: кубическая модификация, пр. гр. *Pm* $\overline{3}m$, *a* = 5.05 Å, *V* = 128.79 Å³, *d*_{выч} = 18.96 г/см³, минимальная

подъячейка остается с параметром исходной [9], структурный тип Cr₃Si. Железо [10] (в 2010 г. расчетом *ab initio* найдена тетрагональная фаза: пр. гр. $P4_2/mnm$, a = 8.4283, c = 4.3911 Å³, V == 311.93 Å³, Z = 28, d_{выч} = 8.32 г/см³ [10]). Палладий [11]: *P*3*m*1: *a* = 2.779, c = 6.806 Å, *V* = 45.52 Å³, Z = 1 состава $Pd_{1.7}$, $d_{выч} = 6.6$ г/см³. Анализ данных таблицы показывает, что не всегда совпадают значения плотностей для элементов ГЦК-структуры, полученные из параметров элементарных ячеек, рассчитанных из радиусов элементов и измеренных экспериментально (Fe, Co, Rh, Ir, Ni, Pd, Pt). Критерием могли бы служить значения измеренной плотности, но, к сожалению, в БД таковых нет ни для одного из элементов. Это можно сказать и о нарушениях в соотношении плотностей ГПУ-, ГЦК- и ОЦК-упаковок. Для более удобного сопоставления результатов в табл. 2 для всех модификаций упаковок представлены значения плотностей из БД и из [12] (в скобках). Кроме того, работы выполнены разными авторами, что приводит к некоторому различию результатов между собой. Даже по работе расчетного плана [6] возникает вопрос о полном совпадении данных для рядом стоящих Ru и Rh и находящихся в разных периодах таблицы Ir и Pd. В рамках данной работы дать объяснения этим несогласованностям нет возможности.

В 1986 г. утверждена заявка на изобретение упрощенного технологического процесса производства порошков сплава рения с родием [13]. Для этого использовались координационные соединения (**KC**). Способ получения: [RhPy₄Cl₂]ReO₄, (пиридин Py = C₅H₅N) загружают в кварцевую лодочку, помещают в кварцевую трубу и в токе водорода (2мл/с) медленно (30 мин) нагревают до 450– 470°C, затем систему охлаждают до комнатной температуры. В результате получают порошок сплава 50% Re, 50% Rh с выходом 90–97%.

Способ получения сплавов через КС исключает стадии прессования, спекания в вакууме при 1500°С, плавки в дуговой печи с W-нерасходуемым электродом в атмосфере очищенного гелия и существенно снижает энергетические расходы за счет уменьшения температуры. Для объяснения строения металлов, имеющих ОЦК-, ГЦК- или ГПУ-решетки, в [14] использованы модели, основанные на рассмотрении покрытия кристаллического пространства деформируемыми или пересекающимися шарами, центры которых совпадают с узлами кристаллической решетки. Эти модели далее (при учете сведений об электронном строении атомов) использованы для интерпретации экспериментальных данных термического и барического полиморфизма металлов. В этой же работе обсуждаются вопросы топологических особенностей фазовых переходов $\Gamma\Pi Y \to \Gamma \amalg K$.

Ю.В. Шубиным этим способом получены и исследованы наносплавы в 36-ти двухкомпонентных системах, в том числе с тугоплавкими металлами: Co–Ir, Co–Re, Re–Ru, Fe–Ni, Au–Cr, Cr–Ir, Cu–Ru, Pt–Re, Re–Rh, Co–Pt, Cr–Ir, Cr–Pt, Cr–Re, Cu–Pd, Cu–Pt, Fe–Ir, Fe–Pt, Ni–Pt, Pd–Zn, Pt–Zn, температуры термолиза которых находятся в интервале от 300 до 900°C [15].

СПИСОК ЛИТЕРАТУРЫ

- ICSD Inorganic Crystal Structure Data (версия 1.7.1. 2010-2). Fachinformations Zentrum, Karlsruhe, Germany (http://fizrkarlsruhe.de}
- Головастиков Н.И., Левина В.Н., Симонов В.И. (библ. Кузьменко Р.И., Ансерова Н.М.) Николай Васильевич Белов. М.: Наука, 1987. 191 с.
- 3. Победимская Е.А., Белов Н.В. // Кристаллография. 1965. Т. 10. Вып. 6. С. 908.
- Большая советская энциклопедия. 3-е изд. М.: БСЭ. 1977. С. 289 (853).
- 5. Golden Book of Phase Transitions. Wroclaw. 2002. V. 1. 123 p.
- Hundlung J., Fernandez Guillermet F., Grimvall G. et al. // Phys. Rev. B. Cond. Matter. 1993. V. 48. P. 11685.
- 7. *Чеботарева Е.С., Нуждина С.Г. //* Физика металлов и металловедение. 1973. Т. 36. С. 207.
- 8. Arakcheeva A.V., Chapuis G., Birkedal H. et al. // Acta Cryst. B. 2003. V. 59. P. 324.
- 9. Hartmann H., Ebert F., Bretschneider O. // Z. Anorg. Allgem. Chem. 1931. B. 198. S. 116.
- Pavlu J., Vrestal J., Sob M. // Intermetallics. 2010. V. 18. P. 212.
- Meyer H.J., Mueller-Buschbaum H. // J. Less-Common Metals. 1980. V. 76. P. 293.
- Большой энциклопедический словарь. Химия. М.: БСЭ, 1998. 791 с.
- Беляев А.В., Коренев С.В., Лисойван В.И., Громилов С.А. Способ получения сплава родия с рением. А.с. № 410378, Новосибирск: ИНХ СО АН СССР. Приоритет от 10.11.1986 г.
- 14. *Блатов В.А., Сережкин В.Н.* // Кристаллография. 1995. Т. 40. Вып. 2. С. 302.
- Шубин Ю.В. Дис. "Формирование и структурнофазовые превращения наноразмерных биметаллических частиц основе благородных металлов" д-ра хим. наук. Новосибирск: ИНХ СО РАН, 2010. 329 с.