УДК 548.736.6

Посвящается 100-летию открытия дифракции рентгеновских лучей

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО МИНЕРАЛА ЛАНШТАЙНИТА $Zn_4(SO_4)(OH)_6 \cdot 3H_2O$

© 2012 г. Р. К. Расцветаева, С. М. Аксёнов, Н. В. Чуканов*, И. А. Верин

Институт кристаллографии РАН, Москва E-mail: rast@ns.crys.ras.ru *Институт проблем химической физики РАН, Черноголовка Поступила в редакцию 16.01.2012 г.

Методом монокристального рентгеноструктурного анализа изучен образец нового минерала ланштайнита из зоны окисления гидротермального Pb,Zn,Ag-месторождения Фридрихсзеген (Рейнланд-Пфальц, Германия). Параметры триклинной (псевдоромбической) ячейки: a = 8.312(1), b = 14.545(1), c = 18.504(2) Å, $\alpha = 89.71(1)^{\circ}$, $\beta = 90.05(1)^{\circ}$, $\gamma = 90.13(1)^{\circ}$, V = 2237.3(3) Å³. Структура решена прямыми методами в пр. гр. *P*1 и уточнена до *R*-фактора 10.7% по 3788 отражениям с $|F| > 3\sigma(F)$ в изотропно-анизотропном приближении. Кристаллохимическая формула (Z = 8): $[(Zn_{2.6}Fe_{0.3}Cu_{0.1})^{VI}(OH)_3][Zn^{IV}(OH)_3(H_2O)][SO_4] \cdot 2H_2O$, где квадратными скобками выделены составы слоя из Zn-октаэдров и изолированных Zn- и S-тетраэдров. Изученный минерал химически и структурно близок намууиту и является природным аналогом синтетического тригидрата гидроксисульфата цинка.

Образец с новым минералом ланштайнитом природным трехводным гидроксисульфатом цинка – был найден в зоне окисления гидротермального Pb,Zn,Ag-месторождения Фридрихсзеген (Рейнланд-Пфальц, Германия) в ассоциации с гидроцинкитом. Новый минерал утвержден Комиссией по новым минералам, номенклатуре и классификации Международной минералогической ассоциации с названием ланштайнит (IMA No. 2012-002). Ланштайнит образует бесцветные пластинчатые кристаллы, характеризуется очень низкой твердостью, высокой пластичностью и совершенной слюдоподобной спайностью в одном направлении. Для структурных исследований был отобран фрагмент кристалла размерами $0.4 \times 0.25 \times 0.1$ MM.

Эмпирическая формула, рассчитанная на 13 атомов кислорода (Z = 8) по данным рентгеноспектрального и хроматографического анализа:

 $(Zn_{3.53}Fe_{0.27}Cu_{0.11})(SO_4)_{0.98}(OH)_{5.86} \cdot 3.22H_2O.$

Параметры триклинной (псевдоромбической) ячейки (a = 8.312(1), b = 14.545(1), c = 18.504(2) Å, $\alpha = 89.71(1)^\circ$, $\beta = 90.05(1)^\circ$, $\gamma = 90.13(1)^\circ$, V == 2237.3(3) Å³) определены на дифрактометре Xcalibur Oxford Diffraction с CCD-детектором.

Дифракционный эксперимент получен в полной сфере обратного пространства на том же дифрактометре и содержал 16314 отражений с $|I| > 2\sigma(I)$. Систематические погасания рефлексов соответствовали моноклинной пр. гр. $P2_1$. Однако R-фактор усреднения эквивалентных отражений в рамках этой группы составил 16.3%, что свиде**Таблица 1.** Кристаллоструктурные данные и характеристика эксперимента для ланштайнита $Zn_4(SO_4)(OH)_6 \cdot 3H_2O$

Сингония, пр. гр., Z	Триклинная, <i>Р</i> 1, 8
<i>a</i> , <i>b</i> , <i>c</i> , Å	8.312(1), 14.545(1), 18.504(2)
$\alpha, \beta, \gamma,$ град	89.71(1), 90.05(1), 90.13(1)
$V, Å^3$	2237.3(3)
D_x , г/см ³	2.93
Излучение, λ , Å	$MoK_{\alpha}, 0.71073$
μ, мм ⁻¹	8.94
<i>Т</i> , К	293
Размеры кристалла, мм	$0.4 \times 0.25 \times 0.1$
Дифрактометр	Xcalibur, CCD-детектор
Тип сканирования	ω
θ _{max} , град	55.56
Пределы h, k, l	$\begin{array}{l} -19 < h < 19, -30 < k < 15, \\ -30 < l < 31 \end{array}$
Число отражений: измеренных/независимых, R_{int} по $I > 5\sigma(I)$	16314/3788, 6.0
Метод уточнения	МНК по <i>F</i>
Число уточняемых па- раметров	816
<i>R</i> -фактор недостовер- ности	10.7
Программы	AREN

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО МИНЕРАЛА

Атом	x/a	y/b	<i>z/c</i>	$B_{_{ m ЭКВ}/изо}$, Å ²	Атом	x/a	y/b	<i>z</i> / <i>c</i>	$B_{ m _{ ЭКВ/ИЗО}}, { m \AA}^2$
Zn1	0985(1)	3183(1)	5000(1)	1.8(1)	OH1	117(5)	993(3)	436(2)	2.6(5)
Zn2	6049(6)	8218(4)	4849(4)	1.4(1)	OH2	614(6)	488(4)	439(4)	2.3(6)
Zn3	4069(6)	1707(5)	5099(5)	2.6(1)	OH3	490(4)	070(2)	438(2)	0.1(7)
Zn4	9109(7)	6736(5)	4917(4)	1.9(1)	OH4	981(3)	562(2)	435(2)	0.2(5)
Zn5	4777(7)	3919(5)	5048(4)	2.8(1)	OH5	167(5)	188(3)	451(1)	0.9(5)
Zn6	9756(6)	8965(5)	4825(4)	2.0(2)	OH6	621(4)	169(3)	546(3)	1.1(4)
Zn7	6763(6)	0273(5)	5037(6)	2.7(2)	OH7	679(4)	700(2)	456(2)	1.2(4)
Zn8	1765(6)	5274(4)	5161(4)	1.3(2)	OH8	371(5)	843(3)	444(3)	0.5(4)
Zn9	0480(7)	1005(6)	4997(6)	2.0(2)	OH9	898(6)	346(2)	441(4)	1.3(7)
Zn10	5429(9)	6007(6)	5086(5)	1.8(2)	OH10	252(4)	418(2)	443(2)	0.3(4)
Zn11	7471(6)	2483(5)	4964(6)	1.7(1)	OH11	115(5)	655(4)	554(3)	0.7(5)
Zn12	2435(7)	7467(4)	5053(5)	1.7(1)	OH12	745(3)	910(3)	453(2)	0.3(4)
Zn13	5700(8)	3163(5)	0018(4)	2.5(1)	OH13	039(6)	773(3)	446(3)	0.9(6)
Zn14	0716(9)	8182(6)	0012(6)	1.9(1)	OH14	536(6)	269(2)	457(3)	2(1)
Zn15	944(1)	4007(6)	0030(5)	2.1(1)	OH15	952(7)	230(2)	575(1)	3.3(9)
Zn16	2300(9)	2586(6)	0271(6)	2.3(1)	OH16	477(8)	719(3)	553(3)	2(1)
Zn17	4549(8)	9017(5)	-0003(5)	1.5(1)	OH17	685(4)	356(3)	581(4)	1.4(9)
Zn18	7315(6)	7624(4)	0105(4)	0.7(1)	OH18	166(3)	864(2)	574(2)	0.2(4)
Zn19	5299(8)	1070(5)	-0094(5)	1.5(1)	OH19	899(2)	013(2)	553(2)	0.2(4)
Zn20	0318(7)	6069(5)	-0002(4)	1.0(1)	OH20	565(3)	986(3)	928(3)	1.5(7)
Zn21	1561(8)	0298(6)	0002(5)	1.9(1)	OH21	396(6)	520(3)	555(3)	1.2(9)
Zn22	6567(8)	5308(5)	0057(4)	1.1(1)	OH22	080(4)	491(4)	939(4)	2(1)
Zn23	8798(9)	1674(6)	-0089(4)	1.4(1)	OH23	975(5)	045(3)	934(2)	1.1(6)
Zn24	3766(9)	6652(6)	-0021(6)	2.2(1)	OH24	091(3)	136(2)	055(3)	0.7(7)
Zn25	3317(7)	9638(5)	4023(4)	2.3(1)	OH25	261(5)	078(3)	555(3)	1.4(7)
Zn26	8328(8)	4638(5)	4205(4)	2.1(1)	OH26	466(5)	549(3)	936(4)	1.1(8)
Zn27	8311(8)	4653(5)	5975(4)	3.1(1)	OH27	758(5)	587(3)	570(3)	1.3(7)
Zn28	3260(1)	9653(8)	5950(7)	2.6(2)	OH28	599(5)	643(3)	061(2)	1.2(7)
Zn29	8009(9)	9610(6)	0979(6)	2.1(1)	OH29	033(5)	434(3)	564(2)	0.6(5)
Zn30	3007(9)	4629(5)	0968(5)	1.5(1)	OH30	542(5)	935(3)	577(2)	1.5(6)
Zn31	8108(8)	9632(7)	8983(7)	2.5(1)	OH31	678(2)	212(2)	947(3)	0.4(4)
Zn32	3080(8)	4618(5)	9095(4)	1.0(1)	OH32	159(5)	704(3)	956(3)	0.6(5)
S 1	827(2)	137(2)	347(1)	2.5(3)	OH33	721(5)	399(3)	967(3)	2(1)
S2	328(2)	633(1)	361(1)	2.8(1)	OH34	223(5)	913(4)	957(4)	2(1)
S 3	319(2)	295(1)	669(1)	2.7(1)	OH35	231(4)	585(2)	062(2)	0.7(6)
S4	823(2)	795(1)	653(1)	2.6(3)	OH36	754(7)	092(4)	063(4)	1.7(9)
S 5	804(2)	289(1)	153(6)	1.7(3)	OH37	433(4)	230(3)	065(3)	1(1)
S 6	308(2)	792(1)	152(7)	2.0(2)	OH38	377(6)	-001(4)	048(4)	2(1)
S 7	319(2)	134(1)	859(1)	3.7(3)	OH39	939(3)	730(3)	051(2)	1.0(7)
S 8	822(1)	636(1)	846(6)	1.7(3)	OH40	871(6)	822(4)	923(3)	2.6(7)
01	918(7)	060(5)	316(2)	2.0(7)	OH41	378(5)	329(6)	942(4)	3(1)
O2	810(7)	137(5)	430(2)	1(1)	OH42	874(6)	502(4)	054(4)	2(1)
O3	435(5)	568(5)	322(2)	1.4(5)	OH43	519(4)	417(2)	061(2)	2(1)
O4	319(4)	290(5)	585(2)	1.2(3)	OH44	515(4)	775(3)	-065(3)	0.8(7)

Таблица 2. Координаты Zn-катионов (×10⁴), S, анионов и молекул воды (×10³) и параметры атомных смещений – эквивалентные (для катионов) и изотропные (для анионов)

КРИСТАЛЛОГРАФИЯ том 57 № 5 2012

Таблица 2. Окончание

Атом	x/a	y/b	z/c	$B_{_{ m ЭКВ/ИЗО,}}$ Å ²	Атом	x/a	y/b	<i>z,</i> / <i>c</i>	$B_{_{ m 3KB/H3O}}$ Å ²
05	327(2)	633(2)	439(2)	1(1)	OH45	656(5)	884(2)	041(3)	1.1(8)
O6	820(2)	797(2)	570(2)	1.3(4)	OH46	027(4)	279(2)	956(2)	0.4(7)
O 7	496(5)	298(3)	679(2)	1.0(6)	OH47	168(4)	373(3)	054(2)	1.2(8)
O 8	-007(4)	810(2)	674(2)	1.2(4)	OH48	039(3)	936(3)	071(2)	1.0(6)
09	381(6)	725(4)	340(3)	3(1)	W1	306(3)	460(3)	208(2)	2.5(5)
O10	229(9)	376(5)	686(4)	2.3(7)	W2	767(6)	985(3)	207(2)	4(1)
011	716(4)	863(3)	682(2)	1.4(4)	W3	187(4)	853(3)	796(2)	1.5(5)
O12	902(1)	231(5)	324(3)	3(1)	W4	48(10)	293(7)	305(5)	3(3)
O13	647(9)	120(6)	334(4)	3(1)	W5	44(10)	567(3)	696(3)	5.7(4)
O14	163(8)	625(5)	329(3)	2.4(8)	W6	-004(7)	784(4)	279(4)	2.9(7)
O15	699(4)	363(3)	186(2)	0.3(4)	W7	939(7)	097(2)	696(4)	2(2)
O16	201(6)	864(5)	177(3)	1.8(9)	W/8	693(8)	347(7)	798(4)	3(1)
O 17	964(4)	312(4)	185(3)	0.3(4)	W9	107(4)	142(3)	217(4)	1.6(6)
O18	250(5)	213(3)	674(3)	2.3(6)	<i>W</i> 10	643(3)	646(3)	210(2)	0.9(7)
O19	300(5)	790(3)	070(3)	4.0(6)	W11	150(3)	420(3)	310(2)	2.5(6)
O20	465(5)	798(3)	175(3)	1.5(8)	<i>W</i> 12	700(3)	820(3)	310(2)	2.7(7)
O21	762(9)	703(5)	677(5)	3(1)	<i>W</i> 13	011(6)	-751(4)	-196(4)	2.6(7)
O22	818(9)	283(5)	070(5)	2.6(3)	<i>W</i> 14	-514(6)	-282(4)	-229(3)	2.5(7)
O23	734(4)	201(2)	178(1)	0.3(4)	W15	376(6)	964(4)	288(3)	2.0(6)
O24	217(8)	699(4)	163(6)	2(1)	<i>W</i> 16	848(6)	458(4)	308(3)	2(1)
O25	804(8)	635(4)	925(6)	1.3(5)	W17	339(6)	966(4)	705(3)	2.6(6)
O26	300(8)	140(4)	940(6)	0.3(5)	<i>W</i> 18	798(6)	482(4)	719(3)	3.0(6)
O27	340(6)	237(4)	850(3)	2.5(8)	W19	322(5)	469(3)	-216(3)	2.4(6)
O28	431(7)	072(4)	854(2)	3(1)	W20	795(5)	960(3)	-218(3)	1.6(4)
O29	144(8)	133(5)	849(4)	2.8(8)	W21	124(5)	577(3)	692(3)	2.9(7)
O30	863(4)	711(2)	807(1)	3.5(6)	W22	590(5)	101(3)	699(3)	3.9(6)
O31	657(6)	618(4)	806(4)	2.9(5)	W23	398(5)	103(3)	204(3)	3.9(7)
O32	917(5)	568(3)	807(2)	3.0(5)	W24	941(5)	658(3)	205(3)	4.4(6)

тельствовало как о несовершенстве монокристалла, так и, вероятно, о завышенной симметрии. В подтверждение последнего предположения получить прямыми методами [1] фрагмент структуры

из 10 атомов удалось лишь в группе P_1 с использованием 4135 усредненных отражений (*R*-фактор усреднения 6%). Но и в этом приближении поиск полной модели из серии синтезов оставался проблематичным, что вынудило понизить симметрию до наиболее низкосимметричной пр. гр. *P*1, в рамках которой процедура "коррекции фаз" [2] выявила все 144 позиции. Уточнение МНК этой модели с учетом поглощения по программе DIFABS [3] снизило *R* до 10.7% в изотропном приближении для анионов и молекул воды и анизотропном для катионов. Характеристика кристалла и эксперимента приведены в табл. 1, окончательные координаты и тепловые параметры – в табл. 2, характеристики полиэдров – в табл. 3.

Основные особенности состава и структуры минерала отражены в его кристаллохимической формуле (Z = 8): $[(Zn_{2.6}Fe_{0.3}Cu_{0.1})^{VI}(OH)_3]$ [Zn ^{IV}(OH)₃(H₂O)][SO₄] · 2H₂O, где квадратными скобками выделены слой из связанных через общие ребра Zn-октаэдров и изолированные Zn-и S-центрированные тетраэдры. OH-группы и молекулы воды в свободных вершинах Zn-тетраэдров установлены расчетом локального баланса валентностей по Брезе [4].

Основой структуры ланштайнита являются бруситоподобные слои из реберно-связанных октаэдров ZnO₆. Слои характеризуются шестичленными кольцами с вакантными центральными октаэдра-

Рис. 1. Слой из реберно-связанных октаэдров Zn и соединенных с ним вершинами Zn- и S-тетраэдров.

ми, которые сверху и снизу слоя прикрываются Zn-тетраэдрами (рис. 1). Такие слои имеются в Zn-содержащих минералах шуленбергите, ктенасите, христелите, гордаите, намууите и ряде других [5].

К слоям из Zn(1)–Zn(24)-октаэдров и Zn(25)– Zn(32)-тетраэдров "подвешиваются" сверху и снизу S-тетраэдры. Средние расстояния Zn–O в октаэдрах находятся в пределах 2.04–2.23 Å, а в тетраэдрах ZnO₄ – 1.92–2.09 Å. Расстояния S–O в сульфатных тетраэдрах не выходят за пределы 1.45-1.53 Å.

В структуре ланштайнита присутствуют два химически и топологически идентичных электронейтральных слоя, сдвинутых друг относительно друга на 1/2 a (рис. 2). Период c/2 = 9.52 Å отвечает расстоянию между слоями, объединенными только водородными связями молекул воды (рис. 3). Эта особенность кристаллической структуры объясняет очень низкую твердость нового минерала. Распределение молекул воды в пространстве между слоями разупорядоченно и не подчиняется центру симметрии, что является основной причиной понижения пространственной группы до *P*1.

Синтетические сульфаты цинка характеризуются общей формулой $n(Zn(OH)_2)$, $ZnSO_4 \cdot mH_2O$, где: 1 < n < 7, 0 < m < 5. [6]. Новый минерал с идеализированной формулой $Zn_4SO_4(OH)_6 \cdot 3H_2O$ является природным аналогом тригидрата сульфата цинка $3Zn(OH)_2 \cdot ZnSO_4 \cdot 3H_2O$ [7], структура которого решена с R-фактором 13%. Она характеризуется триклинной ячейкой с параметрами a = 8.367(3), b = 8.393(3), c = 18.569(5) Å, $\alpha = 90.29(3)^\circ$, $\beta = 89.71(3)^\circ$, $\gamma = 120.53(3)^\circ$, V = 1123.2(6) Å³ и пр. гр. $I\overline{1}$. Матрица перехода от псевдоромбической ячейки нового минерала к

		Расстояния катион–анион, Å					
Позиция	КЧ	Мини- мальное	Макси- мальное	Среднее			
Zn1	6	2.03	2.450	2.20			
Zn2	6	1.82	2.437	2.15			
Zn3	6	1.90	2.349	2.11			
Zn4	6	1.98	2.434	2.14			
Zn5	6	2.04	2.467	2.22			
Zn6	6	1.99	2.521	2.18			
Zn7	6	2.02	2.364	2.16			
Zn8	6	1.96	2.43	2.15			
Zn9	6	1.84	2.48	2.15			
Zn10	6	1.89	2.25	2.08			
Zn11	6	1.80	2.27	2.08			
Zn12	6	1.91	2.23	2.10			
Zn13	6	1.85	2.465	2.04			
Zn14	6	1.91	2.321	2.10			
Zn15	6	1.84	2.356	2.08			
Zn16	6	1.80	2.43	2.11			
Zn17	6	1.80	2.441	2.07			
Zn18	6	1.93	2.516	2.18			
Zn19	6	2.11	2.40	2.23			
Zn20	6	1.94	2.381	2.14			
Zn21	6	1.93	2.284	2.05			
Zn22	6	1.98	2.447	2.15			
Zn23	6	1.97	2.289	2.13			
Zn24	6	2.04	2.34	2.18			
Zn25	4	1.93	2.146	2.04			
Zn26	4	1.83	2.07	1.92			
Zn27	4	1.845	2.28	2.02			
Zn28	4	1.86	2.03	1.95			
Zn29	4	1.95	2.07	2.04			
Zn30	4	1.89	2.05	1.96			
Zn31	4	1.93	2.15	2.09			
Zn32	4	1.88	2.33	2.08			
S 1	4	1.48	1.55	1.53			
S2	4	1.44	1.49	1.47			
S 3	4	1.32	1.55	1.45			
S4	4	1.44	1.54	1.49			
S 5	4	1.47	1.55	1.50			
S 6	4	1.37	1.56	1.48			
S 7	4	1.30	1.52	1.45			
S 8	4	1.34	1.57	1.46			

Таблица 3. Характеристики координационных полиэдров

Рис. 2. Схема сдвига слоев из Zn-октаэдров (октаэдры в центре шестичленных колец вакантны) друг относительно друга на 1/2*a*. Атомы Zn обозначены черными и серыми кружками, а их соединения сплошными и пунктирными линиями. Пустые октаэдры закрашены соответственно черным и серым цветом.

псевдотригональной ячейке тригидрата сульфата цинка: [-100/0.50.50/00-1]. Соответствующая обратная матрица перехода: [100/120/001].

В структуре нового минерала реализуется сдвиг слоев на 1/2 a (рис. 2), идентичный с учетом различий системы координат сдвигу, фиксированному в синтетическом тригидрате на 1/2[a + b]. По составу и топологии слоев изученный минерал родственен тригональному четырехводному минералу намууиту (Zn,Cu)₄(SO₄)(OH)₆·4H₂O [6,8] и его синтетическому аналогу Zn₄(SO₄)(OH)₆ · \cdot 4H₂O [9]. Однако в намууите слои не сдвинуты друг относительно друга, а трансляционно идентичны, что приводит к уменьшению ячейки вдвое, а параметр c = 10.54(1) Å намууита больше 1/2 c изученного минерала (9.25 Å) за счет большего количества молекул воды между слоями намууита.

Новый минерал, природный тригидрат Znсульфата, и его синтетическй аналог могут служить примером сочетания двух типов координации одного и того же элемента в структуре. Атомы Zn в силу строения его электронной оболочки тяготеют к тетраэдрической координации. Тетраэдры цинка характеризуются сильными ковалентными связями в отличие от октаэдров с ионно-ковалентными связями. Однако условия кристаллизации, по-видимому, могут вынуждать этот элемент занимать наряду с тетраэдрическими октаэдрические позиции с реализацией последних по остаточному принципу.

Таким образом, наличие в структуре гетерополиэдрических слоев и их объединение слабыми водородными связями приводит к дефектам упаковки последовательности слоев, что явля-

Рис. 3. Структура ланштайнита $Zn_4(SO_4)(OH)_6$ · · $3H_2O$ в проекции на плоскость (110).

ется причиной несовершенства как монокристалла, так и полученного от него дифракционного эксперимента и, как следствие, недостаточно низкого значения достигнутого *R*-фактора. Тем не менее, модель структуры нового минерала согласована по катионному составу, тепловым параметрам, межатомным расстояниям и балансу зарядов на анионах. Она полностью соответствует модели синтетического тригидрата сульфата цинка, и в ее достоверности нет никаких сомнений.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 10-05-00092а, 11-05-00397-а) и НШ-2150.2912.5.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андрианов В.И. // Кристаллография. 1987. Т. 32. Вып. 1. С. 228.
- 2. Андрианов В.И. // Кристаллография. 1989. Т. 34. Вып. 3. С. 592.
- 3. *Walker N., Stuart D.* // Acta Cryst. A. 1983. V. 39. № 2. P. 158.
- Brese N.E., O'Keefe M. // Acta Cryst. B. 1991. V. 47. P. 192.
- 5. Hawthorne F.C., Krivovichev S.V., Burns P.C. // Rev. Mineral. Geochem. 2000. V. 40. P. 1.
- 6. Groat Lee A. // Am. Mineral. 1996. V. 81. P. 238.
- Bear I.J., Grey I.E., Madsen I.C. et al. // Acta Cryst. B. 1986. V. 42. P. 32.
- Bevins R.E., Turgoose S., Williams P.A. // Mineral Mag. 1981. V. 46. P. 51.
- 9. Glibert J. // Bull. Soc. Chim. Belges. 1977. V. 86. P. 1.

КРИСТАЛЛОГРАФИЯ том 57 № 5 2012