УДК 548.736.6

Посвящается 100-летию открытия дифракции рентгеновских лучей

ВОДОРОДНЫЕ СВЯЗИ В КРИСТАЛЛИЧЕСКИХ СТРУКТУРАХ ВАНАДИЛФОСФАТОВ Rb(VO₂)[HPO₄] и CsAl(VO)[PO₄]₂(H₂O)

© 2012 г. О. В. Якубович, Я. Стил*, Е. В. Яковлева, О. В. Димитрова

Московский государственный университет им. М.В. Ломоносова, Россия E-mail: yakubol@geol.msu.ru * Университет Чикаго, США Поступила в редакцию 22.04.2011 г.

Рентгенографически (дифрактометр Bruker Smart, T = 100 K) уточнены кристаллические структуры двух ванадилфосфатов Rb(VO₂)[HPO₄] (a = 7.029(4), b = 9.513(6), c = 18.049(10) Å, пр. гр. *Pbca*, Z = 8, $\rho_{\text{выч}} = 2.910(3)$ г/см³) и CsAl(VO)[PO₄]₂(H₂O) (a = 8.0128(13), b = 8.0714(13), c = 14.118(2) Å, $\beta = 106.302(2)^{\circ}$, пр. гр. $P2_1/c$, Z = 4, $\rho_{\text{выч}} = 3.295(1)$ г/см³), полученных методом гидротермального синтеза. Локализованы атомы водорода, уточнены их координатные и тепловые параметры. Рассчитаны геометрические характеристики водородных связей и проанализирована их кристаллохимическая функция. Выявлены топологические и генетические связи изученных ванадилфосфатов с соединениями производных структурных типов.

ВВЕДЕНИЕ

Устойчивый интерес к исследованию систем, содержащих оксокомплексы ванадия и фосфора, обусловлен, в частности, многообещающими каталитическими свойствами ванадилфосфатов [1]. Большинство каталитически активных соединений такого рода являются продуктами воздействия температуры и давления на фосфатные фазы, содержащие атомы ванадия в степени окисления +5 или +4 [2]. В кристаллических структурах неорганических соединений (включая минералы) координационные полиэдры ванадия в степени окисления +4 (ванадил(IV) ион $[VO]^{2+}$) представляют собой полуоктаэдры с ярко выраженной укороченной относительно других в полиэдре ванадильной V=O связью, либо октаэдры, где в транс-позиции к ванадильной связи располагается контакт V-O существенно большей длины, чем средние связи ванадия с атомами кислорода первой координационной сферы. Ванадий в максимально возможной степени окисления +5 часто формирует ванадатные анионные тетраэдрические комплексы [VO₄]³⁻, аналогичные фосфатным комплексам, которые типичны для низкотемпературных экзогенных условий минералообразования зоны окисления различных месторождений. В пятивалентном состоянии ванадий также образует катионы [VO₂]⁺ и $[VO]^{3+}$, которые обычно участвуют в формировании анионных построек смешанного типа наряду с другими кислотными анионными оксокомплексами (чаще всего фосфатными). Для этого катиона характерны две или одна укороченные ванадильные связи среди пяти (тригональная бипирамида, полуоктаэдр) или шести (искаженный октаэдр) в полиэдре.

Примерами ванадил(V)- и ванадил(IV)-фосфатов являются соединения $Rb(VO_2)[HPO_4]$ (I) и $CsAl(VO)[PO_4]_2(H_2O)$ (II). Первое из них было синтезировано из раствора состава Rb₂CO₃-V₂O₅-H₃PO₄. Его кристаллическая структура решена прямыми методами на основе рентгеновских данных и уточнена методом Ритвельда [2]. Кристаллическая структура второй фазы $CsAl(VO)[PO_4]_2(H_2O)$, полученной в системе CsVO₃-AlCl₃-H₃PO₄-пиперидин-H₂O, установлена с использованием монокристального рентгеновского эксперимента [3]. В рамках исследований кристаллохимии соединений ванадия в корреляции с условиями их формирования [4] синтезировались в гидротермальных условиях ванадилфосфаты I и II с крупными щелочными катионами Rb⁺ или Cs⁺.

В настоящей работе изложены результаты уточнения их кристаллических структур на базе рентгеновского экспериментального материала, полученного на монокристаллах при низкой температуре, с целью локализации атомов водорода и анализа особенностей водородных связей, а также приведена кристаллохимическая интерпретация полученных данных в корреляции с архетипами и производными фазами.

Соединение	Rb(VO ₂)[HPO ₄]	$Cs{(VO)(H_2O)Al[PO_4]_2}$
M	264.39	434.79
Сингония, пр. гр., <i>Z</i>	Ромбическая, Pbca, 8	Моноклинная, <i>Р</i> 2 ₁ / <i>с</i> , 4
a, Å	7.029(4)	8.0128(13)
b, Å	9.513(6)	8.0714(13)
<i>c</i> , Å	18.049(10)	14.118(2)
β, град		106.302(2)
$V, Å^3$	1206.9(1)	876.4(2)
D_x , г/см ³	2.910(3)	3.295(1)
Излучение λ, Å	Мо <i>К</i> _α , 0.71073 (графи	товый монохроматор)
Размер кристалла, мм	$0.12\times0.10\times0.08$	$0.12\times0.10\times0.10$
μ, мм ⁻¹	9.88	5.73
<i>Т</i> , К	10	00
Дифрактометр	Bruker Sn	nart, CCD
Тип сканирования	ω/	20
2θ _{max} , град	55.08	56.53
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-9 \le h \le 8, -12 \le k \le 11, -23 \le l \le 23$	$-10 \le h \le 10, -10 \le k \le 10, -18 \le l \le 18$
Число отражений: измеренных/не- зависимых ($N1$)/с $I > 1.96\sigma(I)$ ($N2$)	10133/1340/961	9998/2102/2038
Способ уточнения	по	F^2
Число уточняемых параметров	87	144
Весовая схема	$1/[s^2(F_{\rho}^2) + (0.0600P)^2],$	$1/[s^2(F_o^2) + (0.0280P)^2 + 0.8000P],$
	$P = (F_o^2 + 2F_c^2)/3$	$P = (F_o^2 + 2F_c^2)/3$
Поправка на поглощение	Полуэмпирическая	я, по эквивалентам
$T_{\rm max}, T_{\rm min}$	0.505, 0.384	0.598, 0.546
$R_{\scriptscriptstyle m BH},R_{ m \sigma}$	0.0783, 0.0553	0.023, 0.017
Факторы недостоверности:		
$R1/\omega R_2$ по $N1$	0.0414/0.0998	0.0194/0.0518
<i>R</i> 1/ω <i>R</i> ₂ πο <i>N</i> 2	0.0638/0.1043	0.0203/0.0523
S	0.986	1.155
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, \Im / \mathring{A}^3$	0.870/-0.747	0.804/-0.511

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структуры

ПОЛУЧЕНИЕ КРИСТАЛЛОВ, РЕНТГЕНОВСКИЙ ЭКСПЕРИМЕНТ И РАСШИФРОВКА СТРУКТУРЫ

Кристаллы ванадилфосфатов I и II синтезированы в гидротермальных условиях при $t = 280^{\circ}$ С и *P* = 70 атм. в стандартных автоклавах объемом 4 см³, футерованных фторопластом. Весовые отношения исходных компонентов системы RbCl : : Rb_3PO_4 : VO_2 : $H_2O = 1$: 2 : 1 : 20 и системы $AlCl_3$: : Cs_3PO_4 : V_2O_5 : $H_2O = 0.5$: 2: 1: 20. Небольшое количество борного ангидрида (50 мг) в качестве минерализатора [5] было добавлено в обоих случаях. Длительность опытов – 18 дней. Синтезированные кристаллы представляют собой прозрачные призмы желтого цвета (фаза I) и сине-зеленые прозрачные тетраэдры (фаза II) С

максимальным линейным размером до 0.2 мм. По данным качественного рентгеноспектрального микроанализа¹ (Jeol JSM-6480LV, энергодисперсионный дифракционный спектрометр INCA-Wave 500) в составе кристаллов фазы I присутствуют атомы Rb, V, P и O, а в составе фазы II — атомы Cs, V, P, Al и O. Окраска кристаллов в отсутствие других ионов-люминофоров, кроме иона ванадия, свидетельствует о валентном состоянии последнего в рассматриваемых соединениях. Кроме фазы I в том же опыте получены темно-бурые изометричные кристаллы $Rb_6V_6P_6O_{31}$ [6] с атомами ванадия в степени окисления +5 и +4.

¹ Проведен в Лаборатории локальных методов исследования вещества кафедры Петрологии Геологического факультета МГУ.

ВОДОРОДНЫЕ СВЯЗИ В КРИСТАЛЛИЧЕСКИХ СТРУКТУРАХ ВАНАДИЛФОСФАТОВ 807

Атом	x/a	y/b	<i>z/c</i>	$U_{ m _{3KB}}$
Rb	0.22584(8)	0.19108(6)	0.10090(3)	0.0183(2)
V	-0.01702(14)	0.45684(11)	0.24112(6)	0.0161(3)
P1	0.6965(2)	0.3928(2)	0.09876(9)	0.0156(4)
O1	0.6394(6)	0.2548(5)	0.0601(2)	0.0182(9)
O2	0.8867(6)	0.3773(4)	0.1452(2)	0.0198(10)
O3	0.7310(6)	0.5067(5)	0.0340(2)	0.0206(10)
O4	0.5292(6)	0.4509(4)	0.1495(2)	0.0202(10)
O5	0.2151(6)	0.4043(4)	0.2227(2)	0.0183(9)
O6	-0.0230(6)	0.6289(4)	0.2284(2)	0.0187(10)
H1	0.815(8)	0.568(6)	0.045(5)	0.05(3)

Таблица 2. Rb(VO₂)[HPO₄]. Координаты базисных атомов и эквивалентные тепловые коэффициенты*

* Для атома водорода приведено значение изотропного теплового коэффициента.

Таблица 3. Cs{(VO)(H₂O)Al[PO₄]₂}. Координаты базисных атомов и эквивалентные тепловые коэффициенты*

Атом	x/a	<i>y/b</i>	<i>z/c</i>	$U_{ m _{3KB}}$
Cs	0.82788(2)	0.53592(2)	0.20940(1)	0.01073(7)
V	0.28700(6)	0.55365(5)	0.14162(3)	0.00817(10)
Al	0.78504(10)	0.53632(9)	0.53201(6)	0.00475(15)
P1	0.00530(8)	0.27766(8)	0.04164(5)	0.00686(13)
P2	0.49868(8)	0.39274(8)	0.35388(5)	0.00668(13)
01	0.1017(2)	0.2224(2)	-0.03420(13)	0.0098(4)
O2	0.9384(2)	0.1170(2)	0.07935(13)	0.0096(4)
O3	0.8519(2)	0.3884(2)	-0.00554(13)	0.0089(4)
O4	0.1308(2)	0.3561(2)	0.13152(13)	0.0095(4)
05	0.4562(3)	0.3775(3)	0.06288(16)	0.0166(4)
O6	0.4730(2)	0.7084(2)	0.12271(13)	0.0098(4)
O7	0.2050(2)	0.6722(2)	0.20735(14)	0.0111(4)
O 8	0.6588(2)	0.4939(2)	0.41230(14)	0.0113(4)
09	0.3414(2)	0.4474(2)	0.38807(15)	0.0124(4)
O10	0.4675(2)	0.4316(2)	0.24565(14)	0.0095(4)
H1	0.473(6)	0.291(7)	0.111(4)	0.06(1)
H2	0.474(6)	0.351(6)	0.003(4)	0.06(1)

* Для атомов водорода приведены изотропные тепловые коэффициенты.

Параметры элементарной ячейки и симметрия изученных кристаллов, а также условия проведения рентгеновских экспериментов при T = 100 К и результаты уточнения кристаллических структур приведены в табл. 1. Зарегистрированные интенсивности отражений (полная сфера обратного пространства) скорректированы с учетом фактора Лоренца и поляризационного эффекта. Поправка на поглощение введена полуэмпирическим методом "псевдо- Ψ -сканирования". Все вычисления выполнены с помощью комплекса программ SHELX [7, 8] в рамках программного пакета Wingx32 [9]. Использованы кривые атомного рассеяния и поправки на аномальную дисперсию из [10]. Атомы водорода локализованы на разностных синтезах электронной плотности; их тепловые параметры уточнены в изотропном приближении. Координаты базисных атомов с тепловыми поправками приведены в табл. 2, 3; межатомные расстояния и геометрические харак-

КРИСТАЛЛОГРАФИЯ том 57 № 5 2012

Р-тетр	раэдр	V-полус	октаэдр	Rb-десяти	вершинник		
P-01	1.540(5)	V=O6	1.654(5)	Rb–O5	2.992(5)		
O2	1.584(5)	V–O5	1.739(5)	01	3.013(5)		
O4	1.590(5)	O4	2.001(5)	O4	3.034(5)		
O3	1.613(5)	O2	2.007(5)	O1'	3.059(5)		
$\langle P-O \rangle$	1.582	O5'	2.055(5)	O3	3.077(5)		
		$\langle V-O \rangle$	1.8915	O2	3.076(5)		
				O6	3.164(5)		
				O4'	3.381(5)		
				O6'	3.446(5)		
				O5'	3.528(5)		
				$\langle Rb-O \rangle$	3.177 ₅		
Геометрические характеристики водородных связей							
D–H···A	<i>D</i> —Н, Å	H… <i>A</i> , Å	<i>D</i> … <i>A</i> , Å	Угол Д-	–Н…А, град		
O3-H1…O1	0.85(6)	1.83(6)	2.573(6)	1	45(6)		

Таблица 4. Rb($VO_2)[HPO_4].$	Межатомные	расстояния ((Å)
----------------	-----------------	------------	--------------	-----

Примечание. *D* – донор, *A* – акцептор водородной связи.

Таблица 5.	$Cs(VO)(H_2O)Al[PO_4]_2$. Межатомные расстояния (A	Å))
------------	---	----	---

Р1-тет	раэдр	Р2-тет	раэдр	Al-te	страэдр
P1-O3	1.514(2)	P2-O10	1.510(2)	Al-O9	1.720(2)
O4	1.518(2)	O6	1.527(2)	O2	1.740(2)
O1	1.551(2)	O9	09 1.536(2)		1.743(2)
O2	1.553(2)	O 8	1.549(2)	O1	1.751(2)
$\langle P1-O \rangle$	1.534	$\langle P2-O \rangle$	1.531	$\langle Al-O \rangle$	1.739
V-окт	аэдр	Сѕ-12-ве	ршинник		·
V=O7	1.597(2)	Cs–O6	3.093(2)		
V–O3	1.987(2)	O2	3.114(2)		
O10	2.007(2)	O10	3.184(2)		
O4	2.007(2)	O 7	3.200(2)		
O6	2.019(2)	O7'	3.224(2)	3.224(2)	
O5	2.438(2)	O4	3.272(2)	272(2)	
$\langle V-O \rangle$	2.009	O3	3.315(2)	6.315(2)	
		O1	3.320(2)		
		O5	3.365(2)		
		O4'	3.378(2)		
		O 8	3.512(2)		
		O9	3.704(2)		
		$\langle Cs-O \rangle$	3.307		
	Геометри	ческие характери	стики водородных	связей	
$D-\mathrm{H}\cdots A$	<i>D</i> –Н, Å	H… <i>A</i> , Å	<i>D</i> … <i>A</i> , Å	Угол Л	D−H…A, град
O5-H1…O8	0.96(6)	2.60(5)	3.277(3)		128(4)
O5-H2…O6	0.92(5)	2.00(5)	2.916(3)		177(6)

Примечание. *D* – донор, *A* – акцептор водородной связи.

Атом	Р	V	Rb	Н	Σ
O1	1.503		0.112; 0.108	0.32	2.04
O2	1.227	0.632	0.107		1.97
O3	1.074		0.107	0.68	1.86
O4	1.196	0.632	0.110; 0.085		2.02
O5		1.379; 0.546	0.115; 0.076		2.12
O6		1.810	0.100; 0.080		1.99
Σ	5	4.99	1	1	

Таблица 6. Rb(VO₂)[HPO₄]. Локальный баланс валентностей*

Примечание. Вклады атомов водорода оценены на основе данных [22].

* Алгоритм и эмпирические параметры для расчетов использованы из [11].

Таблица 7. Cs{(VO)(H₂O)Al[PO₄]₂}. Локальный баланс валентностей*

Атом	P1	P2	Al	V	Cs	H1	H2	Σ
01	1.144		0.719		0.082			1.95
O2	1.144		0.740		0.093			1.98
O3	1.368			0.552	0.082			2.00
O4	1.343			0.534	0.084; 0.080			2.04
O5				0.207	0.080	0.95	0.89	2.13
O6		1.268		0.517	0.094		0.11	1.99
O 7				1.655	0.089; 0.087			1.83
O 8		1.146	0.740		0.073	0.05		2.01
O9		1.220	0.801		0.066			2.09
O10		1.366		0.534	0.090			1.99
Σ	4.99	5.00	3.00	3.99	1.00	1.00	1.00	

Примечание. Вклады атомов водорода оценены на основе данных [22].

* Алгоритм и эмпирические параметры для расчетов использованы из [11].

теристики водородных связей — в табл. 4, 5; результаты расчета локального баланса валентностей [11] — в табл. 6, 7.

АНАЛИЗ МЕЖАТОМНЫХ РАССТОЯНИЙ И ОПИСАНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Rb(VO₂)[HPO₄]. Независимый фрагмент кристаллической структуры $Rb(VO_2)[HPO_4]$ представлен на рис. 1а. В сильно искаженных пятивершинниках (VO₅) наиболее короткое расстояние V–О длиной 1.654(4) Å отвечает ванадильной связи; межатомные расстояния V–О до независимых атомов кислорода, поделенных с тетраэдрами фосфора, совпадают в пределах ошибки и равны 2.001(4) и 2.007(4) Å (табл. 4). Расстояния V–О величиной 1.739 и 2.055 Å характеризуют взаимодействия с атомами кислорода, поделенными между двумя полиэдрами ванадия. Большой разброс длин связей Р–О в фосфатных тетраэдрах обусловлен их неравномерным окружением в

КРИСТАЛЛОГРАФИЯ том 57 № 5 2012

кристаллической структуре. Так, близкие по величине длины связей Р-О2 и Р-О4, равные 1.584(4) Å и 1.590(4) Å, отвечают вершинно-мостиковым контактам Р-О-V между оксокомплексами ванадия и фосфора. Две другие вершины ортофосфатных тетраэдров (О1 и О3) остаются "висячими", т.е. неподеленными с полиэдрами ванадия. Атомы кислорода О1 и О3 участвуют также в координации крупных катионов Rb⁺. Соответствующие длины связей Р-О1 и Р-О3 равны 1.540(4) и 1.613(4) Å. Максимальное расстояние между атомами фосфора и кислорода в полиэдре, равное 1.613(4) Å, фиксирует взаимодействие Р-ОН. Крупные атомы Rb находятся в окружении 10 атомов кислорода: интервал расстояний Rb–O составляет 2.992(4)-3.528(4) Å (рис. 1б).

Параллельно оси *а* ромбической элементарной ячейки Rb(VO₂)[HPO₄] вытянуты цепочки из полуоктаэдров VO₅, делящих кислородные вершины соседних полиэдров (рис. 2а). Каждые два полиэдра ванадия в цепочке "замыкаются" на ребрах фосфатных тетраэдров с образованием одЯКУБОВИЧ и др.

Рис. 1. Типы координации катионов в кристаллической структуре Rb(VO₂)[HPO₄]: независимый фрагмент структуры — тетраэдры Р и октаэдры V; эллипсоиды тепловых колебаний показаны с вероятностью 90% (а) и анионный полиэдр вокруг атомов Rb (б).

Рис. 2. Кристаллическая структура Rb(VO₂)[HPO₄]: проекция *xz* (а) и вид вдоль оси *a* (б).

номерных анионных конструкций ленточного типа из полиэдров фосфора и ванадия. Крупные щелочные катионы Rb^+ заполняют пространство между V/P лентами, связывая их в единую кристаллическую постройку. Сильные, асимметричные и нелинейные водородные связи между атомами кислорода O3–H···O1 длиной 2.573(6) Å (табл. 3) объединяют соседние вдоль оси *b* ленты из PO₄-тетраэдров и полуоктаэдров VO₅ в слои, параллельные плоскости *ab* (рис. 26). Таким образом, неподеленные с полиэдрами ванадия "висячие" кислородные вершины фосфатных тетраэдров участвуют в формировании водородных связей, одна в качестве донора (O3), а вторая – в качестве акцептора (O1). Результаты расчета локального баланса валентностей подтверждают необходимость формирования водородных связей между атомами кислорода фосфатных оксокомплексов (табл. 6), а также валентное состояние (+5) ванадия в кристалле.

Цепочки из вершинно-связанных V-полуоктаэдров и укрепляющие их с двух сторон P-тетраэдры, которые формируют анионную часть рассматриваемой структуры, представляют собой стабильные конструкции, являющиеся фрагментами кристаллических структур других соединений. Прежде всего это изоструктурные ванадилфосфаты с общей формулой $A(VO_2)[HPO_4]$, где A = K, Tl, NH₄ [2, 12]. Аммонийсодержащая фаза

КРИСТАЛЛОГРАФИЯ том 57 № 5 2012

Рис. 3. Характер координации катионов в кристаллической структуре $C_{s}(VO)(H_2O)Al[PO_4]_2$: независимый фрагмент каркаса смешанного типа; эллипсоиды тепловых колебаний показаны с вероятностью 90% (а) и анионный полиэдр вокруг атомов Cs (б).

 $NH_4(VO_2)[HPO_4]$ диморфна: ее α -модификация, имеющая очень близкую по топологии ленточную структуру, но без центра инверсии (пр. гр. $Pb2_1a$), характеризуется элементарной ячейкой в 2 раза меньшего объема за счет уменьшения в 2 раза параметра *c* [13]. Ленты близкой топологии служат основными фрагментами анионных слоев в структуре ванадилфосфата гуанидиния (CN_3H_6)₂(VO₂)₃[PO₄][HPO₄] [14].

 $CsAl(VO)[PO_4]_2(H_2O)$. Основные фрагменты, формирующие кристаллическую структуру $CsAl(VO)[PO_4]_2(H_2O)$, представлены на рис. 3а: это оксокомплексы фосфора, алюминия и ванадия. Два симметрийно независимых ортофосфатных тетраэдра значительно искажены. Так, длины связей P1-О лежат в интервале 1.514(2)-1.553(2) Å (среднее 1.534 Å), а длины связей Р2–О – в интервале 1.510(2)-1.549(2) Å (среднее 1.531 Å). Атомы алюминия в кристаллической структуре находятся также в тетраэдрическом окружении из атомов кислорода с межатомными расстояниями Al-O, изменяющимися от 1.720(2) до 1.751(2) Å (среднее 1.738 Å). Атомы ванадия в степени окисления 4+ располагаются в сильно деформированных октаэдрах. Наиболее короткое расстояние V-O в октаэдре, равное 1.597(2) Å, отвечает ванадильной группе $(VO)^{2+}$. Четыре близких по величине расстояния V-O в "экваториальной" плоскости до атомов кислорода, поделенных с фосфатными тетраэдрами, варьируют от 1.987(2) до 2.019(2) Å. А наиболее длинная связь V–O до атома кислорода молекулы H₂O в *транс*-позиции по отношению к ванадильной группе имеет длину 2.438(2) Å. В ближайшем окружении крупных атомов Cs на расстоянии от 3.094(2) до 3.704(2) Å находятся 12 атомов кислорода (рис. 36, табл. 5).

КРИСТАЛЛОГРАФИЯ том 57 № 5 2012

Вдоль оси а кристаллической структуры гидрата ванадилалюминофосфата цезия вытянуты алюминофосфатные цепочки из тетраэдров фосфора и алюминия, делящих кислородные вершины (рис. 4а). Цепочки построены из чередующихся вдоль оси а центросимметричных четырехчленных колец двух типов, каждое из которых образовано двумя тетраэдрами РО₄ и двумя тетраэдрами AlO₄. Тетраэдры алюминия делят все вершины с фосфатными тетраэдрами, тогда как последние имеют только две вершины, поделенные с тетраэдрами алюминия, а две другие делят с полиэдрами ванадия. Октаэдры ванадия связывают в трехмерную постройку Al/P-цепочки, торцы стержней которых располагаются в вершинах и центре элементарной ячейки (рис. 4б). В результате формируется анионный каркас смешанного типа ${Al[VO(H_2O)][PO_4]_2}_{\infty \infty \infty}$ из тетраэдров PO₄, AlO₄ и октаэдров VO₅(H₂O) с широкими открытыми каналами, вытянутыми вдоль оси b элементарной ячейки, в которых находят себе место крупные атомы Cs (рис. 4в).

811

Расчет локального баланса валентностей (табл. 7) подтвердил предположение о том, что связь V—O5 наибольшей длины 2.438(2) Å отвечает атому кислорода молекулы H_2O , участвующей в координации ванадия. Атом кислорода O5 образует достаточно слабые асимметричные водородные связи длиной 2.916(3) и 3.277(3) Å с атомами кислорода O6 и O8 каркаса (табл. 5). Кристаллохимическая функция действующих водородных связей состоит в усилении взаимодействия между Al/P-лентами и оксокомплексами VO₆ трехмерного анионного каркаса структуры (рис. 4).

Изученная фаза CsAl(VO)[PO₄]₂(H₂O) вместе с изотипными соединениями RbAl(VO)[PO₄]₂(H₂O)

ЯКУБОВИЧ и др.

Рис. 4. Кристаллическая структура Cs(VO)(H_2O)Al[PO_4]₂ в проекциях *xy* (a), *yz* (б) и *xz* (в).

[3], CsGa(VO)[PO₄]₂(H₂O) и RbGa(VO)[PO₄]₂(H₂O) [15] представляют собой немногочисленные примеры известных к настоящему моменту алюмино- и галлофосфатов, анионные каркасы кристаллических структур которых образованы оксокомплексами трех типов: Al/P/V либо Ga/P/V. Анализ термической устойчивости кристаллической фазы CsAl(VO)[PO₄]₂(H₂O) при нагревании от комнатной температуры до 600°C, по данным [3], показал ее стабильность в изученном температурном интервале и отсутствие каких-либо признаков процесса дегидратации, что свидетельствует о перспективности соединений этого типа в качестве термически стабильных цеолитоподобных материалов.

Алюминофосфатные цепочки, собранные из четырехчленных колец, в которых чередуются тетраэдры фосфора и алюминия, и характерные для рассмотренных выше изотипных соединений, являются основной деталью кристаллической структуры тетрагональной фазы (MoO)Al[PO₄]₂ [16] (рис. 5а). В структуре алюминофосфата молибдена эти цепочки "нанизаны" на оси четвертого порядка и вытянуты вдоль оси с элементарной ячейки. Как и в структурах ванадилфосфатов, тетраэдры Al делят все вершины с Р-тетраэдрами; у последних две из четырех вершин общие с октаэдрами Мо. Таким образом, оксокомплексы ванадия либо молибдена объединяют Al/P-цепочки в трехмерные кристаллические постройки, но характер взаимодействия октаэдрических комплексов в этих структурных типах различен. В структуре (MoO)Al[PO₄]₂ октаэдры MoO₆ в свою очередь связаны в цепочки, которые вытянуты параллельно цепочкам из тетраэдров вдоль оси с (рис. 5б). При этом укороченная связь Мо-О длиной 1.653(5) Å и максимальная в полиэдре связь длиной 2.692(5) Å в *транс*-позиции, направлены вдоль цепочки перпендикулярно плоскости, в которой лежат четыре одинаковые связи Мо-О длиной 1.976(2) Å. Как показано выше, в структуре $Cs(VO)(H_2O)Al[PO_4]_2$ (и структурах изотипных соединений) октаэдры VO₆ изолированы, они не имеют общих кислородных вершин. Атом кисло-

Рис. 5. Кристаллическая структура (MoO)Al[PO₄]₂: цепочки из четырехчленных колец, образованных тетраэдрами P и Al, параллельные оси c (a); чередующиеся вдоль оси b цепочки из октаэдров Mo и цепочки из тетраэдров P и Al (б); каркас из делящих вершины октаэдров Mo и тетраэдров P и Al (в).

рода, отвечающий ванадильной группе, образует "висячую" вершину, а атом кислорода в транспозиции формирует молекулу Н₂О (рис. 4а). Различный тип взаимодействия октаэдров в обсуждаемых структурных типах (изолированные октаэдры VO_6 в структуре $Cs(VO)(H_2O)Al[PO_4]_2$ и структурах изотипных фаз) и цепочки из октаэдров MoO_6 в структуре (MoO)Al[PO_4]₂) приводят к формированию различающихся трехмерных кристаллических построек: открытых микропористых каркасов в первом случае (рис. 4в) и достаточно плотной структуры во втором (рис. 5в). Вероятно, особенности конкретного структурного типа обусловлены участием в системе кристаллизации крупных структурообразующих катионов Cs⁺ или Rb⁺, вокруг которых и "собирается" трехмерный каркас, либо их отсутствием. Отметим, для оксоалюминофосфата что молибдена (Mo⁵⁺O)Al[PO₄] известен структурный аналог, это ванадил(IV) силикофосфат $(V^{4+}O)Si[PO_4]_2$ [17, 18]. Однако, по нашим данным, среди многочисленных вариантов цепочек из тетраэдров в структурах природных и синтетических силикатов и алюминосиликатов не встречено конфигурации, описанной выше.

Трансформация структурного типа в ряду $Cs(VO)(H_2O)Al[PO_4]_2 \rightarrow (MoO)Al[PO_4]_2$ может быть прослежена в направлении фазы (VO)H₄[PO₄]₂ [19] и изотипного арсената [20] (табл. 8). При формальной замене AlO₄ (или SiO₄) тетраэдра на четыре атома водорода две вершины каждого фосфатного (арсенатного) тетраэдра, которые раньше были поделены с тетраэдрами алюминия (кремния), оказываются связанными с атомами водорода с образованием гидроксильных групп (рис. 5в, 6а). Существенно, что такая замена не приводит к изменению топологии оставшейся части структуры по сравнению с архетипом. Атомы водорода далее могут быть замещены атомами лития, что приводит к формированию соединения $(VO)Li_4[AsO_4]_2$ [21], в структуре которого параллельные оси c каналы между тетраэдрами AsO₄

Соединение	<i>a</i> , <i>b</i> , <i>c</i> , Å; β, град	<i>V</i> , Å ³	р _{выч} , г/см ³	R _{hkl}	Мотив структуры	Литера- тура
	Моноклин	нные фа	зы, пр. г	p $P2_1/c$,	Z = 4	
$Cs(VO)(H_2O)Al[PO_4]_2^*$	8.013(1), 8.071(1), 14.118(2): 106.302(2)	876.4	3.30	0.019	Открытый микропористый каркас смешанного типа.	наши ланные
$Rb(VO)(H_2O)Al[PO_4]_2$	7.880(2), 8.063(2), 14.062(2); 105.83(1)	859.6	2.99	0.027	образованный цепочками тетраэдров Р и Al(Ga) и окта-	3
$Cs(VO)(H_2O)Ga[PO_4]_2$	8.042(1), 8.066(1), 14.128(1); 105.094(1)	884.9	3.58	0.026	Сs(Rb) в каналах	15
$Rb(VO)(H_2O)Ga[PO_4]_2$	7.928(2), 8.049(2), 13.983(3); 104.274(2)	867.7	3.30	0.048		15
	Тетрагонали	ьные фаз	зы, пр. г	p. P4/nce	z, Z = 4	
\Box (MoO)Al[PO ₄] ₂	8.030(8) 8.697(6)	673.9	3.24	0.027	Каркас, образованный цепоч-	16
\Box (VO)Si[PO ₄] ₂	8.723(1) 8.151(1)	620.2	3.05	0.032	ками тетраэдров P и Al(Si), и цепочками октаэдров Mo(V)	18
$\Box(\text{VO})\text{H}_4[\text{PO}_4]_2$	8.953(2) 7.965(2)	638.4	2.71	0.024	Открытый микропористый	19
\Box (VO)H ₄ [AsO ₄] ₂	9.132(1) 8.146(3)	679.2	3.41	0.025	каркас из тетраэдров P(As) и октаэлров V с атомами H(Li)	20
$\Box(\text{VO})\text{Li}_4[\text{AsO}_4]_2^{**}$	9.029(1) 9.005(4)	734.2	3.37	0.093	в каналах	21

Таблица 8. Кристаллографические и некоторые кристаллохимические характеристики ванадилфосфатов и структурно родственной фазы (MoO)Al[PO₄]₂

Примечание. Для удобства сопоставления величины параметров элементарных ячеек ограничены третьим знаком после запятой.

* Геометрические характеристики отвечают Т 100 К.

** Структура уточнена методом Ритвельда на основе порошкового рентгеновского экспериментального материала.

заполняются колонками из полиэдров Li (рис. 6б). Таким образом, трансформации в ряду Cs(VO)(H₂O)Al[PO₄]₂ \rightarrow (MoO)Al[PO₄]₂ \rightarrow (VO)Li₄[AsO₄] от одной микропористой постройки (с крупными катионами Cs⁺ или Rb⁺) к микропористой постройке другого типа (с мелкими атомами Li или

Н в каналах) проходят через формирование достаточно плотной структуры из тетраэдров и октаэдров, не содержащей катионов щелочных металлов или атомов водорода.

Авторы выражают благодарность В.О. Япоскурту за анализ кристаллов на микрозонде.

Рис. 6. Анионные каркасы смешанного типа из V-октаэдров и P-тетраэдров – основа кристаллических структур (VO)H₄[PO₄]₂ (a) и (VO)Li₄[AsO₄]₂ (б). В пустотах каркасов атомы Н или Li.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 10-05-01068а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Centi G., Trifiro F., Ebner J.R., Franchetti V.M. // Chem. Rev. 1988. V. 88. P. 55.
- Amoros P., Beltran-Porter D., Le Bail A. et al. // Eur. J. Solid State Inorg. Chem. 1988. V. 25. P. 599.
- 3. Meyer L.M., Haushalter R.C., Zubieta J. // J. Solid State Chem. 1996. V. 125. P. 200.
- Yakubovich O.V. // The Problems of Crystallology. Moscow: GEOS, 2009. P. 101.
- 5. *Dimitrova O.V., Mochenova N.N.* // The Problems of Crystallology. Moscow: GEOS, 2009. P. 213.
- 6. *Benhamada L., Grandin A., Borel M.M. et al.* // J. Solid State Chem. 1991. V. 94. P. 274.
- 7. *Sheldrick G.M.* SHELXS97. Program for the Solution of Crystal Structures. Universität Göttingen, Germany, 1997.
- 8. *Sheldrick G.M.* SHELXL97. Program for the Refinement of Crystal Structures from Diffraction Data. Universität Göttingen, Germany, 1997.
- 9. Westrip S.P. // J. Appl. Cryst. 2010. V. 43. P. 920.

- 10. International Tables. 2004 p. 3^{rd} edth. Tables 4.2.6.8 and 6.1.14 / Ed. Prince E.
- 11. *Пятенко Ю.А.* // Кристаллография. 1972. Т. 17. Вып. 4. С. 773.
- 12. *Huan G.H., Johnson J.W., Jacobson A.J. et al.* // J. Solid State Chem. 1991. V. 93. P. 514.
- Amoros P., Le Bail A. // J. Solid State Chem. 1992. V. 97. P. 283.
- 14. Bircsak Z., Harrison W.T.A. // Inorg. Chem. 1998. V. 37. P. 3204.
- 15. *Hammond R.P., Zubieta J.* // J. Solid State Chem. 1999. V. 144. P. 442.
- Leclaire A., Borel M.M., Grandin A., Raveau B. // Z. Kristallogr. 1990. B. 190. S. 135.
- 17. *Rice C.E., Robinson W.R., Tofield B.C.* // Inorg. Chem. 1976. V. 15. P. 345.
- Middlemiss N., Calvo C. // Acta Cryst. B. 1976. V. 32. P. 2896.
- Линде С.А., Горбунова Ю.Е., Лавров А.В., Кузнецов В.Г. // Докл. АН СССР. 1979. Т. 244. С. 1411.
- 20. Wang S.-L., Lee W.-C. // Acta Cryst. C. 1991. V. 47. P. 1709.
- Aranda M.A.G., Attfield J.P., Bruque S., Martinez-Lara M. // Inorg. Chem. 1992. V. 31. P. 1045.
- 22. Brown I.D. // Acta Cryst. A. 1976. V. 32. P. 24.