УДК 548.737

Посвящается 100-летию открытия дифракции рентгеновских лучей

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ ГЕТЕРОВАЛЕНТНОГО СОЕДИНЕНИЯ МЕДИ [Cu₄(OH)₄*Bipy*₄][Cu₂(B₁₀H₁₀)₃] · 4CH₃CN

© 2012 г. И.Н.Полякова

Институт общей и неорганической химии РАН, Москва E-mail: polyakova@igic.ras.ru Поступила в редакцию 20.10.2011 г.

Рентгеноструктурный анализ кристаллов [Cu₄(OH)₄*Bipy*₄][Cu₂(B₁₀H₁₀)₃] · 4CH₃CN выявил в трех образцах небольшое количество (4–6%) второго компонента, связанного с основным псевдоплоскостью зеркального отражения. Анализ геометрического строения и взаимного расположения в ячейке комплексных катионов [Cu₄(OH)₄*Bipy*₄]⁴⁺ и анионов [Cu₂(B₁₀H₁₀)₃]⁴⁻ показывает, что замена структурных элементов их зеркальными эквивалентами не приводит к существенным стерическим конфликтам. Минорный компонент кристалла может соответствовать точечным дефектам замещения или отдельному индивиду двойника.

ВВЕДЕНИЕ

В ходе систематического исследования реакций комплексообразования *клозо*-декаборатного аниона с ионами переходных металлов подгруппы меди получено соединение [Cu₄(OH)₄*Bipy*₄][Cu₂(B₁₀H₁₀)₃] · · 4CH₃CN, примечательное тем, что это первое гетеровалентное соединение с участием *клозо*-декаборатного аниона и первое соединение, в котором анионы B₁₀H²⁻₁₀ объединены ионами Cu⁺ в цепочки конечной длины. Его синтез, строение и ИК-спектры кратко описаны в [1]. Процесс расшифровки кристаллической структуры оказался нетривиальным, а понимание результата потребовало анализа кристаллической упаковки, который представлен в настоящей работе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структуры приведены в таблице.

Структура расшифрована прямым методом. Неводородные атомы уточнены последовательно в изотропном и анизотропном приближении. Изотропные тепловые параметры атомов О1 и О2 были слишком малы, и при переходе к анизотропному приближению тепловые колебания этих атомов не соответствовали эллипсоиду. Часть атомов водорода локализована в разностных синтезах, позиции остальных рассчитаны. Сначала все атомы Н уточнены по модели наездника, затем позиции атомов Н, связанных с атомами В и О, фиксированы. Окончательное уточнение всех неводородных атомов, кроме О1 и О2 в анизотропном приближении, атомов O1 и O2 в изотропном приближении с учетом всех атомов Н, привело к следующим оценкам: R1 = 0.0746 и Основные кристаллографические данные, параметры эксперимента и уточнения структуры [Cu₄(OH)₄*Bipy*₄][Cu₂(B₁₀H₁₀)₃] · 4CH₃CN

М	1592.76
Сингония, пр. гр., Z	Моноклинная, <i>Р</i> 2 ₁ / <i>n</i> , 4
<i>a</i> , <i>b</i> , <i>c</i> , Å	15.947 (2), 16.383 (2), 28.342(4)
β, град	99.617(2)
V, Å ³	7300.3(16)
D_x , г/см ³	1.449
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
μ, мм ⁻¹	1.767
<i>Т</i> , К	150(2)
Размер образца, мм	$0.38 \times 0.12 \times 0.03$
Дифрактометр	Bruker Smart Apex2
Тип сканирования	φиω
Учет поглощения; T_{\min} , T_{\max}	Полуэмпирический по эк- вивалентам; 0.5374, 0.7461
θ_{max} , град	25.00
Пределы h, k, l	$-18 \le h \le 18, -19 \le k \le 18, \\ -33 \le l \le 33$
Число отражений: изме-	45210/12858, 0.0769/8954
ренных/независимых $(N_1), R_{int}/c I > 2\sigma(I) (N_2)$	
Метод уточнения	МНК по F^2
Число параметров/огра- ничений	1202/374
<i>R</i> 1, <i>wR</i> 2 по <i>N</i> ₁	0.0929, 0.1350
<i>R</i> 1, <i>wR</i> 2 по <i>N</i> ₂	0.0579, 0.1211
S	1.059
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.544/0.784
Программы	APEX2, SAINT, SADABS, XPREP, XP [2]; SHELXS86 и SHELXL97 [3]

Рис. 1. Строение комплексного катиона $[Cu_4(OH)_4 Bipy_4]^{4+}$. Здесь и на рис. 2 эллипсоиды тепловых колебаний атомов показаны с вероятностью 30%.

wR2 = 0.1764 по 8954 отражениям с $F_o > 4\sigma(F_o)$; R1 = 0.1093 и wR2 = 0.1951 по всем 12858 отражениям; S = 1.061. На нулевом синтезе оставались высокие пики. Позиции шести самых сильных пиков (3.74–2.23 э/Å³) связаны с позициями атомов Си псевдоплоскостью зеркального отражения, расположенной, как и кристаллографическая плоскость *n*, перпендикулярно оси *y* на высоте $y = \frac{1}{4}$ или $\frac{3}{4}$, а координаты двух из них почти совпали с координатами атомов O1 и O2. Учет этих пиков в качестве атомов Cu второго компонента кристалла с заселенностью q_2 и уточнение заселенности основного компонента q_1 при условии, что $q_2 = 1 - q_1$, привели к понижению *R*-факторов и замыканию тепловых эллипсоидов атомов O1 и O2. Величина q_1 составила ~0.95.

Рис. 2. Строение комплексного аниона $[Cu_2(B_{10}H_{10})_3]^{4-}$ в проекции вдоль локальной псевдооси 2.

Рис. 3. Образование цепочек между комплексными катионами и анионами основного компонента. Проекция вдоль оси *b*. Молекулы ацетонитрила и атомы водорода не показаны.

В окончательное уточнение включены все атомы второго компонента (100 неводородных атомов и 78 атомов Н). Изотропные тепловые параметры его неводородных атомов фиксированы, изменения позиционных параметров ограничены стремлением к сохранению геометрии основного компонента. Процедурой МНК уточнена вся модель, за исключением молекул ацетонитрила второго компонента, из-за чего в последнем цикле остались большие величины отношения сдвига к стандартному отклонению параметра (максимальное и среднее значения составляют 0.672 и 0.032 соответственно). Уточнение понизило *R*-

8 КРИСТАЛЛОГРАФИЯ том 57 № 5 2012

факторы и привело к $q_1 = 0.9409(8)$. Таким образом, доля второго компонента в исследованном кристалле составляет ~6%. Кристаллы представляют собой очень тонкие вытянутые пластинки или иголки, легко слипающиеся друг с другом. В надежде получить данные с чистого монокристалла эксперимент повторили дважды с кристаллов из новых синтезов, но пришли к тому же результату — на нулевом синтезе оставались шесть значимых пиков, связанных с атомами меди зеркальной псевдоплоскостью. Заселенность основного компонента q_1 в новых экспериментах составила 0.9524(7) и 0.9389(9). Маловероятно, что в

Рис. 4. Упаковка строительных элементов основного компонента кристалла. Проекция вдоль оси *а*. Атомы Н не показаны.

трех исследованных образцах кристаллы склеились в одинаковой относительной ориентации. Причину присутствия второго компонента в кристаллах следует искать в специфике их строения. Сведения о структуре депонированы в Кембриджский банк структурных данных, ССDС № 798204.

ОПИСАНИЕ СТРУКТУРЫ И АНАЛИЗ КРИСТАЛЛИЧЕСКОЙ УПАКОВКИ

Основными строительными элементами кристаллов являются комплексные катион

 $[Cu_4(OH)_4Bipy_4]^{4+}$ и анион $[Cu_2(B_{10}H_{10})_3]^{4-}$. Оба элемента расположены в общих позициях моноклинной ячейки с пр. гр. $P2_1/n$. Катион имеет двухпалубное строение (рис. 1). Каждая палуба включает два атома Cu²⁺, связанных между собой двумя группами OH⁻ и координированных бидентатными молекулами *Bipy*. Одна из OH⁻-групп каждой палубы служит мостиком, соединяющим два идентичных фрагмента $[Cu_2(OH)_2Bipy_2]^{2+}$. Собственная симметрия катиона близка к $\bar{1}$, а его центр имеет координаты ~(0.125, 0.25, 0.125). Поиск в Кембриджском банке [4] выявил четыре соединения, содержащих двухпалубный катион

КРИСТАЛЛОГРАФИЯ том 57 № 5 2012

Рис. 5. Наложение структурных элементов, связанных псевдоплоскостью *m*. Связи в элементах основного и минорного компонентов – жирные и светлые линии соответственно. Атомы H не показаны.

[Cu₄(OH)₄*Bipy*₄]⁴⁺ аналогичного строения [5–8]. Во всех случаях катион занимает центросимметричную позицию.

Анионная часть соединения представляет собой три полиэдрических аниона $B_{10}H_{10}^{2-}$, связанных двумя атомами Cu⁺ в линейный олигомер [Cu₂(B₁₀H₁₀)₃]⁴⁻ (рис. 2). Центральная часть аниона, включая атомы Cu5 и Cu6, обладает локальной псевдоосью 2, проходящей через середины связей B3–B7 и B5–B9. Координирующие апикальные и экваториальные вершины концевых групп B₁₀H₁₀ связаны псевдоосью перекрестно (B11 с B22 и B12 с B21), т.е. концевые группы B₁₀H₁₀ не подчиняются псевдосимметрии 2. Ось вытянутости олигомера проходит параллельно плоскости *ас* на уровне y = 3/4. Центральный анион B₁₀H₁₀²⁻ координируют атомы Cu5 и Cu6 ребрами типа 1–2 и 8–10. В концевых анионах B₁₀H₁₀²⁻

КРИСТАЛЛОГРАФИЯ том 57 № 5 2012

участвуют в слабых взаимодействиях с атомами Cu^{2+} , которые связывают комплексные анионы $[Cu_2(B_{10}H_{10})_3]^{4-}$ и комплексные катионы $[Cu_4(OH)_4Bipy_4]^{4+}$ в цепочки (рис. 3).

Зеркальные псевдоплоскости проходят в ячейке на уровне y = 1/4 и 3/4, пересекая комплексные анионы и катионы (рис. 4). Наложение структурных элементов, связанных псевдоплоскостью, показано на рис. 5. Анионы двух компонентов занимают фактически одну и ту же часть пространства ячейки. Пространство, занимаемое катионами двух компонентов, близко совпадает в центральной части, но расходится по краям комплекса. При замещении структурных элементов их зеркальными эквивалентами комплексный катион (и в меньшей степени комплексный анион) вторгается в область, занимаемую молекулами ацетонитрила. Поскольку молекулы ацетонитрила выполняют сольватную функцию и легко выветриваются при хранении кристаллов на воздухе, они не препятствуют замещению. Анализ контактов между структурными элементами компонентов, связанных зеркальной плоскостью, показывает, что в коротких контактах участвуют группы СН молекул бипиридила, расположенные в мета- и пара-позициях по отношению к атому N. Наибольшее стерическое напряжение соответствует контактам С18---С7А и C18…C8A (2.91 и 3.02 Å). Можно полагать, что этих и других подобных контактов удается избежать благодаря небольшим поворотам Ру-циклов и отклонениям молекул Віру от координационной плоскости. Кроме того, в стерической подгонке комплексного катиона может участвовать и координационный узел. Сопоставление строения катиона $[Cu_4(OH)_4 Bipy_4]^{4+}$ в четырех соединениях с разными анионами [5-8] выявило некоторые различия в геометрии его центральной части. Межпалубное расстояние Cu-O варьирует в интервале 2.322–2.555 Å. Расстояния Си…Си между атомами, связанными центром инверсии, составляют 3.169-3.472 и 5.479-5.751 Å. Перегиб "палубы" по линии О…О равен 8.7°-16.8°. Таким образом, в изученной структуре допустимы небольшие отклонения групп атомов, позволяющие разрешить стерические конфликты при замещении структурных элементов их зеркальными эквивалентами.

Найденный в кристалле $[Cu_4(OH)_4 Bipy_4]$ $[Cu_2(B_{10}H_{10})_3] \cdot 4CH_3CN$ минорный компонент, связанный с основным зеркальной псевдоплоскостью, может соответствовать точечным дефектам замещения или отдельному индивиду двойника, выросшему из-за сбоя в упаковке структурных элементов. Близкое содержание второго компонента в трех исследованных образцах (4– 6%) свидетельствует в пользу точечных дефектов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Авдеева В.В., Дзиова А.Э., Полякова И.Н. и др. // Докл. РАН. 2011. Т. 437. № 4. С. 488.
- APEX2 (Version 2008. 6-1), SAINT (V7.60A), SADABS (Vers. 2008/1), XPREP (Version 2008/2), XP (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA, 2005–2009.
- 3. *Sheldrick G.M.* //Acta Cryst. A. 2008. V. 64. № 1. P. 112.
- 4. Allen F.H., Kennard O., Taylor R. // Acc. Chem. Res. 1983. V. 16. № 5. P. 146.
- 5. *Li X., Cheng D., Lin J.-L. et al.* // Cryst. Growth Des. 2008. V. 8. № 8. P. 2853.
- *Zheng Y.-Q., Lin J.-L.* // Z. Anorg. Allg. Chem. 2002. B. 628. № 1. S. 203.
- Luo J.-H., Chen L., Yue Ch.-Y. et al. // Jiegou Huaxue (Chin. J. Struct. Chem). 2007. V. 26. P. 654.
- 8. Fan Y., Cui Y.-T., Qian H.-F. et al. // Acta Cryst. E. 2009. V. 65. P. m131.